Sentences Generator
And
Your saved sentences

No sentences have been saved yet

578 Sentences With "localizes"

How to use localizes in a sentence? Find typical usage patterns (collocations)/phrases/context for "localizes" and check conjugation/comparative form for "localizes". Mastering all the usages of "localizes" from sentence examples published by news publications.

The Chrome update, according to the blog post, effectively localizes crashes.
TransferWise localizes by finding bank partners and acquiring relevant local regulatory approvals.
Howard localizes her thematic ambition by staying honest about her own feelings and experiences.
His 2016 documentary The Good Postman localizes the Syrian refugee crisis in a tiny Bulgarian town.
Using its odor-tracking antennae, the male silkmoth localizes the scent and begins walking toward it.
Squarefoot starts off on the buyer side as an aggregation platform that localizes open office space into one spot.
But Hitler's tiny dick helps solve that problem: It localizes all the fracture and confusion of existence into one damaged object.
He points out that neurons are always firing (true), but he localizes this brain-wide phenomenon to just one brain network (false).
By the 1800s, what growing cities had discovered was that a city, by its very nature, localizes and concentrates waste on a massive scale.
"He's had abdominal pain for 48 hours, anorexia for 24, he's febrile to 101 degrees, and his pain localizes to McBurney's point," I answered.
Citiesocial works with about 150 social media "influencers" to help products get exposure in Asia and localizes marketing material, including social media pages and video.
Nutaku, on the other hand, has 50 employees and gets around 14 million visitors every month, but still mostly hosts browser games it licenses and localizes from Japanese developers.
" She added that Amazon Prime is also an "attractive loyalty program that has worked in the U.S., but how it localizes to meet the needs of customers here will be the key to success.
A crucial observer of how art and architecture can convene new political realities for its viewers, Attia localizes his message for Barcelona by interviewing several working class people caught up in Spain's unfolding migrant crisis.
Those would have a hard time impacting Netflix, though; the service is already built to handle more than 35TB per second of data during peak hours, and has a network of Open Connect devices that localizes most of its traffic anyway.
Civil Maps Product Manager Anuj Gupta explains how its technology localizes a car in six degrees of freedom (a term you may be familiar with if you follow the virtual reality industry), across both x,y and z movement axes as well as on roll, pitch and yaw rotational axes to help a car focus its sensors exactly where they need to be paying closest attention on the road at any given moment.
Flabby arms are due to a combination of factors associated with aging and genetics, including an increase in overall body fat mass (a greater portion of which localizes to the arms in some women due to genetics), loss of muscle mass in the arms associated with aging and reduced activity (causing the skin to hang more loosely on the upper arm) and a loss of elasticity in the skin due to both aging and sun damage from UV radiation, according to San Francisco dermatologist Dr. Richard Glogau.
During interphase, PLK1 localizes to centrosomes. In early mitosis, it associates with mitotic spindle poles. A recombinant GFP-PLK1 protein localizes to centromere/kinetochore region, suggesting a possible role for chromosome separation.
Within individual cells, it localizes to the Golgi apparatus and stress granules.
In contrast, ALA localizes in the mitochondria and methylene blue in the lysosomes.
This protein, which localizes to both sides of the nuclear pore complex at interphase, remains associated with the complex during mitosis and is targeted at early stages to the reforming nuclear envelope. This protein also localizes to kinetochores of mitotic cells.
Though ALDOA localizes to the nucleus, it lacks any known nuclear localization signals (NLS).
The protein also localizes to the cytoplasmic plaques of tight junctions in some cell types.
The protein encoded by this gene bears sequence similarity with the Creb/ATF subfamily of the bZip superfamily of transcription factors. It localizes to both the cytoplasm and the nucleus. The gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6.
However, everything leads us to believe that the bishopric site localizes to the current Sahel of Tunisia.
It also localizes to the acrosomal membrane of the sperm, where it putatively mediates calcium ion transmembrane transport.
ICP0 co- localizes with α-tubulin, and dismantles host cell microtubule networks once it translocates to the cytoplasm.
Peroxisome biogenesis factor 10 is involved in import of peroxisomal matrix proteins. This protein localizes to the peroxisomal membrane.
It localizes to the mitochondrial matrix. Transcript variants utilizing alternative transcription initiation sites have been described in the literature.
The gene localizes to chromosome 17 and is the centromeric neighbor of the breast-ovarian cancer susceptibility gene BRCA1.
It localizes to both the nucleus and the cytoplasm. This protein is implicated in the regulation of mRNA stability.
Zucapsaicin displays low systemic absorption and localizes at the area of application. In animal studies, systemic absorption is 0.075%.
Based on its amino acid profile C-5 sterol desaturase appears to have four to five membrane-spanning regions, suggesting that it is a transmembrane protein. C5SD activity has been demonstrated in microsomes from rat tissue, implying that rat enzyme localizes to the endoplasmic reticulum Fluorescence microscopy experiments have shown that in the ciliate Tetrahymena thermophila C5SD localizes to the endoplasmic reticulum and that in S. cerevisiae C5SD localizes to both the endoplasmic reticulum and vesicles. In Arabidopsis thaliana C5SD is located in both the endoplasmic reticulum and lipid particles.
This fault originally was probably a thrust fault; later strike-slip faulting induced the onset of crustal extension which localizes the volcanic vents.
Serologically defined colon cancer antigen 8 is a protein that in humans is encoded by the SDCCAG8 gene. This protein localizes to the centrioles.
Rio Grande Games is a board game publisher based in Placitas, New Mexico. The company primarily imports and localizes foreign language German-style board games.
It localizes to cell-cell junction like p80 and regulates paracellular permeability. Its N-terminal domain localizes to actin fibers and stabilizes them, and this effect is not affected by angiostatin. Transfection of p130 angiomotin into MAE cells results in change in cell shape, increased average cell size and stress fiber formation. So p80 is involved in cell migration and expressed during migratory phase.
Inverted formin-2 is a protein that in humans is encoded by the INF2 gene. It belongs to the protein family called the formins. It has two splice isoforms, CAAX which localizes to the endoplasmic reticulum and non-CAAX which localizes to focal adhesions and the cytoplasm with enrichment at the Golgi. INF2 plays a role in mitochondrial fission and dorsal stress fiber formation.
Upon activation by Rheb, mTORC1 localizes to the Ragulator-Rag complex on the lysosome surface where it then becomes active in the presence of sufficient amino acids.
Serine/threonine-protein kinase 19 is an enzyme that in humans is encoded by the STK19 gene. This gene encodes a serine/threonine kinase which localizes predominantly to the nucleus. Its specific function is unknown; it is possible that phosphorylation of this protein is involved in transcriptional regulation. This gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6 and expresses two transcript variants.
LRRC24 is a secreted protein as is evidenced by the presence of a signal peptide. The structure of the protein suggests that it localizes to the cell membrane.
TRIM21 is part of the RoSSA ribonucleoprotein, which includes a single polypeptide and one of four small RNA molecules. The RoSSA particle localizes to both the cytoplasm and the nucleus.
This gene encodes the human homolog of the yeast Imp3 protein. The protein localizes to the nucleoli and interacts with the U3 snoRNP complex. The protein contains an S4 domain.
Lysosomal-associated transmembrane protein 4B is a protein that in humans is encoded by the LAPTM4B gene. LAPTM4B protein contains a lysosome localization motif and localizes on late endosomes and lysosomes.
This protein also localizes to the nucleus and may affect cardiomyocyte differentiation after binding with the CSX/NKX2-5 transcription factor. Alternative splicing results in multiple transcript variants encoding different isoforms.
As a member of the FASTKD family, TBRG4 localizes to the mitochondria to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, TBRG4 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria. TBRG4 also localizes to the bone marrow (BM), where it functions in hematopoiesis by inducing IL-6 and VEGF secretion, which then stimulate cell proliferation and angiogenesis. However, it inhibits immunoglobulin secretions by normal B cells.
One key partner protein of HINFP is NPAT, a CDK2 substrate that localizes to Histone Locus Bodies. MIZF has been reported to interact with Methyl-CpG- binding domain protein 2 and DHX9.
Increasing the field further leads to a very interesting possibility - in two-dimensions where the fluctuations are enhanced - that the vortices may condense into a Bose-condensate, which localizes the superconducting pairs.
The SMN protein contains GEMIN2-binding, Tudor and YG-Box domains. It localizes to both the cytoplasm and the nucleus. Within the nucleus, the protein localizes to subnuclear bodies called gems which are found near coiled bodies containing high concentrations of small ribonucleoproteins (snRNPs). This protein forms heteromeric complexes with proteins such as GEMIN2 and GEMIN4, and also interacts with several proteins known to be involved in the biogenesis of snRNPs, such as hnRNP U protein and the small nucleolar RNA binding protein.
The intermediate filaments are responsible for forming the structure of the cell cytoskeleton and providing mechanical stability to the cells. Syncoilin co-localizes with α-dystrobrevin at both the neuromuscular junction and sarcolemma while β-Synemin co-localizes with α-dystrobrevin only at the neuromuscular junction. The interaction of α-dystrobrevin and β-synemin provides an additional connection between the intermediate filament system and the dytsrophin-glycoprotein complex. Dysbindin is located at the sarcolemma, and its expression in skeletal muscle is relatively low.
Centrobin is a protein that in humans is encoded by the CNTROB gene. It is a centriole-associated protein that asymmetrically localizes to the daughter centriole, and is required for centriole duplication and cytokinesis.
Myopodin protein, also called Synaptopodin-2 is a protein that in humans is encoded by the SYNPO2 gene. Myopodin is expressed in cardiac, smooth muscle and skeletal muscle, and localizes to Z-disc structures.
The protein encoded by this gene can catalyze the third step (dehydration) in the conversion of long chain fatty acids to very long chain fatty acids. The encoded protein localizes to the endoplasmic reticulum membrane.
Crumbs homolog 1 is a protein that in humans is encoded by the CRB1 gene. This gene encodes a protein which is similar to the Drosophila crumbs protein and localizes to the inner segment of mammalian photoreceptors. In Drosophila, crumbs localizes to the stalk of the fly photoreceptor and may be a component of the molecular scaffold that controls proper development of polarity in the eye. Mutations in this gene are associated with a severe form of retinitis pigmentosa, RP12, and with Leber congenital amaurosis.
The film documents interviews with scientists who believe these toxins may be working to cause cancer, and shows how chemicals enter the bodies of humans.Shipman, Shanna. "Documentary localizes environmental issues" Pekin Times, Pekin, 19 April 2010.
The PET117 gene is located on the p arm of chromosome 20 in position 11.23 and spans 5,314 base pairs. The gene produces a 9.2 kDa protein composed of 81 amino acids. PET117 localizes to mitochondria.
The protein also interacts with the tail of Myosin 1 proteins. In fission yeast, Bbc1 is considered a WIP family cytoskeletal protein. Bbc1 localizes to actin cortical patches, cell division sites, the cell tip, and the cytosol.
This gene is one of three related genes that have 2-hydroxyacid oxidase activity. The encoded protein localizes to the peroxisome has the highest activity toward the substrate 2-hydroxypalmitate. Alternative splicing results in multiple transcript variants.
Within the cell, it localizes to the membranes of late endosomes and may interact there with MLN64. It is suggested that in combination with MLN64, this protein helps regulate the flow of cholesterol through the endosomal pathway.
The protein localizes to cytoplasmic bodies. The protein has also been localized to the nucleus, where it interacts with the activation domain of the HIV-1 Tat protein. The Tat protein activates transcription of HIV-1 genes.
This gene encodes a protein with similarity to a rat protein that has an inhibitory effect on protein phosphatase-1 (PP1). The rat protein localizes to the nucleus and colocalizes with chromatin at distinct phases during mitosis.
Moreover, its presence within other cell types, such as platelets and mast cells (MCs), may serve as a failsafe in the case that the other predominant aldolase isozymes become inactivated. Within cells, it localizes to the cytoplasm.
Human alkyladenine DNA glycosylase localizes to the mitochondria, nucleus and cytoplasm of human cells. Some functionally equivalent enzymes have been found in other species have significantly different structures, such as DNA-3-methyladenine glycosylase in E. coli.
This gene encodes a member of the septin family of cytoskeletal proteins with GTPase activity. This protein localizes to the cytoplasm and nucleus and displays GTP-binding and GTPase activity. Alternative splicing results in multiple transcript variants.
MALSU1 is a gene on chromosome 7 in humans that encodes the protein MALSU1. This protein localizes to mitochondria and is probably involved in mitochondrial translation or the biogenesis of the large subunit of the mitochondrial ribosome.
The NDUFAF6 gene encodes a protein that localizes to mitochondria. The encoded protein plays an important role in the assembly of complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain through regulation of subunit ND1 biogenesis.
Asymmetric localization of proteins to reciprocal cell borders in the apical plane of a polarized epithelial. The dorsal-ventral intercalation of cells during germ-band extension ultimately arises from the asymmetric localization of proteins within individual cells. Immunofluorescence reveals that non-muscle Myosin II localizes to the anterior-posterior boundaries of cells, destabilizing adherens junctions, whereas the Bazooka/Par-3 complex localizes to dorsal- ventral boundaries, stabilizing adherens junctions. Moreover, bazooka mutants are defective in germ-band extension, which supports the idea that polarized protein localization is critical for cell rearrangements.
As a member of the FASTKD family, FASTKD5 localizes to the mitochondria to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, FASTKD5 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria. FASTKD5 also localizes to RNA granules, membraneless bodies containing mRNAs and associated RNA-binding proteins, where it facilitates posttranscriptional RNA processing. This protein is required for the maturation of precursor mRNAs that are not flanked by tRNAs, and thus cannot be processed by the canonical mRNA maturation pathway.
The BinCARD protein is a member of the death-domain superfamily, which is known for regulating apoptosis and the immune response. BinCARD is a negative regulator that binds to, and thus blocks the phosphorylation of, Bcl10, effectively inhibiting Bcl10 from activating the nuclear factor-κB (NF-κB). In particular, the BinCARD-1 isoform contains an extended C-terminal that has been observed to bind Bcl10, though it mostly localizes to the nucleus. The second isoform, BinCARD-2, is more abundantly expressed and localizes to both the ER and the mitochondria.
Gaius Plinius Secundus also localizes Gargarei at North of the Caucasus, but calls them Gegar.Латышев В. В. Известия древних писателей греческих и латинских о Скифии и Кавказе, т. 1, Греческие писатели, СПб, 1890; т.2, Латинские писатели, вып.
This gene localizes to the major histocompatibility complex (MHC class III) region on chromosome 6. The structure of this gene is unusual in that it overlaps the CREBL1 and CYP21A2 genes at its 5' and 3' ends, respectively.
The formation of these features is the result of histone chaperones, HIRA and ASF1, whose chromatin remodeling activities here are mediated by the PML-NBs. HIRA localizes to PML-NBs before any other interaction occurs with the DNA.
This gene encodes a member of the Kruppel-like factor subfamily of zinc finger proteins. Since the protein localizes to the nucleus and binds the epidermal growth factor response element, it is thought to be a transcription factor.
Catsup co-localizes with enzymes TH and VMAT to dopaminergic neuron cell bodies and synaptic termini. Additionally, Catsup gene encodes Drosophila ortholog to ZIP7 zinc transporter protein, which is part of ZIP (Zrt/Irt-like protein) family in mammals.
The protein localizes to the endoplasmic reticulum lumen and binds collagen; thus it is thought to be a molecular chaperone involved in the maturation of collagen molecules. Autoantibodies to this protein have been found in patients with rheumatoid arthritis.
Mitochondrial carrier homolog 2 also known as MTCH2 is a protein which in humans is encoded by the MTCH2 gene. MTCH2 resides on the outer mitochondrial membrane where it co-localizes with the apoptotic Bcl-2 family protein BID.
Peroxisome assembly factor 2 is a protein that in humans is encoded by the PEX6 gene. PEX6 is an AAA ATPase that localizes to the peroxisome. PEX6 forms a hexamer with PEX1 and is recruited to the membrane by PEX26.
UCP2 localizes to a wide variety of tissues, and is thought to be involved in regulating reactive oxygen species (ROS). In the past decade, three additional homologs of UCP1 have been identified, including UCP3, UCP4, and BMCP1 (also known as UCP5).
WHERE Ads is a hyper-local ad network that localizes traditional advertising techniques with improved performance for better results. Ads engage consumers through location relevance, design optimizing, and delivery format flexibility. In May 2012, WHERE Ads became PayPal Media Network (PPMN).
Acyl-CoA thioesterase 13 is a protein that in humans is encoded by the ACOT13 gene. This gene encodes a member of the thioesterase superfamily. In humans, the protein co-localizes with microtubules and is essential for sustained cell proliferation.
SYBL1 is a transmembrane protein that is a member of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family. SYBL1 localizes to late endosomes and lysosomes and is involved in the fusion of transport vesicles to their target membranes.
POP1 is a protein subunit of two different small nucleolar ribonucleoprotein complexes: the endoribonuclease for mitochondrial RNA processing complex and the ribonuclease P complex. This protein is a ribonuclease that localizes to the nucleus and functions in pre- RNA processing.
Due to this conformational change, NPFs initiate polymerization of a new actin filament at a 70° angle, which leads to the characteristic Y-branched actin structures in the leading edge of motile cells. ActA localizes to the old pole of the bacterium and spans both the bacterial cell membrane and the cell wall, lateral diffusion is inhibited; thus ActA localizes in a polarized and anchored manner on the bacterial surface. Consequently, actin polymerization only starts in this region on the surface of the bacterium. Expression of ActA is induced only after entering a mammalian host cell.
ASPM (abnormal spindle-like microcephaly associated) is localized to the spindle pole, and is essential for maintaining proliferative cell division. It has been reported that ASPM also localizes to the midbody ring in mammalian cells. This was due to the observed differential localization of the N-terminal and C-terminal regions of ASPM within mitotic cells to either spindle poles or to midbodies, respectively. Since, ASPM co-localizes with Citron-K at the midbody ring in HeLa cells and in developing neocortex, it has been proposed that ASPM may function to coordinate spindle rotation with localization of abscission through interaction with Citron-K.
Coiled-coil domain-containing protein 28B is a protein that in humans is encoded by the CCDC28B gene. The product of this gene localizes to centrosomes and basal bodies. It interacts and colocalizes with several proteins associated with Bardet–Biedl syndrome (BBS).
The protein localizes to lysosomes and the Golgi apparatus. It plays a role in the formation of intracellular transport vesicles, their movement from one compartment to another, and phospholipase D activation. Three alternatively spliced transcript variants for this gene have been described.
LOC105377021 localizes to Homo sapiens chromosome 3 (3p2; antisense strand), approximate to the reading frame of TRIM71. The corresponding gene has 2,473 nucleotides. There is one exon in the LOC105377021p mRNA. There is no predicted alternative splicing on the NCBI gene database.
RAB5A localizes to early endosomes where it is involved in the recruitment of RAB7A and the maturation of these compartments to late endosomes. It drives the maturation of endosomes by transporting vacuolar (H+)-ATPases (V-ATPases) from trans-Golgi network to endocytic vesicles.
The GABAα receptor make-up varies based on where the receptor localizes on the ION neuron.Alastair M. Hosie, Megan E. Wilkins, Helena M. A. da Silva & Trevor G. Smart. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486-489.
Once the midbrain/hindbrain boundary has formed, Wnt1 expression localizes to the roof plate of the neural tube and to the posterior region of the midbrain. At the MHB, Wnt1 plays a role in cell proliferation and also maintains the FGF8 expression.
Specifically, PNKD-L is only expressed in the central nervous system whereas PNKD-M and PNKD-S are ubiquitously expressed across tissues. Moreover, PNKD-L localizes to the cell membrane, PNKD-S to the cytoplasm and nucleus, and PNKD-M to the mitochondrion.
The protein encoded by this gene localizes to the primary cilium and to the plasma membrane. The gene functions in centriole migration to the apical membrane and formation of the primary cilium. Multiple transcript variants encoding different isoforms have been found for this gene.
GRAMD1A localizes to the endoplasmic reticulum. Its GRAM domain tethers it to the plasma membrane where it can bind phosphatidylinositol phosphate in areas enriched for it. The protein alters intracellular cholesterol distribution, moving it from the plasma membrane. GRAMD1A also is necessary for autophagosome biogenesis.
MORC family CW-type zinc finger protein 3 is a protein that in humans is encoded by the MORC3 gene. This gene encodes a protein that localizes to the nuclear matrix. The protein also has RNA binding activity, and has a predicted coiled-coil domain.
Apoptosis-inducing factor 1, mitochondrial is a protein that in humans is encoded by the AIFM1 gene on the X chromosome. This protein localizes to the mitochondria, as well as the nucleus, where it carries out nuclear fragmentation as part of caspase-independent apoptosis.
In normal, non-mutant, cells FANCD2 is mono-ubiquinated in response to DNA damage. Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes (see Figure: Recombinational repair of double strand damage).
When bound to microtubules, TPX2 recruits a plus-end directed motor protein, Xlp2, a protein that is required in early mitosis and localizes to spindle poles, to microtubule minus ends of asters. Like TPX2’s localization to microtubules, this recruitment is also RanGTP independent.
The translation is complete and has additional features such as optional skipping of erotic scenes. The translation localizes the names of the protagonist and antagonist as Shiki and SHIKI to account for how their names are homophones in Japanese but are written with different kanji.
The COX20 gene is located on the q arm of chromosome 1 at position 44 and it spans 9,757 base pairs. The COX20 gene produces a 13.3 kDa protein composed of 118 amino acids. It contains two transmembrane helices and localizes to the mitochondrial membrane.
The encoded protein localizes to the nuclear matrix, PML nuclear bodies, and cytoplasmic vesicles. A highly similar gene in the mouse is required for localization of specific membrane proteins in polarized regions of neurons. Multiple transcript variants encoding different isoforms have been found for this gene.
Samarium-153 (153Sm) has a half-life of 46.3 hours, undergoing β− decay into 153Eu. As a component of samarium lexidronam, it is used in palliation of bone cancer. It is treated by the body in a similar manner to calcium, and it localizes selectively to bone.
The protein encoded by this gene is an integral membrane protein that localizes to the central spoke ring complex and participates in anchoring the nuclear pore complex to the nuclear envelope. Antibodies against this protein can be used to identify the nuclear envelope in immunofluorescence experiments.
Sfi1 homolog, spindle assembly associated (yeast) is a protein that in humans is encoded by the SFI1 gene. It localizes to the centriole, and its S. pombe ortholog has been shown to be involved in spindle pole body duplication. SFI1 forms a complex with centrin 2.
The lower right, with its hill represented in green is for Green Hills, and the monument to signify Rizal Province, localizes the location of the school.LSGH Grade School: Emblem. gsweb.lsgh.edu.ph. Accessed May 22, 2008. Page 26, La Salle Green Hills Grade School Handbook, 2007–08 edition.
It also contains a destruction box (D box) that is required for its degradation by the APC. The acidic C-terminal region of the encoded protein can act as a transactivation domain. The gene product is mainly a cytosolic protein, although it partially localizes in the nucleus.
In interphase cells, the majority of NEDD9 localizes to focal adhesions. However, some of the protein is also cytoplasmic, and small pools localize to the centrosome and the basal body of cilia. At mitotic entry NEDD9 moves along mitotic spindle, eventually localizing at midbody at cytokinesis.
Plakophilin proteins contain nine central, conserved armadillo repeat domains flanked by N-terminal and C-terminal domains. Alternately spliced transcripts encoding protein isoforms have been identified. Plakophilin 2 localizes to cell desmosomes and nuclei and binds plakoglobin, desmoplakin, and the desmosomal cadherins via N-terminal head domain.
In the absence of Tyk2, a cytoplasmic IFNAR1 motif is phosphorylated, inducing receptor internalization. IFNAR1 then localizes to the perinuclear endosomal compartment and is degraded. Tyk2 null cells retain some responsiveness to IFNβ. However, responsiveness to IFNα is ablated, likely due to the reduced IFNAR1 membrane expression.
The protein encoded by this gene was first identified by its ability to bind the adenovirus E1A protein. The protein localizes to the nucleus. It functions as a transcriptional repressor, and expression of E1A inhibits this repression. Alternatively spliced transcript variants encoding different isoforms have been identified.
The protein encoded by this gene localizes to centrosomes, strengthening and stabilizing the pericentriolar region prior to spindle formation. The encoded protein usually remains with the mother centrosome after centrosomal duplication. Several transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Feb 2013].
The protein encoded by this gene is a zinc finger protein that localizes to the endoplasmic reticulum. The encoded protein binds an iron/sulfur cluster and may be involved in calcium homeostasis. Defects in this gene are a cause of Wolfram syndrome 2. [provided by RefSeq, Mar 2011].
This gene encodes a protein with 5-phosphatase activity toward polyphosphate inositol. The protein localizes to the cytosol in regions lacking actin stress fibers. It is thought that this protein may negatively regulate the actin cytoskeleton. Alternative splicing of this gene results in two transcript variants encoding different isoforms.
In the absence of divalent cation, grancalcin localizes to the cytosolic fraction; with magnesium alone, it partitions with the granule fraction; and in the presence of magnesium and calcium, it associates with both the granule and membrane fractions, suggesting a role for grancalcin in granule-membrane fusion and degranulation.
PLK4 encodes a member of the polo family of serine/threonine protein kinases. The protein localizes to centrioles—complex microtubule-based structures found in centrosomes—and regulates centriole duplication during the cell cycle. Overexpression of PLK4 results in centrosome amplification, and knockdown of PLK4 results in loss of centrosomes.
MFSD8 is a ubiquitous integral membrane protein which contains a transporter domain and a major facilitator superfamily (MFS) domain. Other members of the major facilitator superfamily transport small solutes through chemiosmotic ion gradients. The substrate transported by this protein is unknown. The protein, likely localizes to lysosomal membranes.
However, a natural substance Berberine is available as a dietary supplement. In live cells it localizes in mitochondria, inhibits complex I of respiratory chain thereby decreasing ATP (increasing AMP/ATP ratio) which leads to activation of AMPK and suppression of mTOR signaling, consistent with its potential anti-aging properties.
This gene encodes an alpha-globulin protein with corticosteroid-binding properties. This is the major transport protein for glucocorticoids and progestins in the blood of most vertebrates. The gene localizes to a chromosomal region containing several closely related serine protease inhibitors (serpins) which have evolved by duplication events.
This gene localizes to the major histocompatibility complex (MHC class III) region on chromosome 6. This cluster includes several genes involved in regulation of the immune reaction. The polyadenylation site of this gene is 421 bp from the 5' end of the gene for complement component 2. Alternative pathway.
Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. Posttranslational modifications determine whether this protein localizes to the nucleus or the cytoplasm.
In particular, HK3 is ubiquitously expressed in tissues, albeit at relatively low abundance. Higher abundance levels have been cited in lung, kidney, and liver tissue. Within cells, HK3 localizes to the cytoplasm and putatively binds the perinuclear envelope. HK3 is the predominant hexokinase in myeloid cells, particularly granulocytes.
Fascin binds beta-catenin, and colocalizes with it at the leading edges and borders of epithelial and endothelial cells. The role of Fascin in regulating cytoskeletal structures for the maintenance of cell adhesion, coordinating motility and invasion through interactions with signalling pathways is an active area of research especially from the cancer biology perspective. Fascin localizes to actin-rich protrusions at the cell surface called filopodia. Recent study shows that fascin also localizes to invadopodia, membrane protrusions formed at the adherent cell surface that facilitate extracellular matrix (ECM) invasion, this provide a potential molecular mechanism for how fascin increases the invasiveness of cancer cells since fascin expression is upregulated in a spectrum of cancers.
The COX15 protein localizes to the inner mitochondrial membrane and has several predicted transmembrane domains. Four conserved histidine residues are proven to be critical for COX15 activity. Both COX15 multimerization and enzymatic activity would be impaired if the 20-residue linker region connecting the two conserved domains of COX15 is removed.
This protein for this gene is also known as coiled coil domain containing 144A (CCDC144A) protein. It consists of 641 amino acids. This protein weighs 75.8 kDa and has an isoelecric point of 6.357. This protein localizes near the nucleus, and is a soluble protein with a hydrophobicity of -1.021842.
Deutsche Standards Editionen, Köln 2010, . The company also localizes its R&D; activities in China the same year. In Chongqing, the foundation stone is laid for another plant; Brose is now present in five locations in China. Brose opens a plant for window regulators and seat height adjusters in Pune/India.
The Franssen effect is an auditory illusion where the listener incorrectly localizes a sound. It was found in 1960 by Nico Valentinus Franssen (1926-1979), a Dutch physicist and inventor. There are two classical experiments, which are related to the Franssen effect, called Franssen effect F1 and Franssen effect F2.
In eukaryotes endoV is primarily a ribonuclease and cleaves single-stranded RNA at the 3' position relative to an inosine base, which may be present due to RNA editing by deaminase enzymes. The human endoV localizes to the cytoplasm and nucleoli, suggesting a possible role in processes involving ribosomal RNA.
Protein Kinase A is directed to specific sub cellular locations after tethering to Protein kinase A anchoring proteins (AKAPs). Sarcoplasmic Reticulum Ca2+ release channel or Ryanodine receptor (Ryr) co-localizes with the muscle AKAP. RyR phosphorylation and efflux of Ca 2+ is increased by localisation of PKA at RyR by mAKP.
When the cell enters mitosis, Cdr2 is distributed diffusely through the cytoplasm; there is no detectable cortical band in metaphase in anaphase. During septation at the end of anaphase, Cdr2 localizes to the contractile ring. After cytokinesis, Cdr2 is again distributed in a broad medial band centered on the nucleus.
Mice of the Black Swiss strain develop early-onset slowly progressing sensorineural hearing loss. A genetic study identified two quantitative trait loci (QTL) that control hearing function. One QTL, named age-related hearing loss 5 (ahl5) localizes to chromosome 10 and accounted for ca. 60% of the variation in hearing thresholds.
Torsin-1A (TorA) also known as dystonia 1 protein (DYT1) is a protein that in humans is encoded by the TOR1A gene (also known as DQ2 or DYT1). TorA localizes to the endoplasmic reticulum and contiguous perinuclear space, where its ATPase activity is activated by either LULL1 or LAP1, respectively.
11β-HSD co-localizes with intracellular adrenal steroid receptors. Licorice, which contains glycyrrhizinic acid and enoxolone, can inhibit 11β-HSD and lead to a mineralocorticoid excess syndrome. Cortisol levels consequently rise, and cortisol binding to the mineralocorticoid receptor produces clinical signs and symptoms of hypokalemia, alkalosis and hypertension (i.e. mineralocorticoid excess).
LACTB is widely expressed in different mammalian tissues, with the predominant expression in human skeletal muscle. It localizes in the mitochondrial intermembrane space. LACTB can polymerize into stable filaments occupying the mitochondrial intermembrane space. These filaments are speculated to play a role in submitochondrial organization and therefore possibly affect mitochondrial metabolon organization.
Protein Red is a protein that in humans is encoded by the IK gene. The protein encoded by this gene was identified by its RED repeat, a stretch of repeated arginine, glutamic acid and aspartic acid residues. The protein localizes to discrete dots within the nucleus, excluding the nucleolus. Its function is unknown.
The protein encoded by this gene is a membrane-associated GTP-ase and localizes to the plasma membrane. It is related to the ADP-ribosylation factor (ARF) and ARF-like (ARL) genes. The gene is located in a gene cluster that includes the a gene (M68) that is overexpressed in some tumors.
Currently, it is the best studied dynein partner. Dynactin is a protein that aids in intracellular transport throughout the cell by linking to cytoplasmic dynein. Dynactin can function as a scaffold for other proteins to bind to. It also functions as a recruiting factor that localizes dynein to where it should be.
Munc18-1 binding to the N-terminus of Syntaxin-1 is thought to facilitate Syntaxin-1 interaction with another SNARE, while binding to the "closed" conformation of Syntaxin-1 is believed to be inhibitory. Recently published data show that alternative spliced Syntaxin 1 (STX1B) which lacks the transmembrane domain localizes in the nuclei.
Xaa-Pro aminopeptidase 3, also known as aminopeptidase P3, is an enzyme that in humans is encoded by the XPNPEP3 gene. XPNPEP3 localizes to mitochondria in renal cells and to kidney tubules in a cell type-specific pattern. Mutations in XPNPEP3 gene have been identified as a cause of a nephronophthisis-like disease.
Antrin, Photochlor, Photosens, Photrex, Lumacan, Cevira, Visonac, BF-200 ALA, Amphinex and Azadipyrromethenes. The major difference between photosensitizers is the parts of the cell that they target. Unlike in radiation therapy, where damage is done by targeting cell DNA, most photosensitizers target other cell structures. For example, mTHPC localizes in the nuclear envelope.
At the sub cellular level, REEP5 is expressed in the endoplasmic reticulum. Immunochemical staining localizes it here. A number of post-translational modifications are computationally predicted in humans and close orthologs. Acetylation of the second amino acid was predicted. Phosphorylation of the 150th amino acid is predicted in Humans, Mice and Chickens.
As a member of the FASTKD family, FASTKD1 localizes to the mitochondria to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, FASTKD1 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria. FASTKD1 has been validated as an RNA-binding protein.
The mechanism consists of an enzyme called 11 β-hydroxysteroid dehydrogenase (11β-HSD). This enzyme co- localizes with intracellular adrenal steroid receptors and converts cortisol into cortisone, a relatively inactive metabolite with little affinity for the MR. Liquorice, which contains glycyrrhetinic acid, can inhibit 11β-HSD and lead to a mineralocorticoid excess syndrome.
One of these proteins is ZBP1. ZBP1 binds to beta-actin mRNA at the site of transcription and moves with mRNA into the cytoplasm. It then localizes this mRNA to the lamella region of several asymmetric cell types where it can then be translated. FMRP is another RBP involved in RNA localization.
Radioactivity is also seen in the bladder, from normal renal excretion of iodide. It localizes to adrenergic tissue and thus can be used to identify the location of tumors such as pheochromocytomas and neuroblastomas. With I-131 it can also be used to eradicate tumor cells that take up and metabolize norepinephrine.
Phospholipase D2 (PLD2) binds PIP2 and localizes with lipid rafts. Increases in cholesterol overcome PIP2 binding and sequester PLD2 into GM1 lipid rafts away from its substrate phosphatidylcholine. Efflux of cholesterol causes PLD2 to translocate to PIP2 domains where it is activated by substrate presentation. Both PIP2 signaling and cholesterol signaling regulate the enzyme.
This allows for normal development of the lung and halts potentially dangerous over-branching and budding from occurring. In pancreatic development, netrin 1 is expressed in epithelial ductal cells and localizes to the basal membrane. Netrin 1 associates with several elements in the extracellular matrix, including collagen IV, fibronectin, and integral proteins α6β4 and α3β1.
This protein localizes to the plasma membrane of germ cells in the testis and to the post-acrosomal plasma membrane of mature spermatozoa. Recombinant polypeptide binds GTP and exhibits GTPase activity. Thus, this protein may regulate GTP signal transduction pathways involved in spermatogenesis and fertilization. Two transcript variants of this gene encode the same protein.
The C-terminus of the protein encoded by this gene binds topoisomerase I. The N-terminus contains a proline-rich region and a BTB/POZ domain (broad-complex, Tramtrack and bric a brac/Pox virus and Zinc finger), both of which are typically involved in protein-protein interactions. Subcellularly, the protein localizes to cytoplasmic bodies.
PHD finger protein 6 is a protein that in humans is encoded by the PHF6 gene. This gene is a member of the plant homeodomain (PHD)-like finger (PHF) family. It encodes a protein with two atypical PHD-type zinc finger domains, indicating a potential role in transcriptional regulation, that localizes to the nucleolus.
MAL-like protein is a protein that in humans is encoded by the MALL gene. This gene encodes an element of the machinery for raft-mediated trafficking in endothelial cells. The encoded protein, a member of the MAL proteolipid family, predominantly localizes in glycolipid- and cholesterol-enriched membrane (GEM) rafts. It interacts with caveolin-1.
In combinatorial game theory, and particularly in the theory of impartial games in misère play, an indistinguishability quotient is a commutative monoid that generalizes and localizes the Sprague–Grundy theorem for a specific game's rule set. In the specific case of misere-play impartial games, such commutative monoids have become known as misere quotients.
Antiquitin function and subcellular localization are closely linked, as it functions in detoxification in the cytosol, lysine catabolism in the mitochondrion, and cell cycle progression in the nucleus. In particular, antiquitin localizes to the mitochondria in kidney and liver to contribute to the synthesis of betaine, a chaperone protein that protects against osmotic stress.
PAK5 phosphorylates Pacsin-1 and Synaptojanin-1 and regulates synaptic vesicle trafficking. PAK5-mediated phosphorylation of GATA1 at S161 and S187 contributes to Epithelial-mesenchymal transition. PAK5 phosphorylation of p120-catenin at S288 plays a role in cytoskeleton remodeling. In addition to the cytoplasm, the PAK5 also localizes in mitochondria and phosphorylates BAD at S112.
This gene encodes a multi-pass transmembrane protein that belongs to the TMEM134/TMEM230 protein family. The encoded protein localizes to secretory and recycling vesicle in the neuron and may be involved in synaptic vesicles trafficking and recycling. Mutations in this gene may be linked to familial Parkinson's disease. [provided by RefSeq, Mar 2017].
Nebulette is a cardiac-specific isoform belonging to the nebulin family of proteins. It is encoded by the NEBL gene. This family is composed of 5 members: nebulette, nebulin, N-RAP, LASP-1 and LASP-2. Nebulette localizes to Z-discs of cardiac muscle and appears to regulate the length of actin thin filaments.
Acetylation of histone H4K5 and H4K12 is enriched at centromeres. H4K8ac and H4K12ac are associated with active promoters to form a backbone. H4 localizes more to gene bodies promoters than other acetylations so H4K8ac facilitates transcriptional elongation. H4K12ac is involved in learning and memory so it could help with reducing age-related decline in memory.
Angiomotin p80 locates and binds angiostatin on the cell surface. In primary endothelial of Chinese hamster ovary, it localizes to cell-cell junction, recruits ZO-1 and interacts with MAGI-1. It may play a role in the assembly of endothelial cell-cell junctions, as well. Angiomotin p130 does not promote cell migration, nor responds to angiostatin.
This subunit requires ATP and the presence of microtubules for activation. The second 80 kDA subunit, encoded by KATNB1, regulates the activity of the ATPase and localizes the protein to centrosomes. Electron microscopy shows that katanin forms 14–16 nm rings in its active oligomerized state on the walls of microtubules (although not around the microtubule).
Sciellin is a protein that in humans is encoded by the SCEL gene. The protein encoded by this gene is a precursor to the cornified envelope of terminally differentiated keratinocytes. This protein localizes to the periphery of cells and may function in the assembly or regulation of proteins in the cornified envelope. Transcript variants encoding different isoforms exist.
Each antibody binds only one specific antigen. Monoclonal antibody therapy is a form of immunotherapy that uses monoclonal antibodies (mAb) to bind monospecifically to certain cells or proteins. The objective is that this treatment will stimulate the patient's immune system to attack those cells. Alternatively, in radioimmunotherapy a radioactive dose localizes a target cell line, delivering lethal chemical doses.
E2F-associated phosphoprotein is a protein that in humans is encoded by the EAPP gene. This gene encodes a phosphoprotein that interacts with several members of the E2F family of proteins. The protein localizes to the nucleus, and is present throughout the cell cycle except during mitosis. It functions to modulate E2F-regulated transcription and stimulate proliferation.
Bromodomain-containing protein 3 (BRD3) also known as RING3-like protein (RING3L) is a protein that in humans is encoded by the BRD3 gene. This gene was identified based on its homology to the gene encoding the RING3 (BRD2) protein, a serine/threonine kinase. The gene localizes to 9q34, a region which contains several major histocompatibility complex (MHC) genes.
Microtubule-associated protein RP/EB family member 3 is a protein that in humans is encoded by the MAPRE3 gene. The protein encoded by this gene is a member of the RP/EB family of genes. The protein localizes to the cytoplasmic microtubule network and binds APCL, a homolog of the adenomatous polyposis coli tumor suppressor gene.
This gene is thought to regulate cell cycle progression. It is induced by p53 in response to DNA damage, or by sublytic levels of complement system proteins that result in activation of the cell cycle. The encoded protein localizes to the cytoplasm during interphase and to centrosomes during mitosis. The protein forms a complex with polo-like kinase 1.
There are two known paralogs for TTC39B: TTC39A and TTC39C. TTC39A has two splice isoforms and TTC39C has three splice isoforms. TTC39A has been tested for association to diseases like breast neoplasms and is expected to have molecular binding function and localizes in various compartments (extracellular space, membrane, nucleus). TTC39C is expected to localize in cytoplasm.
Peeling Skin Syndrome 1 is caused by a genetic defect in the Corneodesmosin(CDSN) gene. This gene localizes to the human epidermis and other epithelia. The protein experiences a chain of cleavages during corneocyte maturation. Its symptoms include short stature, abnormality of metabolism/homeostasis, scaling skin, pruritus, erythema, asthma, brittle hair, and abnormality of hair texture.
The protein encoded by this gene belongs to the biotin and lipoic acid synthetases family. It localizes in mitochondrion and plays an important role in alpha-(+)-lipoic acid synthesis. It may also function in the sulfur insertion chemistry in lipoate biosynthesis. Alternative splicing occurs at this locus and two transcript variants encoding distinct isoforms have been identified.
Fibrocystin is a large, receptor-like protein that is thought to be involved in the tubulogenesis and/or maintenance of duct-lumen architecture of epithelium. FPC associates with the primary cilia of epithelial cells and co- localizes with the Pkd2 gene product polycystin-2 (PC2), suggesting that these two proteins may function in a common molecular pathway.
These motifs contain conserved H-C links. Gli family zinc finger proteins are mediators of Sonic hedgehog (Shh) signaling and they are implicated as potent oncogenes in the embryonal carcinoma cell. The protein encoded by this gene localizes to the cytoplasm and activates patched Drosophila homolog (PTCH) gene expression. It is also thought to play a role during embryogenesis.
The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The protein localizes to microtubular structures in the cytoplasm. Its function has not been identified.
Cytochrome P450 2A13 is a protein that in humans is encoded by the CYP2A13 gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum.
1-acyl-sn-glycerol-3-phosphate acyltransferase alpha is an enzyme that in humans is encoded by the AGPAT1 gene. This gene encodes an enzyme that converts lysophosphatidic acid (LPA) into phosphatidic acid (PA). LPA and PA are two phospholipids involved in signal transduction and in lipid biosynthesis in cells. This enzyme localizes to the endoplasmic reticulum.
Kinesin family member 15 is a protein that in humans is encoded by the KIF15 gene. This gene encodes a motor protein that is part of the kinesin superfamily. KIF15 maintains half spindle separation by opposing forces generated by other motor proteins. KIF15 co-localizes with microtubules and actin filaments in both dividing cells and in postmitotic neurons.
Strain subsequently localizes until fracture occurs. Fracture strain is not an engineering strain since distribution of the deformation is inhomogeneous within the reference length. Fracture strain is nevertheless a rough indicator of the formability of a material. Typical values of the fracture strain are: 7% for ultra-high-strength material, and over 50% for mild-strength steel.
Protein Dom3Z is a protein that in humans is encoded by the DOM3Z gene. This gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6. The function of its protein product is unknown, but its ubiquitous expression and conservation in both simple and complex eukaryotes suggests that this may be a housekeeping gene.
It is likely that it localizes in the cytoplasm but is anchored in the cell membrane by the second amino acid. C22orf25 is also xenologous to T10 like proteins in the Fowlpox Virus and Canarypox Virus. The gene coding for C22orf25 is located on chromosome 22 and the location q11.21, so it is often associated with 22q11.2 deletion syndrome.
C22orf25 localizes to the cytoplasm and is anchored to the cell membrane by the second amino acid. As mentioned previously, the second amino acid is modified by palmitoylation. Palmitoylation is known to contribute to membrane association because it contributes to enhanced hydrophobicity. Palmitoylation is known to play a role in the modulation of proteins' trafficking, stability and sorting.
NF-kappa-B-repressing factor is a protein that in humans is encoded by the NKRF gene. This gene encodes a transcription factor that interacts with specific negative regulatory elements (NREs) to mediate transcriptional repression of certain NK-kappa-B-responsive genes. The protein localizes predominantly to the nucleolus with a small fraction found in the nucleoplasm and cytoplasm.
When the PML-NB are absent or disrupted, Daxx is delocalized and apoptosis does not occur. This interaction was demonstrated when PML-NB disrupted cells were treated and Daxx relocalized with the PML-NB. ATRX, a centromeric heterochromatin component co-localizes with Daxx. This partnership is found mainly in the S-phase of the cell cycle.
Mutations associated with disease are usually found in exons 8, 10 and 16. The gene is expressed in fetal tissues including the aorta, brain, eye, kidney, liver, lung, olfactory bulb, pancreas, skeletal muscle, spleen and testis. The protein is found in the cytoplasm, centrosome, cell projections and cilium basal body. During mitosis it localizes to both spindle poles.
The protein encoded by this gene is a single-stranded DNA (ssDNA)-specific exonuclease that can slide along the DNA before cutting it. However, human replication protein A binds ssDNA and restricts sliding of the encoded protein, providing a 5'-directionality to the enzyme. This protein localizes to nuclear repair loci after DNA damage. [provided by RefSeq, Nov 2016].
Adherens junctions are the primary force- bearing junctions between epithelial cells and are fundamentally important for maintaining epithelial cell shape and for dynamic changes in shape during tissue development. How E-cadherin localizes to the boundary between apical and lateral membranes is not known, but polarized membranes are essential for maintaining E-cadherin at adherens junctions.
Drosophila IMPDH has been demonstrated to act as a sequence-specific transcriptional repressor that can reduce the expression of histone genes and E2F. IMPDH localizes to the nucleus at the end of the S phase and nuclear accumulation is mostly restricted to the G2 phase. In addition, metabolic stress has been shown to induce the nuclear localization of IMPDH.
Mitochondrial E3 ubiquitin protein ligase 1 (MUL1) is an enzyme that in humans is encoded by the MUL1 gene on chromosome 1. This enzyme localizes to the outer mitochondrial membrane, where it regulates mitochondrial morphology and apoptosis through multiple pathways, including the Akt, JNK, and NF-κB. Its proapopototic function thus implicates it in cancer and Parkinson’s disease.
In spatially complex cells, some mRNAs are transported to particular subcellular destinations. In mature neurons, certain mRNA are transported from the soma to dendrites. One site of mRNA translation is at polyribosomes selectively localized beneath synapses. The mRNA for Arc/Arg3.1 is induced by synaptic activity and localizes selectively near active synapses based on signals generated by NMDA receptors.
Cyclin B2 is a member of the cyclin family, specifically the B-type cyclins. The B-type cyclins, B1 and B2, associate with p34cdc2 and are essential components of the cell cycle regulatory machinery. B1 and B2 differ in their subcellular localization. Cyclin B1 co-localizes with microtubules, whereas cyclin B2 is primarily associated with the Golgi region.
S100A1, also known as S100 calcium-binding protein A1 is a protein which in humans is encoded by the S100A1 gene. S100A1 is highly expressed in cardiac and skeletal muscle, and localizes to Z-discs and sarcoplasmic reticulum. S100A1 has shown promise as an effective candidate for gene therapy to treat post-myocardially infarcted cardiac tissue.
It is prenylated at its C-terminus, and localizes to the cytoplasm and plasma membrane. It is thought to be important in cell locomotion. It cycles between inactive GDP-bound and active GTP-bound states and function as molecular switches in signal transduction cascades. Rho proteins promote reorganization of the actin cytoskeleton and regulate cell shape and motility.
The protein encoded by this gene is a voltage-driven transporter that excretes intracellular urate and organic anions from the blood into renal tubule cells. Two transcript variants encoding different isoforms have been found for this gene. The longer isoform is a plasma membrane protein with transporter activity while the shorter isoform localizes to the endoplasmic reticulum.
Repair of these double-strand breaks appears to use an RNA template-based recombination mechanism dependent on RAD52. The Cockayne Syndrome B protein (CSB) (coded for by ERCC6) localizes at double-strand breaks at sites of active transcription, followed by RAD51, RAD51C and RAD52 to carry out homologous recombinational repair using the newly synthesized RNA as a template.
The glyoxylate reductase enzyme localizes to the cell cytoplasm in plants. It can use both NADPH and NADH as a cofactor, but prefers NADPH. The enzyme substrate, glyoxylate, is a metabolite in plant photorespiration, and is produced in the peroxisome. Glyoxylate is important in the plant cell as it can deactivate RUBISCO and inhibit its activation.
One isoform, Grx2a, localizes to the mitochondria, is ubiquitously expressed in tissues (e.g. heart, skeletal muscle, kidney, and liver), regulates mitochondrial redox homeostasis, and protects cells against oxidative stress. Isoforms Grx2b and Grx2c, both localized to the nucleus and cytosol, are expressed only in testes and cancer cell lines and facilitate cellular differentiation and transformation, potentially inducing tumor progression.
Periostin localizes to the extracellular compartment of cells during tissue remodeling associated with wound repair. It may also promote injury closure by facilitating the activation, differentiation, and contraction of fibroblasts. However, the increase in periostin expression associated with tissue regeneration post- injury is transient, starting a few days post-injury, peaking after seven days post-injury, and decreasing afterwards.
This gene encodes a member of the golgin family, a group of coiled-coil proteins localized to the Golgi apparatus. The encoded protein may function in the secretory pathway. The encoded protein, which also localizes to the cytoplasm, was identified by interactions with the N-terminal kinase-like protein, and thus it may function in mitosis.
Specifically, in some lower eukaryotes, a histone H2B variant binds to a histone H2A variant called H2AZ, localizes to active genes, and supports transcription in those regions. In mice, a variant called H2BE helps control the expression of olfactory genes. This supports the idea that isoforms of histone H2B may have specialized functions in different tissues.
Sodium pertechnetate cannot pass through the blood–brain barrier. In addition to the salivary and thyroid glands, 99mTcO4− localizes in the stomach. 99mTcO4− is renally eliminated for the first three days after being injected. After a scanning is performed, it is recommended that a patient drink large amounts of water in order to expedite elimination of the radionuclide.
Snrpn codes for a protein of unknown function which localizes to the cell nucleus. Snurf codes for a small nuclear ribonucleoprotein. While most of these proteins are involved in splicing, the role of this particular protein is not yet known. Downstream from Snrpn/Snurf and within its introns are sequences for several C/D box snoRNAs.
Hexokinase 2 also known as HK2 is an enzyme which in humans is encoded by the HK2 gene on chromosome 2. Hexokinases phosphorylate glucose to produce glucose-6-phosphate (G6P), the first step in most glucose metabolism pathways. This gene encodes hexokinase 2, the predominant form found in skeletal muscle. It localizes to the outer membrane of mitochondria.
NEAT1 is constitutively expressed in a number of non-neuronal tissues and cell lines. NEAT1 localizes to specific nuclear structures called paraspeckles. NEAT1 RNA interacts with a paraspeckle protein known as P54nrb or NONO and it is essential for paraspeckle formation. Some studies demonstrate that NEAT1 RNA is essential for the formation and maintenance of paraspeckles.
The PET100 gene is located on the p arm of chromosome 19 in position 13.2 and spans 1,839 base pairs. The gene produces a 9.1 kDa protein composed of 73 amino acids. The encoded protein localizes to the inner mitochondrial membrane and is exposed to the intermembrane space. This protein's N-terminus is essential for mitochondrial localization.
Telomeres are normally protected by a "cap" that prevents them from being recognized as double-strand breaks. Loss of capping proteins causes telomere shortening and inappropriate joining by NHEJ, producing dicentric chromosomes which are then pulled apart during mitosis. Paradoxically, some NHEJ proteins are involved in telomere capping. For example, Ku localizes to telomeres and its deletion leads to shortened telomeres.
In cancer cells, p27 can also be mislocalized to the cytoplasm in order to facilitate metastasis. The mechanisms by which it acts on motility differ between cancers. In hepatocellular carcinoma cells p27 co-localizes with actin fibers to act on GTPase Rac and induce cell migration. In breast cancer cytoplasmic p27 reduced RHOA activity which increased a cell's propensity for motility.
Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. Translational readthrough potential of natural termination codons in eucaryotes - the impact of RNA sequence. RNA Biol. 2015;12:950–8. An example of regulation at the level of termination is functional translational readthrough of the lactate dehydrogenase gene LDHB. This readthrough provides a peroxisomal targeting signal that localizes the distinct LDHBx to the peroxisome.
C. parvum possesses numerous surface glycoproteins thought to play a role in pathogenesis. An immunodominant >900 kDa protein, known as GP900, localizes to the apical end of sporozoites and in micronemes of merozoites. Its high molecular mass is most likely due to heavy post-translational glycosylation. Indeed, the structure of GP900 is similar to that of a family of glycoproteins known as mucins.
The rat ortholog, which localizes to the matrix of both the peroxisome and mitochondria, can isomerize 3-trans,5-cis-dienoyl-CoA to 2-trans,4-trans-dienoyl-CoA, indicating that it is a delta3,5-delta2,4-dienoyl-CoA isomerase. This enzyme functions in the auxiliary step of the fatty acid beta-oxidation pathway. Expression of the rat gene is induced by peroxisome proliferators.
Simplified Motor Scales (SMS) refer to a neurological evaluation that is designed to provide a meaningful, objective prognostic evaluation of an individual. SMS have been proposed as alternatives that would improve upon the Glasgow Coma Scale challenges of being confusing, unreliable, and unnecessarily complex. An example of a SMS can be remembered by the abbreviation TROLL - Test Responses: Obeys, Localizes, or Less.
Integrin beta 1 is expressed as at least four different isoforms. In cardiac muscle and skeletal muscle, the integrin beta-1D isoform is specifically expressed, and localizes to costameres, where it aids in the lateral force transmission from the Z-discs to the extracellular matrix. Abnormal levels of integrin beta-1D have been found in limb girdle muscular dystrophy and polyneuropathy.
There is low transcription rate (below 2 RPKM) found in the fetal liver, trachea, pancreas and bone marrow. In the cell, SNAP47 localizes cytoplasm, the endoplasmic reticulum (ER), and Vesicular-tubular cluster (ERGIC). The protein abundance is about average when compared to all the other proteins in humans. However, the mRNA has a higher than average abundance seen in this microarray.
Bves is expressed in muscle, epithelial and brain tissue, and is thus found in many adult organs. During development, Bves is detected in all three germ layers and later localizes to the aforementioned tissues. Subcellular localization is present at the plasma membrane and is also seen in punctate, intracellular vesicles. Bves demonstrates dynamic localization, dependent upon cell-cell junction formation.
Zwint-1 is clearly involved in kinetochore function although an exact role is not known. It interacts with ZW10, another kinetochore protein, possibly regulating the association between ZW10 and kinetochores. The encoded protein localizes to prophase kinetochores before ZW10 does and it remains detectable on the kinetochore until late anaphase. It has a uniform distribution in the cytoplasm of interphase cells.
Autosomal recessive polycystic kidney disease is caused by mutations in PKHD1, which encodes the membrane-associated receptor-like protein fibrocystin/polyductin (FPC) (Q8TCZ9, 4074aaa). FPC associates with the primary cilia of epithelial cells and co-localizes with the Pkd2 gene product polycystin-2 (PC2). Kim et al. (2008) have concluded that a functional and molecular interaction exists between FPC and PC2 in vivo.
U3 small nucleolar ribonucleoprotein protein MPP10 is a protein that in humans is encoded by the MPHOSPH10 gene. This gene encodes a protein that is phosphorylated during mitosis. The protein localizes to the nucleolus during interphase and to the chromosomes during M phase. The protein is thought to be part of the U3 small nucleolar ribonucleoprotein complex, which is involved in rRNA processing.
Zinc finger protein 274 is a protein that in humans is encoded by the ZNF274 gene. This gene encodes a zinc finger protein containing five C2H2-type zinc finger domains, one or two Kruppel-associated box A (KRAB A) domains, and a leucine-rich domain. The encoded protein has been suggested to be a transcriptional repressor. It localizes predominantly to the nucleolus.
Glypiation is the addition by covalent bonding of a glycosylphosphatidylinositol (GPI) anchor and is a common post-translational modification that localizes proteins to cell membranes. This special kind of glycosylation is widely detected on surface glycoproteins in eukaryotes and some Archaea.Kobayashi T. et al. (1997) The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes.
Deficiency of this protein is associated with systemic lupus erythematosus and type I diabetes mellitus. Excess production is associated with schizophrenia and bipolar disorder with psychosis. This gene localizes to the major histocompatibility complex (MHC) class III region on chromosome 6. Varying haplotypes of this gene cluster exist, such that individuals may have 1, 2, or 3 copies of this gene.
Estrogens have been shown to have a protective role in the pathogenesis of LHON. Experiments using LHON cybrids have demonstrated that the estrogen receptor localizes to the mitochondria where it directly mediates mitochondrial biogenesis. Estrogens upregulate the antioxidant enzyme superoxide dismutase 2 and mitochondrial DNA synthesis. These experiments helped to explain the mechanism behind the lower penetrance of disease among female carriers.
TipN has two transmembrane regions in the N-terminal region and a large C-terminal coiled-coil domain. TipN homologues are present in other alpha-proteobacteria. TipN localizes to the new pole in both daughter cells after division and relocalizes to the cell division site in the late predivisional cell. Therefore, both daughter cells have TipN at the new pole after division.
This condition is caused by mutations in the TIMM8A gene. This gene is located on the long arm of X chromosome (Xq22). The protein encoded by this gene localizes to the intermembrane space in mitochondria where it functions in the import of nuclear encoded proteins into the mitochondrial inner membrane. How this produces the clinical picture is not yet clear.
Because RAPL localizes to the leading edge properly in cells expressing this mutant LFA-1, this finding suggests that RAPL may play a critical role in localizing LFA-1 to discrete regions of the plasma membrane. In T-cells, the immune cell adaptor SKAP1 couples the TCR to the formation of a complex between Rap1 and RapL for T-cell adhesion.
In a damaged cell, the CSB protein localizes to sites of DNA damage. CSB recruitment to damaged sites is influenced by the type of DNA damage and is, most rapid and robust as follows: interstrand crosslinks > double-strand breaks > monoadducts > oxidative damages. The CSB protein interacts with SNM1A(DCLRE1A) protein, a 5’- 3’ exonuclease, to promote the removal of DNA interstrand crosslinks.
Isoform 1, often referred to as canonical PYCARD, and isoform 2 are the activatory isoforms. They co-localize with nucleotide oligomerization domain-like receptors (NLRs) and caspase-1. Unlike isoform 1, isoform 2 is involved in direct IL-1β processing regulation. Isoform 3 is an inhibitory isoform, so that it only co- localizes with caspase-1, but not with NLRs.
Zinc finger protein RFP is a protein that in humans is encoded by the TRIM27 gene. This gene encodes a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein localizes to the nuclear matrix.
This gene encodes a protein with multiple PDZ domains. PDZ domains mediate protein-protein interactions, and proteins with multiple PDZ domains often organize multimeric complexes at the plasma membrane. This protein localizes to tight junctions and to the apical membrane of epithelial cells. A similar protein in Drosophila is a scaffolding protein which tethers several members of a multimeric signaling complex in photoreceptors.
This gene encodes a nuclear receptor that may be a negative regulator of the Wnt/beta-catenin signaling pathway. The encoded protein localizes to the nuclear membrane and has been implicated in the nuclear trafficking of the transcription repressors REST/NRSF and REST4. Mutations in this gene have been linked to progressive myoclonus epilepsy. Alternate splicing results in multiple transcript variants.
Centrosome-associated protein 350 is a protein that in humans is encoded by the CEP350 gene. CEP350 is a large protein with a CAP-Gly domain typically found in cytoskeleton-associated proteins. It primarily localizes to the centrosome, a non-membraneous organelle that functions as the major microtubule-organizing center in animal cells. CEP350 is required to anchor microtubules at the centrosome.
This gene was identified by involvement in some t(X;14) translocations associated with mature T-cell proliferations. The gene has two ORFs that encode two different proteins. The upstream ORF encodes a 13kDa protein that is a member of the TCL1 family; this protein may be involved in leukemogenesis. The downstream ORF encodes an 8kDa protein that localizes to mitochondria.
CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. This gene encodes a DNA methyltransferase which is thought to function in de novo methylation, rather than maintenance methylation. The protein localizes primarily to the nucleus and its expression is developmentally regulated.
This gene encodes a member of a subfamily of lipid trafficking proteins that are characterized by a C-terminal steroidogenic acute regulatory domain and an N-terminal metastatic lymph node 64 domain. The encoded protein localizes to the membranes of late endosomes and may be involved in exporting cholesterol. Alternative splicing results in multiple transcript variants.[provided by RefSeq, Oct 2009].
Stylolite development can be improved with porosity, as it localizes stress on grains, increasing the stress there. Therefore, it is suggested that bedding-parallel stylolites form in areas of high porosity,Merino, E., Ortoleva, P., and Strickholm, P., 1983. Generation of evenly-spaced pressure-solution seams during (late) diagenesis: a kinetic theory. Contributions to Mineralogy and Petrology, 82: 360-370.
The protein encoded by this gene catalyzes the formation of phosphatidylserine from either phosphatidylcholine or phosphatidylethanolamine. Phosphatidylserine synthase localizes to the mitochondria-associated membrane of the endoplasmic reticulum, where it serves a structural role as well as a signaling role. Defects in this gene are a cause of Lenz-Majewski hyperostotic dwarfism. Two transcript variants encoding different isoforms have been found for this gene.
Phenylalanyl-tRNA synthetase, mitochondrial (FARS2) is an enzyme that in humans is encoded by the FARS2 gene. This protein encoded by FARS2 localizes to the mitochondrion and plays a role in mitochondrial protein translation. Mutations in this gene have been associated with combined oxidative phosphorylation deficiency 14, also known as Alpers encephalopathy, as well as spastic paraplegia 77 and infantile-onset epilepsy and cytochrome c oxidase deficiency.
Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene on chromosome 6. The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis.
Tripartite motif-containing protein 15 is a protein that in humans is encoded by the TRIM15 gene. The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The protein localizes to the cytoplasm.
Opticin is a protein that in humans is encoded by the OPTC gene. Opticin belongs to class III of the small leucine-rich repeat protein (SLRP) family. Members of this family are typically associated with the extracellular matrix. Opticin is present in significant quantities in the vitreous of the eye and also localizes to the cornea, iris, ciliary body, optic nerve, choroid, retina, and fetal liver.
However, OGG1-1a also has a nuclear location signal at its C-terminal end that suppresses mitochondrial targeting and causes OGG1-1a to localize to the nucleus. The main form of OGG1 that localizes to the mitochondria is OGG1-2a. A conserved N-terminal domain contributes residues to the 8-oxoguanine binding pocket. This domain is organised into a single copy of a TBP-like fold.
The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein localizes to the cytoplasm and its expression is induced by interferon. TRIM22 is also a target gene of the tumor suppressor protein p53.
Pyrroline-5-carboxylate reductase 1, mitochondrial is an enzyme that in humans is encoded by the PYCR1 gene. This gene encodes an enzyme that catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. This enzyme may also play a physiologic role in the generation of NADP(+) in some cell types. The protein forms a homopolymer and localizes to the mitochondrion.
Tubulin, gamma 1 is a protein in humans that is encoded by the TUBG1 gene. This gene encodes a member of the tubulin superfamily. The encoded protein localizes to the centrosome where it binds to microtubules as part of a complex referred to as the gamma-tubulin ring complex. The protein mediates microtubule nucleation and is required for microtubule formation and progression of the cell cycle.
The C-terminus of the protein encoded by this gene binds topoisomerase I. The N-terminus contains a proline-rich region and a BTB/POZ domain (broad-complex, Tramtrack and bric a brac/Pox virus and Zinc finger), both of which are typically involved in protein-protein interactions. Subcellularly, the protein localizes to cytoplasmic bodies. Alternative splicing results in multiple transcript variants encoding different isoforms.
TFIIIB150 is a subunit of the TFIIIB transcription initiation complex, which recruits RNA polymerase III to target promoters in order to initiate transcription. The encoded protein localizes to concentrated aggregates in the nucleus, and is required for transcription from all three types of polymerase III promoters. It is phosphorylated by casein kinase 2 during mitosis, resulting in its release from chromatin and suppression of polymerase III transcription.
Epsin-2 is a protein that in humans is encoded by the EPN2 gene. This gene encodes a protein which interacts with clathrin and adaptor-related protein complex 2, alpha 1 subunit. The protein is found in a brain-derived clathrin- coated vesicle fraction and localizes to the peri-Golgi region and the cell periphery. The protein is thought to be involved in clathrin-mediated endocytosis.
While chronic progressive brachial monoplegia is uncommon, syringomyelia and tumors of the cervical cord or brachial plexus may be the cause. The onset of brachial plexus paralysis is usually explosive where pain is the initial feature. Pain localizes to the shoulder but may be more diffuse, or could be limited to the lower arm. Pain is severe and often described as sharp, stabbing, throbbing, or aching.
The binding of SOS1 to GBR2 localizes it to the plasma membrane, where it can activate the membrane bound Ras. Other GEFs, such as the Rho GEF Vav1, are activated upon phosphorylation in response to upstream signals. Secondary messengers such as cAMP and calcium can also play a role in GEF activation. Crosstalk has also been shown between GEFs and multiple GTPase signaling pathways.
Tripartite motif-containing protein 9 is a protein that in humans is encoded by the TRIM9 gene. The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The protein localizes to cytoplasmic bodies.
As a member of the FASTKD family, FASTKD3 localizes to the mitochondria to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, FASTKD3 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria. FASTKD3 has been proposed to regulate energy production by serving as a scaffold protein that brings together RNA processing/translation and respiratory components.
The gene encodes a member of the cytochrome P450 superfamily of enzymes. Enzymes in the CYP2C subfamily, including CYP2C19, account for approximately 20% of cytochrome P450 in the adult liver. These proteins are monooxygenases that catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and is known to metabolize many drugs.
Human protein LRRIQ3 Isoform 1 consists of 624 amino acids, and has a molecular weight of 73.7 kDa. The isoelectric point of LRRIQ3 is 9.73, which suggests that LRRIQ3 is basic at normal physiological pH (~7.4). Additionally, there is strong evidence that human LRRIQ3 localizes to the plasma membrane from antibody staining. LRRIQ3 is rich in lysine residues, with a total of 82 lysines.
GPX1 is ubiquitously expressed in many tissues, where it protects cells from oxidative stress. Within cells, it localizes to the cytoplasm and mitochondria. As a glutathione peroxidase, GPx1 functions in the detoxification of hydrogen peroxide, specifically by catalyzing the reduction of hydrogen peroxide to water. The glutathione peroxidase also catalyzes the reduction of other organic hydroperoxides, such as lipid peroxides, to the corresponding alcohols.
The protein may function as a proprotein convertase. PCSK9 is expressed mainly in the liver, the intestine, the kidney, and the central nervous system. PCSK9 also plays an important role in intestinal triglyceride-rich apoB lipoprotein production in small intestine and postprandial lipemia. After being processed in the ER, PCSK9 co-localizes with the protein sortilin on its way through the Golgi and trans-Golgi complex.
The CR7 domain binds TCAB1, which localizes telomerase to cajal bodies, further increasing telomerase catalytic activity. TERC is ubiquitously expressed, even in cells lacking telomerase activity and TERT expression. As a result, various TERT-independent functional roles of TERC have been proposed. 14 genes containing a TERC binding motif are directly transcriptionally regulated by TERC through RNA-DNA triplex formation-mediated increase of expression.
Hexokinase-1 (HK1) is an enzyme that in humans is encoded by the HK1 gene on chromosome 10. Hexokinases phosphorylate glucose to produce glucose-6-phosphate (G6P), the first step in most glucose metabolism pathways. This gene encodes a ubiquitous form of hexokinase which localizes to the outer membrane of mitochondria. Mutations in this gene have been associated with hemolytic anemia due to hexokinase deficiency.
Prospero is a transcription factor that triggers differentiation. It is expressed in neuroblasts, but is kept out of the nucleus by Miranda, which tethers it to the cell basal cortex. This also results in asymmetric division, where Prospero localizes in only one out of the two daughter cells. After division, Prospero enters the nucleus, and the cell it is present in becomes the GMC.
The CD1 family members are thought to differ in their cellular localization and specificity for particular lipid ligands. The protein encoded by this gene localizes to the plasma membrane and to recycling vesicles of the early endocytic system. Alternatively spliced transcript variants have been observed, but their biological validity has not been determined. Transcript levels of the CD1A gene are upregulated in the lung parenchyma of smokers.
The protein encoded by this gene belongs to the dystrobrevin subfamily and the dystrophin family. This protein is a component of the dystrophin-associated protein complex (DPC). The DPC consists of dystrophin and several integral and peripheral membrane proteins, including dystroglycans, sarcoglycans, syntrophins and alpha- and beta-dystrobrevin. The DPC localizes to the sarcolemma and its disruption is associated with various forms of muscular dystrophy.
Desmocollin-2 is a protein that in humans is encoded by the DSC2 gene. Desmocollin-2 is a cadherin-type protein that functions to link adjacent cells together in specialized regions known as desmosomes. Desmocollin-2 is widely expressed, and is the only desmocollin isoform expressed in cardiac muscle, where it localizes to intercalated discs. Mutations in DSC2 have been causally linked to arrhythmogenic right ventricular cardiomyopathy.
This gene is a member of the Ras association domain family. It functions as a tumor suppressor, and is inactivated in a variety of cancers. The encoded protein localizes to centrosomes and microtubules, and associates with the GTP-activated forms of Ras, Rap1, and several other Ras-like small GTPases. The protein regulates lymphocyte adhesion and suppresses cell growth in response to activated Rap1 or Ras.
Metastasis-associated protein MTA2 is a protein that in humans is encoded by the MTA2 gene. MTA2 is the second member of the MTA family of genes. MTA2 protein localizes in the nucleus and is a component of the nucleosome remodeling and the deacetylation complex (NuRD). Similar to the founding family member MTA1, MTA2 functions as a chromatin remodeling factor and regulates gene expression.
This gene encodes a member of the HIN-200 (hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats) family of cytokines. The encoded protein contains domains involved in DNA binding, transcriptional regulation, and protein- protein interactions. The protein localizes to the nucleoplasm and nucleoli, and interacts with p53, retinoblastoma-1 and BRCA1. It modulates p53 function, and inhibits cell growth in the Ras/Raf signaling pathway.
Proliferating cell nuclear antigen (PCNA) is a protein involved in post-replication MMR. It has been shown that PCNA binds to the MutSβ heterodimer via a binding motif in the N-terminal domain of MSH3. Bound PCNA then localizes the MutSβ complex to replication foci, indicating that PCNA assists in initiating repair by guiding MutSβ and other repair proteins to free termini in recently replicated DNA.
This gene encodes dystrobrevin beta, a component of the dystrophin-associated protein complex (DPC). The DPC consists of dystrophin and several integral and peripheral membrane proteins, including dystroglycans, sarcoglycans, syntrophins and dystrobrevin alpha and beta. The DPC localizes to the sarcolemma and its disruption is associated with various forms of muscular dystrophy. Dystrobrevin beta is thought to interact with syntrophin and the DP71 short form of dystrophin.
The product of this gene is a core component of the exon junction complex (EJC), a protein complex that is deposited on spliced mRNAs at exon- exon junctions and functions in nonsense-mediated mRNA decay (NMD). The encoded protein binds RNA and interacts with two other EJC core components. It is predominantly located in the cytoplasm, but shuttles into the nucleus where it localizes to nuclear speckles.
CTCF binds to itself to form homodimers. CTCF has also been shown to interact with Y box binding protein 1. CTCF also co-localizes with cohesin, which extrudes chromatin loops by actively translocating one or two DNA strands through its ring-shaped structure, until it meets CTCF in a proper orientation. CTCF is also known to interact with chromatin remodellers such as Chd4 and Snf2h.
Valcon Games was a developer and publisher of video games based in Bellevue, Washington, United States. The company was founded in 2005 by Colin Gordon and Glen Halseth, both former members of Kemco. Valcon published games that are overlooked for the US market and also localizes games from other territories. Their last game release was in 2011 and their web site is no longer online.
Both calcium/calmodulin and protein phosphorylation mechanisms control its activity. It is also a substrate for the cyclic AMP-dependent protein kinase, calcium/calmodulin- dependent protein kinase II, and protein kinase C in vitro. ITPKA and ITPKB are 68% identical in the C-terminus region The amino- terminal region of ITPKA binds filamentous actin. This property localizes the ITPKA to dendritic spines in principal neurons.
This gene encodes a deoxyribonucleoside kinase that specifically phosphorylates thymidine, deoxycytidine, and deoxyuridine. The encoded enzyme localizes to the mitochondria and is required for mitochondrial DNA synthesis. Mutations in this gene are associated with a myopathic form of mitochondrial DNA depletion syndrome. Alternate splicing results in multiple transcript variants encoding distinct isoforms, some of which lack transit peptide, so are not localized to mitochondria.
Aurora A localizes next to the centrosome late in the G1 phase and early in the S phase. As the cell cycle progresses, concentrations of Aurora A increase and the kinase associates with the mitotic poles and the adjacent spindle microtubules. Aurora A remains associated with the spindles through telophase. Right before mitotic exit, Aurora A relocalizes to the mid-zone of the spindle.
ALDOA likely regulates actin cytoskeleton remodeling through interacting with cytohesin-2 (ARNO) and Arf6. ALDOA is ubiquitously expressed in most tissues, though it is predominantly expressed in developing embryo and adult muscle. In lymphocytes, ALDOA is the predominant aldolase isoform. Within the cell, ALDOA typically localizes to the cytoplasm, but it can localize to the nucleus during DNA synthesis of the cell cycle S phase.
Protocadherin-12 is a protein that in humans is encoded by the PCDH12 gene. This gene belongs to the protocadherin gene family, a subfamily of the cadherin superfamily. The encoded protein consists of an extracellular domain containing 6 cadherin repeats, a transmembrane domain and a cytoplasmic tail that differs from those of the classical cadherins. The gene localizes to the region on chromosome 5 where the protocadherin gene clusters reside.
This gene encodes retinoic acid receptor beta, a member of the thyroid-steroid hormone receptor superfamily of nuclear transcriptional regulators. This receptor localizes to the cytoplasm and to subnuclear compartments. It binds retinoic acid, the biologically active form of vitamin A which mediates cellular signalling in embryonic morphogenesis, cell growth and differentiation. It is thought that this protein limits growth of many cell types by regulating gene expression.
Tripartite motif-containing protein 11 is a protein found in humans that is encoded by the TRIM11 gene. The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein localizes to the nucleus and the cytoplasm.
This gene encodes a coregulator for the alpha and beta estrogen receptors and the orphan nuclear receptor Rev-ErbA beta. The protein localizes to the nucleus, and is thought to have both coactivator and corepressor functions. Its interaction with nuclear receptors is independent of the AF2 domain on the receptors, which is known to regulate interaction with other coreceptors. Two alternatively spliced transcript variants for this gene have been described.
The removal of introns from nuclear pre-mRNAs occurs on a complex called a spliceosome, which is made up of 4 small nuclear ribonucleoprotein (snRNP) particles and an undefined number of transiently associated splicing factors. The exact role of PAP-1 in splicing is not fully understood, but it is thought that PAP-1 localizes in nuclear speckles containing the splicing factor SC35 and interacts directly with another splicing factor, U2AF35.
Signal peptide peptidase-like 2B, also known as SPPL2B, is a human gene. This gene is a member of the signal peptide peptidase-like protease (SPPL) family with the conserved active site motifs 'YD' and 'GxGD' in adjacent transmembrane domains (TMDs). This enzyme localizes to endosomes, lysosomes, and the plasma membrane. This protein plays a role in innate and adaptive immunity by cleaving TNFα in activated dendritic cells.
The product of this gene functions to maintain the stability of dynein intermediate chain. Depletion of this gene product results in aggregation and degradation of dynein intermediate chain, mislocalization of the dynein complex from kinetochores, spindle microtubules, and spindle poles, and loss of gamma-tubulin from spindle poles. The protein localizes to the Golgi apparatus during interphase, and levels of the protein increase after the G1/S transition.
Transcription factor 20 is a protein that in humans is encoded by the TCF20 gene. The protein encoded by this gene binds a platelet-derived growth factor- responsive element in the matrix metalloproteinase 3 (stromelysin 1) promoter. The protein localizes to the nucleus and displays DNA-binding and transactivation activities. It is thought to be a transcriptional coactivator, enhancing the activity of transcription factors such as JUN and SP1.
This gene encodes a protein with two N-terminal Src homology 3 (SH3) domains and 10 tetratricopeptide repeat (TPR) motifs, and is a member of a small gene family. The gene product has been proposed to be an adapter or docking molecule. The mouse version (orthologue) of SH3TC2 is believed to be expressed in Schwann cells. The tagged protein localizes to the plasma membrane and to the perinuclear endocytic recycling compartment.
Tripartite motif-containing protein 31 is a protein that in humans is encoded by the TRIM31 gene. The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The protein localizes to both the cytoplasm and the nucleus.
Sperm mitochondria differ in morphology and subcellular localization from those of somatic cells. They are elongated, flattened, and arranged circumferentially to form a helical coiled sheath in the midpiece of the sperm flagellum. The protein encoded by this gene localizes to the capsule associated with the mitochondrial outer membranes and is thought to function in the organization and stabilization of the helical structure of the sperm's mitochondrial sheath.
MAO-A is a key regulator for normal brain function. It is a flavoenzyme which degrades amine neurotransmitters, such as dopamine, norepinephrine, and serotonin, via oxidative deamination. It is highly expressed in neural and cardiac cells and localizes to the outer mitochondrial membrane. Its expression is regulated by the transcription factors SP1, GATA2, and TBP via the CAMP pathway in response to stress such as ischemia and inflammation.
In rats and mice, Thy-1 protein is present on the soma (cell body) and dendrites of neurons but is not expressed on axons until axonal growth is complete, and is again temporarily suppressed during axonal injury. HIV-1 Matrix co-localizes with Thy-1 in lipid rafts, the site of virus particle budding from cells, and Thy-1 is incorporated into virus particles as a result of this process.
Ubiquitination of an otherwise IPOD substrate, such as the RNQ1 fungal prion, will result in its sequestration in the JUNQ inclusion. Upon accumulation of misfolded proteins, the disaggregase chaperone, AAA protein HSP104, localizes to the IPOD. It is yet to be determined if HSP104 functions in the IPOD or is simply sequestered there being hooked to a substrate. The pre-autophagosomal structure (PAS) is localized by the IPOD.
KIAA1841 was found to interact with SRPK1 (Serine/arginine- rich protein-specific kinase 1) The interaction was detected via a protein kinase assay. SRPK1 localizes to the nucleus and the cytoplasm. By regulating intracellular localization of splicing factors it is thought to play a role in regulating both constitutive and alternative splicing. KIAA1841 is also found in the nucleus and is thought to play a role in regulating transcription.
SDSC Biology Workbench: SAPS [workbench.sdsc.edu EVI5L Statistical Analysis of Protein Sequences] It has a very small negative hydrophobicity (-0.597019). EVI5L is a soluble proteinSOSUI: classification and secondary structure prediction that localizes in the nucleus.PSORTII: Localization of proteins in yeast and animal cells Localization of proteins in yeast and animal cells: EVI5L It contains no signal peptide, no mitochondrial targeting motifs and no peroxisomal targeting signal in the C-terminus.
Zinc finger protein GLI3 is a protein that in humans is encoded by the GLI3 gene. This gene encodes a protein that belongs to the C2H2-type zinc finger proteins subclass of the Gli family. They are characterized as DNA-binding transcription factors and are mediators of Sonic hedgehog (Shh) signaling. The protein encoded by this gene localizes in the cytoplasm and activates patched Drosophila homolog (PTCH1) gene expression.
The CYP11B1 gene encodes 11β-hydroxylase - a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases that catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The product of this CYP11B1 gene is the 11β-hydroxylase protein. This protein localizes to the mitochondrial inner membrane and is involved in the conversion of various steroids in the adrenal cortex.
PTPrho (PTPRT) transcripts have also been observed in the developing cortex and olfactory bulbs. PTPrho (PTPRT) is expressed in a very specific subset of neurons in the postnatal cerebellar cortex, the granule cell layer. Specifically, PTPrho (PTPRT) was expressed in postmigratory granule cells of lobules 1 to 6 of the cerebellum. In adults, PTPrho protein is exclusively expressed in the central nervous system and localizes to synapses between neurons.
This gene encodes a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins that catalyze the pyridine nucleotide-dependent reduction of thiol residues in other proteins. The encoded protein belongs to the class I pyridine nucleotide-disulphide oxidoreductase family but lacks the C-terminal dimerization domain found in other family members and instead has a C-terminal nitrile reductase domain. It localizes to the nucleus and to striated sarcomeric compartments.
Large tumor suppressor kinase 2 (LATS2) is an enzyme that in humans is encoded by the LATS2 gene. This gene encodes a serine/threonine protein kinase belonging to the LATS tumor suppressor family. The protein localizes to centrosomes during interphase, and early and late metaphase. It interacts with the centrosomal proteins aurora-A and ajuba and is required for accumulation of gamma-tubulin and spindle formation at the onset of mitosis.
Protein-S-isoprenylcysteine O-methyltransferase is an enzyme that in humans is encoded by the ICMT gene. This gene encodes the third of three enzymes that posttranslationally modify isoprenylated C-terminal cysteine residues in certain proteins and target those proteins to the cell membrane. This enzyme localizes to the endoplasmic reticulum. Alternative splicing may result in other transcript variants, but the biological validity of those transcripts has not been determined.
CYP2A7 (cytochrome P450, family 2, subfamily A, polypeptide 7) is a protein that in humans is encoded by the CYP2A7 gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum; its substrate has not yet been determined.
LPP3 is a member of the PAP-related phosphoesterase family. It is a type 2 activity PAP, which localizes to the plasma membrane, and is one of four known LPP isoforms. As an integral membrane protein, LPP3 contains six hydrophobic transmembrane domains and a hydrophilic catalytic site composed of three conserved domains. One catalytic domain is proposed to bind the substrate while the other two contribute to dephosphorylation of the substrate.
The protein Whirlin (WHRN) localizes in the post-synaptic neurons of hair cells that transform mechanical movement into action potentials that the body can interpret. WHRN proteins contains three PDZ domains. The domains located near the N-terminus bind to receptor proteins and other signaling components. When the one of these PDZ domains is inhibited, the signaling pathways of the neurons are disrupted, resulting in auditory, visual, and vestibular impairment.
Cytochrome P450 4F12 is a protein that in humans is encoded by the CYP4F12 gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes and is part of a cluster of cytochrome P450 genes on chromosome 19. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein likely localizes to the endoplasmic reticulum.
MTCH1 is a proapoptotic protein that localizes to the OMM and induces apoptosis independently of BAX and BAK. One possible mechanism proposes that its interactions with the mitochondrial permeability transition pore (MPTP) complex leads to depolarization of the mitochondrial membrane, release of cytochrome C, and activation of caspase-3. Expression of this protein is observed in 16 different tissue types, indicating that the protein may serve a housekeeping function.
This gene encodes a member of the U2AF-like family of RNA binding proteins. This protein interacts with some steroid nuclear receptors, localizes to the promoter of a steroid- responsive gene, and increases transcription of steroid-responsive transcriptional reporters in a hormone-dependent manner. It is also implicated in the steroid receptor- dependent regulation of alternative splicing. Multiple transcript variants encoding different isoforms have been found for this gene.
Tobacco mosaic virus movement protein 30 localizes to plasmodesmata. Plasmodesmata have been shown to transport proteins (including transcription factors), short interfering RNA, messenger RNA, viroids, and viral genomes from cell to cell. One example of a viral movement proteins is the tobacco mosaic virus MP-30. MP-30 is thought to bind to the virus's own genome and shuttle it from infected cells to uninfected cells through plasmodesmata.
Actin-associated LIM protein (ALP), also known as PDZ and LIM domain protein 3 is a protein that in humans is encoded by the PDLIM3 gene. ALP is highly expressed in cardiac and skeletal muscle, where it localizes to Z-discs and intercalated discs. ALP functions to enhance the crosslinking of actin by alpha actinin-2 and also appears to be essential for right ventricular chamber formation and contractile function.
Studies have supported the idea that mutated Atrophin-1 gathers in neurons and disrupts cell function. The sequence of the ATN1 gene contains a nuclear localizing signal (NLS) and a nuclear export signal (NES). It has been shown that a mutation of the NES in ATN1 can change where ATN1 localizes, and can cause aggregation to occur in the nucleus. This can lead to an increase in cellular toxicity.
TIA1 or Tia1 cytotoxic granule-associated rna binding protein is a 3'UTR mRNA binding protein that can bind the 5'TOP sequence of 5'TOP mRNAs. It is associated with programmed cell death (apoptosis) and regulates alternative splicing of the gene encoding the Fas receptor, an apoptosis-promoting protein. Under stress conditions, TIA1 localizes to cellular RNA-protein conglomerations called stress granules. It is encoded by the TIA1 gene.
5',3'-nucleotidase, mitochondrial, also known as 5'(3')-deoxyribonucleotidase, mitochondrial (mdN) or deoxy-5'-nucleotidase 2 (dNT-2), is an enzyme that in humans is encoded by the NT5M gene. This gene encodes a 5' nucleotidase that localizes to the mitochondrial matrix. This enzyme dephosphorylates the 5'- and 2'(3')-phosphates of uracil and thymine deoxyribonucleotides. The gene is located within the Smith–Magenis syndrome region on chromosome 17.
There are no regions significantly different from other human proteins with regard to composition, regions of polarity, or regions of hydrophobicity. iPsortII predicts no signal peptides and localizes Fam158a to the cytoplasm- I-TasserAmbrish Roy, Alper Kucukural, Yang Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, vol 5, 725-738 (2010) predicts several structures for Fam158a and the best prediction is shown.
Serine/threonine-protein kinase PAK 1 is an enzyme that in humans is encoded by the PAK1 gene. PAK1 is one of six members of the PAK family of serine/threonine kinases which are broadly divided into group I (PAK1, PAK2 and PAK3) and group II (PAK4, PAK6 and PAK5/7). The PAKs are evolutionarily conserved. PAK1 localizes in distinct sub-cellular domains in the cytoplasm and nucleus.
By means of the receptor-mediated endocytosis process, they uptake albumin and low-molecular-weight proteins freely passed through the glomerular filter. ClC-5 is located in early endosomes of PTCs where it co-localizes with the electrogenic vacuolar H+‐ATPase (V‐ATPase). ClC-5 in this compartment contributes to the maintenance of intra-endosomal acidic pH. Environment acidification is necessary for the dissociation of ligand from its receptor.
PPIB is the second of 18 cyclophilins to be identified in humans, after CypA. PPIB localizes to the endoplasmic reticulum (ER) and participates in many biological processes, including mitochondrial metabolism, apoptosis, redox, and inflammation, as well as in related diseases and conditions, such as ischemic reperfusion injury, AIDS, and cancer. It is also associated with viral infections. In eukaryotes, cyclophilins localize ubiquitously to many cell and tissue types.
It has been reported that NDRG1 localizes to the endosomes and is a Rab4a effector involved in vesicular recycling. As reviewed by Fang et al., NDRG1 is involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses, immunity, DNA repair and cell adhesion among other functions. NDRG1 is localised in the cytoplasm, nucleus and mitochondrion, at probabilities of 47.8%, 26.1% and 8.7%, respectively.
Humans with a FANCD deficiency display hypogonadism, male infertility, impaired spermatogenesis, and reduced female fertility. Similarly, mice deficient in FANCD2 show hypogonadism, impaired fertility and impaired gametogenesis. In the non-mutant mouse, FANCD2 is expressed in spermatogonia, pre-leptotene spermatocytes, and in spermatocytes in the leptotene, zygotene and early pachytene stages of meiosis. In synaptonemal complexes of meiotic chromosomes, activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein).
TERF2 also has implications in the nucleotide excision repair (NER) pathway based on experiments on K5-Terf2 mice. It is suggested that individuals with critically short telomeres are more prone to skin cancer via UV-exposure. As a result, TERF2, with roles in telomere-length controls, may affect UV-damage repair. For example, XPF nuclease, a component of NER, localizes to telomeres when the damage repair response is triggered.
It penetrates the snail far enough to release a single rediae. The mother redia localizes in the heart and produces daughter rediae, which migrate to digestive glands to continue its development and produce megalurous cercariae. Cercariae are released from the snail and encyst on aquatic vegetation or other solid objects in the water. The definitive host, which is usually an aquatic bird, becomes infected upon ingestion of metacercariae.
The protein encoded by this gene is a member of the tripartite motif (TRIM) family grouping more than 70 TRIMs. TRIM proteins primarily function as ubiquitin ligases that regulate the innate response to infection. TRIM25 localizes to the cytoplasm. The presence of potential DNA-binding and dimerization-transactivation domains suggests that this protein may act as a transcription factor, similar to several other members of the TRIM family.
Beyond its telomeric function, ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1) and CDKN2A. ZBTB48 localizes to chromosome 1p36, a region that is frequently rearranged (leiomyoma & leukaemia) or deleted (neuroblastoma, melanoma, Merkel cell carcinoma, pheochromocytoma, and carcinomas of colon and breast) in different human cancers and therefore might be a putative tumour suppressor, but not without dispute.
Potato leafroll virus (PLRV) is a member of the genus Polerovirus and family Luteoviridae. The phloem limited positive sense RNA virusEid, S., Durrin, J.S., Nikolaeva, O.V. Karasev, A. (2011) “A non-structural, p17 protein of Potato leafroll virus co-localizes in plant phloem tissue with virus capsid protein” Phytopathology 101:6 p. S47. infects potatoes and other members of the family Solanaceae. PLRV was first described by Quanjer et al.
Coiled-coil domain-containing protein 181 (CCDC181) is a protein that in human is encoded by C1orf114, which is located at the Chromosome 1 at 1q24.2. The accession is Q5T1D7. Researches have recently revealed that CCDC 181 is a microtubule-binding protein that interacts with murine Hook1 in haploid male germ cells and localizes to the sperm tail and motile cilia. The disruption of Hook1 may lead to inappropriate function of spermatogenesis.
Researchers postulate that embedded carbon atoms with unpaired electrons carry enough of a magnetic moment to lead to strong magnetization. The sheet curvature localizes unpaired electrons by breaking up the π-electron clouds and sterically protects the electrons which normally would be too reactive to persist. The ferromagnetism of the carbon nanofoam is sensitive to time and temperature. Some magnetism is lost within the first few hours of synthesis, however most of it is persistent.
"Living Downstream" , Journal of Religion and Film, Omaha, 1 April 2010. Shanna Shipman of the Pekin Daily Times wrote on April 19, 2010 that "the film reveals, in plain language and compelling visuals, several areas of scientific proof linking toxins in the environment to negative consequences for human health, substantiating the hunches and anecdotes among people who intuit the same conclusion."Shipman, Shanna. "Documentary localizes environmental issues" Pekin Times, Pekin, 19 April 2010.
Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, mitochondrial is an enzyme that in humans is encoded by the ECH1 gene. This gene encodes a member of the hydratase/isomerase superfamily. The gene product shows high sequence similarity to enoyl-CoA hydratases of several species, particularly within a conserved domain characteristic of these proteins. The encoded protein, Δ3,5-Δ2,4-dienoyl-CoA isomerase, contains a C-terminal peroxisomal targeting sequence and localizes to peroxisomes.
Tripartite motif-containing protein 6 is a protein that in humans is encoded by the TRIM6 gene. The protein encoded by this gene is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. The protein localizes to the nucleus, but its specific function has not been identified.
E3 ubiquitin-protein ligase RNF128 is an enzyme that in humans is encoded by the RNF128 gene. The protein encoded by this gene is a type I transmembrane protein that localizes to the endocytic pathway. This protein contains a RING zinc-finger motif and has been shown to possess E3 ubiquitin ligase activity. Expression of this gene in retrovirally transduced T cell hybridoma significantly inhibits activation-induced IL2 and IL4 cytokine production.
PC localizes to the disordered region of the cell along with the polyunsaturated lipid phosphatidylinositol 4,5-bisphosphate (PIP2). PLD2 has a PIP2 binding domain. When PIP2 concentration in the membrane increases, PLD2 leaves the cholesterol dependent domains and binds to PIP2 where it then gains access to its substrate PC and commences catalysis based on substrate presentation. Substrate presentation; PLD (blue oval) is sequestered into cholesterol- dependent lipid domains (green lipids) by palmitoylation.
Also, several crucial studies have yielded contradictory results. The nematode Caenorhabditis elegans makes one Cdc14 (CeCdc14), which localizes to the spindle and centrosomes in mitosis, and to the cytoplasm at interphase. One RNAi study with CeCdc14 caused cytokinesis defects, which was consistent with similar work in Xenopus laevis. However, a second RNAi study showed no defects, and it was suggested that the first experiment used too many oligonucleotides which caused off-target effects.
Protein MAL2 is a protein that in humans is encoded by the MAL2 gene. This gene encodes a multispan transmembrane protein belonging to the MAL proteolipid family. The protein is a component of lipid rafts and, in polarized cells, it primarily localizes to endosomal structures beneath the apical membrane. It is required for transcytosis, an intracellular transport pathway used to deliver membrane-bound proteins and exogenous cargos from the basolateral to the apical surface.
A nuclear complex containing FANCL (as well as FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCM) is essential for the activation of the FANCD2 protein to the mono-ubiquitinated isoform. In normal, non-mutant, cells FANCD2 is mono-ubiquinated in response to DNA damage. Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes (see Figure: Recombinational repair of double strand damage).
The CD1 family members are thought to differ in their cellular localization and specificity for particular lipid ligands. The protein encoded by this gene localizes within Golgi compartments, endosomes, and lysosomes, and is cleaved into a stable soluble form. The soluble form is required for the intracellular processing of some glycolipids into a form that can be presented by other CD1 family members. Several alternatively spliced transcript variants encoding different isoforms have been described.
Metastasis-associated protein MTA3 is a protein that in humans is encoded by the MTA3 gene. MTA3 protein localizes in the nucleus as well as in other cellular compartments MTA3 is a component of the nucleosome remodeling and deacetylate (NuRD) complex and participates in gene expression. The expression pattern of MTA3 is opposite to that of MTA1 and MTA2 during mammary gland tumorigenesis. However, MTA3 is also overexpressed in a variety of human cancers.
Wild type hephaestin localizes in a supra nuclear compartment as well as the basolateral surface. In contrast, sla hephaestin seems to localize only in the supranucelar compartment but is largely undetectable in the latter. Given hephaestin's established function in facilitating basolateral iron export, this mislocalization may explain the paradoxical intestinal iron accumulation and systemic iron deficiency observed in sla mice. Human hephaestin, lacking the putative transmembrane domain, was first recombinantly expressed in 2005 by Drs.
PTPIP51 is a member of the RMDN protein family and localizes to the outer mitochondrial membrane, cytoplasm, and nucleus. This protein is involved in cellular differentiation, proliferation, motility, cytoskeleton formation, and apoptosis. These biological functions thus serve to facilitate mammalian development through processes such as placental villi formation and angiogenesis. In particular, it is expressed in differentiated cells and tissues, such as follicular and inter-follicular epidermis, epithelia, skeletal muscle, testis, and nervous tissue.
Protein complex co- immunoprecipitation (Co-IP) experiments revealed interacting proteins such as cell death regulators, ATP-binding cassette (ABC) transporters and protein kinase A binding proteins. The 540 interacting proteins include ABCF1, ACTB, ACTL6A, BCLAF1, BCLAF1, CHEK1, and MAGEE2. K-nearest neighbor analysis by wolf pSort indicates that in humans, SOGA2 is focused mainly in the nucleus, cytoplasm, and the cytonuclear space. There is a small chance that it is localizes to the golgi.
NAD-dependent methylenetetrahydrofolate dehydrogenase 2-like protein (MTHFD2L), also known as bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2, is an enzyme that in humans is encoded by the MTHFD2L gene on chromosome 4. This enzyme localizes to the inner mitochondrial membrane, where it performs the NADP+-dependent dehydrogenase/cyclohydrolase activity as part of the mitochondrial pathway to convert folate to formate. It is associated with fluctuations in cytokine secretion in response to viral infections and vaccines.
He destroyed parts of pigeons' and dogs' brains, called lesions, and studied the organisms' resulting dysfunction. He was able to conclude that while the brain localizes in some functions, it also works as a unit and is not as localized as earlier phrenologists thought. Before the early 20th century, Edward Bradford Titchener studied the modules of the mind through introspection. He tried to determine the original, raw perspective experiences of his subjects.
The siRNA is complementary to the target mRNA to be silenced, and the RISC uses the siRNA as a template for locating the target mRNA. After the RISC localizes to the target mRNA, the RNA is cleaved by a ribonuclease. RNAi is widely used as a laboratory technique for genetic functional analysis. RNAi in organisms such as C. elegans and Drosophila melanogaster provides a quick and inexpensive means of investigating gene function.
Cell division control protein 6 homolog is a protein that in humans is encoded by the CDC6 gene. The protein encoded by this gene is highly similar to Saccharomyces cerevisiae Cdc6, a protein essential for the initiation of DNA replication. This protein functions as a regulator at the early steps of DNA replication. It localizes in the cell nucleus during cell cycle phase G1, but translocates to the cytoplasm at the start of S phase.
The protein encoded by this gene mediates transcriptional control by interaction with the Krüppel-associated box repression domain found in many transcription factors. The protein localizes to the nucleus and is thought to associate with specific chromatin regions. The protein is a member of the tripartite motif family. This tripartite motif includes three zinc-binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region.
Desmocollin-2 contains five N-terminal extracellular domains, a transmembrane-spanning domain, and a C-terminal cytoplasmic tail. Desmocollin-2 binds to desmoglein family members through a calcium-dependent interaction with its extracellular domains, and to plakoglobin through its cytoplasmic tail. Desmocollin-2 is ubiquitously expressed in desmosomal tissues, such as skin epithelia, and is the only desmocollin isoform expressed in human cardiac muscle, where it localizes to desmosomes within intercalated discs.
This gene is a member of the zyxin family and encodes a protein with three LIM zinc-binding domains. This protein localizes to focal adhesion sites and along actin stress fibers. Recruitment of this protein to the plasma membrane occurs in a lysophosphatidic acid (LPA)-dependent manner and it regulates LPA-induced cell migration. Alternatively spliced variants which encode different protein isoforms have been described; however, not all variants have been fully characterized.
Emerin is a protein that in humans is encoded by the EMD gene, also known as the STA gene. Emerin, together with LEMD3, is a LEM domain-containing integral protein of the inner nuclear membrane in vertebrates. Emerin is highly expressed in cardiac and skeletal muscle. In cardiac muscle, emerin localizes to adherens junctions within intercalated discs where it appears to function in mechanotransduction of cellular strain and in beta-catenin signaling.
Figure 1: Accepted Model for Cdr2's indirect promotion of mitotic entry. Cdr2 is suppressed by Pom1, and is unable to phosphorylate Wee1 to activate CDK1. Pom1 is a serine/threonine protein kinase that localizes to the cell tips. It is a partial mechanism for the formation of the medial distribution of Cdr2 in the cell; Pom1 has been demonstrated to prevent Cdr2 from diffusing into the non- growing end of the cell in interphase.
FTO has been demonstrated to efficiently demethylate the related modified ribonucleotide, N6,2'-O-dimethyladenosine, and to an equal or lesser extent, m6A, in vitro . FTO knockdown with siRNA led to increased amounts of m6A in polyA-RNA, whereas overexpression of FTO resulted in decreased amounts of m6A in human cells. FTO partially co- localizes with nuclear speckles, which supports the notion that in the nucleus, m6A can be a substrate of FTO.
This gene encodes a member of the atrophin family of arginine-glutamic acid (RE) dipeptide repeat-containing proteins. The encoded protein co-localizes with a transcription factor in the nucleus, and its overexpression triggers apoptosis. A similar protein in mouse associates with histone deacetylase and is thought to function as a transcriptional co-repressor during embryonic development. Recent reports also indicate that RERE and its Drosophila homolog associate with histone methyltransferases in regulating gene expression.
This gene encodes a scaffolding molecule that regulates the actin cytoskeleton. The protein directly interacts with filamentous actin and a variety of cell membrane proteins through multiple actin binding sites, SH3 domains, and a proline-rich region containing binding sites for SH3 domains. The cytoplasmic protein localizes to membrane ruffles, lipid rafts, and the leading edges of cells. It is implicated in dynamic actin remodeling and membrane trafficking that occurs during receptor endocytosis and cytokinesis.
This gene encodes a serine/arginine protein kinase specific for the SR (serine/arginine-rich domain) family of splicing factors. The protein localizes to the nucleus and the cytoplasm. It is thought to play a role in regulation of both constitutive and alternative splicing by regulating intracellular localization of splicing factors. A second alternatively spliced transcript variant for this gene has been described, but its full length nature has not been determined.
Glycoside hydrolase enzymes hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non- carbohydrate moiety. This gene encodes a member of glycosyl hydrolases family 31. This enzyme hydrolyses terminal, non-reducing 1,4-linked alpha-D-glucose residues and releases alpha-D-glucose. This is a key enzyme in glycogen metabolism and its gene localizes to a chromosomal region (15q15) that is associated with susceptibility to diabetes.
Silencing of the FMR1 gene in Fragile X syndrome. FMR1 co-localizes with a rare fragile site, visible here as a gap on the long arms of the X chromosome. A chromosomal fragile site is a specific heritable point on a chromosome that tends to form a gap or constriction and may tend to break Sutherland, GR and Hecht, F: Fragile Sites on Human Chromosomes. New York and Oxford: Oxford University Press, 280 pages (1985).
Large tumor suppressor kinase 1 (LATS1) is an enzyme that in humans is encoded by the LATS1 gene. It has been associated with the Hippo signaling pathway. The protein encoded by this gene is a putative serine/threonine kinase that localizes to the mitotic apparatus and complexes with cell cycle controller CDC2 kinase in early mitosis. The protein is phosphorylated in a cell-cycle dependent manner, with late prophase phosphorylation remaining through metaphase.
This gene encodes a member of the phospholipase C family, which catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate to generate the second messengers diacylglycerol and inositol 1,4,5-trisphosphate (IP3). Diacylglycerol and IP3 mediate a variety of cellular responses to extracellular stimuli by inducing protein kinase C and increasing cytosolic Ca2+ concentrations. This enzyme localizes to the plasma membrane and requires calcium for activation. Its activity is inhibited by spermine, sphingosine, and several phospholipids.
The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and its expression is induced by glucocorticoids and some pharmacological agents. The enzyme metabolizes drugs such as nifedipine and cyclosporine as well as the steroid hormones testosterone, progesterone and androstenedione. This gene is part of a cluster of cytochrome P450 genes on chromosome 7q21.1.
In order for long-term potentiation (LTP) to occur, there must be stimulation of NMDA receptors, which causes AMPA receptors to be inserted postsynaptically. PI3K binds to AMPA receptors in a conserved region to orient the receptors in the membrane, specifically at the GluR subunit. PI3K activity increases in response to calcium ions and CaM. Additionally, AKT localizes PtdIns-3Ps in the post synapse, which recruits docking proteins such as tSNARE and Vam7.
Mitochondrial genome maintenance exonuclease 1, abbreviated as MGME1, is an enzyme that in humans is encoded by the MGME1 gene. MGME1 is a 344 amino acids long protein belonging to the PD-(D/E)XK family of nucleases. It localizes to mitochondria where it is important for maintenance of the mitochondrial genome. Loss of function mutations in MGME1 lead to defects in mitochondrial DNA, including mitochondrial DNA depletion, duplications, deletions and increased replication intermediates.
Schematic of processing and localization of human lactase translational product Mature human lactase consists of a single 160-kDa polypeptide chain that localizes to the brush border membrane of intestinal epithelial cells. It is oriented with the N-terminus outside the cell and the C-terminus in the cytosol. LPH contains two catalytic glutamic acid sites. In the human enzyme, the lactase activity has been connected to Glu-1749, while Glu-1273 is the site of phlorizin hydrolase function.
At metaphase, when the chromosomes align at the middle plate and are pulled with high tension to either pole by the kinetochore attachments, survivin then associates with the kinetochores. At anaphase as separation of the chromatids happens, the kinetochore microtubules shorten as the chromosomes move towards to the spindle poles and survivin also moves along to the midplate. Survivin thus accumulates at the midplate at telophase. Finally, survivin localizes to the midbody at the cleavage furrow.
Motorsport.com is Motorsport Network's flagship website operated across in 15 languages and 21 national editions. The platform reports across all forms of international and national motorsport including Formula 1, MotoGP, NASCAR & IndyCar on a rolling 24/7 basis, powered by a multi-edition CMS that aggregates & localizes and aggregating news, video, photos and results. Founded in 1994, the platform has been the cornerstone of Motorsport Network and was acquired by the business in 2012. Current Motorsport.
Serine/threonine-protein kinase VRK2 is an enzyme that in humans is encoded by the VRK2 gene. This gene encodes a member of the vaccinia-related kinase (VRK) family of serine/threonine protein kinases. This gene is widely expressed in human tissues and has increased expression in actively dividing cells, such as those in testis, leukocytes, fetal liver, and carcinomas. Its protein localizes to the endoplasmic reticulum and has been shown to phosphorylate casein and undergo autophosphorylation.
The ALDH6A1 gene is mapped onto 14q24.3, between markers D14S71 and D14S986, and has an exon count of 12. The mRNA expression levels of this gene are highest in the kidney and liver, although mRNA levels have been found in many other tissues. The mature protein that this gene translates in humans is 503 amino acids long, which is similar to other enzymes of this family, which all comprise around 500 amino acids. This enzyme localizes to the mitochondria.
Probable E3 ubiquitin-protein ligase HERC5 is an enzyme that in humans is encoded by the HERC5 gene. This gene is a member of the HERC family of ubiquitin ligases and encodes a protein with a HECT domain and five RCC1 repeats. Pro-inflammatory cytokines upregulate expression of this gene in endothelial cells. The protein localizes to the cytoplasm and perinuclear region and functions as an interferon-induced E3 protein ligase that mediates ISGylation of protein targets.
Spirit of Berlin has a modular sensor setup with most of its sensors mounted on top of the car on a flexible rack. Obstacle processing is done by a combination of Velodyne HDL-64E, Ibeo Alasca XT, Sick LMS, and stereo camera systems. In addition, the car localizes itself with an Applanix GPS/INS unit and RTK correction signals. After the Urban Challenge the focus shifted to driving in heavy traffic in crowded city environments like Berlin, Germany, itself.
These lesions localizes to the duodenum, jejunum, or ilium in about 63, 17, and 8% of cases, respectively, or involve more than one small intestinal site in ~17% of cases. The lesions consist of lymphocytes, atypical plasma cells and, less commonly, centrocyte-like cells infiltrates in the intestinal lamina propria with the lymphocytes and centrocyte-like cells expressing marker proteins (e.g. CD20 and CD79a) that are typical for EMZL. Campylobacter jejuni is detected in these lesions by immunostaining.
In 2000, the CK1ε gene was later mapped and identified by Joseph Takahashi and colleagues, who, using genetically directed representational difference analysis, discovered that the tau mutation was located on the CK1ε gene. The CK1ε gene was found to be similar to the doubletime gene in Drosophila, which had been first characterized and incorporated into biological clock function by Michael Young and colleagues in 1998. In humans, the CSNK1E gene localizes at 22q13.1 and consists of 12 exons.
Huntingtin protein co-localizes with ATM repair protein at sites of DNA damage. Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Huntington’s disease patients with aberrant huntingtin protein are deficient in repair of oxidative DNA damage. Oxidative DNA damage appears to underlie Huntington’s disease pathogenesis. Huntington’s disease is likely caused by the dysfunction of mutant huntingtin scaffold protein in DNA repair leading to increased oxidative DNA damage in metabolically active cells.
The product of this gene is a member of the GCK group III family of kinases, which are a subset of the Ste20-like kinases. The encoded protein contains an amino-terminal kinase domain, and a carboxy-terminal regulatory domain that mediates homodimerization. The protein kinase localizes to the Golgi apparatus and is specifically activated by binding to the Golgi matrix protein GM130. It is also cleaved by caspase-3 in vitro, and may function in the apoptotic pathway.
Bcl-2-associated transcription factor 1 is a Bcl-2 family protein in humans that is encoded by the BCLAF1 gene. This gene encodes a transcriptional repressor that interacts with several members of the BCL-2 family of proteins. Overexpression of this protein induces apoptosis, which can be suppressed by co-expression of BCL2 proteins. The protein localizes to dot-like structures throughout the nucleus and redistributes to a zone near the nuclear envelope in cells undergoing apoptosis.
This gene encodes a transmembrane protein that localizes to the endoplasmic reticulum (ER) and recycles between the ER and the Golgi apparatus via COPII- and COPI-coated vesicles. CLN8 protein functions as a cargo receptor for lysosomal soluble proteins in the ER. CLN8 proteins pair with CLN6 proteins to form the EGRESS complex (ER-to-Golgi relaying of enzymes of the lysosomal system), the functional unit responsible for the export of lysosomal enzymes from the endoplasmic reticulum.
Members of the Rab11 subfamily act in recycling of proteins from the endosomes to the plasma membrane, in transport of molecules from the trans-Golgi network to the plasma membrane and in phagocytosis. This subfamily also acts in polarized transport in epithelial cells. Whereas most studies refer to the Rab11a isoform, little is known about Rab11b so far. Rab11b localizes predominantly in the pericentriolar recycling compartment and serves as an important component of the vesicular machinery.
As a cyclophilin, PPI binds cyclosporin A (CsA) and can be found within in the cell or secreted by the cell. In eukaryotes, cyclophilins localize ubiquitously to many cell and tissue types, though PPIC especially is highly expressed in kidney. In addition to PPIase and protein chaperone activities, cyclophilins function in mitochondrial metabolism, apoptosis, immunological response, inflammation, and cell growth and proliferation. Along with PPIB, PPIC localizes to the endoplasmic reticulum (ER), where it maintains redox homeostasis.
It has been found that AGGF1 is highly expressed in some malignant tumours which has implicated AGGF1 in cancer. In vitro models have shown that AGGF1 localizes to cell periphery and directly outside of the cell. Depending on the mutation type, AGGF1 mutations can be lethal in either the heterozygous or homozygous genotype due to its haploinsufficiency. Mice models have shown that heterozygous mutations can cause fatality due to hemorrhaging while homozygous mutations can prevent proper stem cell differentiation.
FRAS1-related extracellular matrix protein 2 is a protein that in humans is encoded by the FREM2 gene. This gene encodes a membrane protein that belongs to the FRAS1 family. This extracellular matrix protein is thought to be required for maintaining the integrity of the skin epithelium and the differentiated state of renal epithelia. The protein localizes to the basement membrane, forming a ternary complex that plays a role in epidermal-dermal interactions during morphogenetic processes.
Tripartite motif-containing protein 3 is a protein that in humans is encoded by the TRIM3 gene. The protein encoded by this gene is a member of the tripartite motif (TRIM) family, also called the 'RING-B-box-coiled-coil' (RBCC) subgroup of RING finger proteins. The TRIM motif includes three zinc- binding domains, a RING, a B-box type 1 and a B-box type 2, and a coiled-coil region. This protein localizes to cytoplasmic filaments.
The catalytic serine/threonine kinase domain of Plk is at the N-terminus of the polo-like kinase protein. A regulatory domain containing two signature motifs, known as polo box domains, is located at the C-terminus. The polo-box domain (PBD) helps with specificity of substrate and localizes Plk to specific mitotic structures during mitosis. These include the centrosomes in early M phase, the spindle midzone in early and late anaphase and the midbody during cytokinesis.
TBS is an autosomal dominant involving the a mutation of the gene SALL1, which encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin. The clinical features of TBS overlap with VATER and VACTERL associations, oculo-auriculo- vertebral (OAV) spectrum, branchio-oto-renal (BOR) syndrome, and Fanconi anemia and other 'anus-hand-ear' syndromes.GeneDX Although some symptoms can be life-threatening, many people diagnosed with Townes-Brocks Syndrome live a normal lifespan.
In confluent cultures of vascular cells, T-cadherin was distributed equally over the entire cell surface, in contrast to VE-cadherin, which was restricted to the cell junctions. In migrating vascular cells, T-cadherin was located at the leading edge as revealed by confocal microscopy. The distribution of T-cadherin on the cell membrane is restricted to lipid rafts where it co-localizes with signal-transducing molecules. These data strongly implicates T-cadherin in intracellular signaling rather than adhesion.
Transmembrane protein 39B (TMEM39B) is a protein that in humans is encoded by the gene TMEM39B. TMEM39B is a multi-pass membrane protein with eight transmembrane domains. The protein localizes to the plasma membrane and vesicles. The precise function of TMEM39B is not yet well-understood by the scientific community, but differential expression is associated with survival of B cell lymphoma, and knockdown of TMEM39B is associated with decreased autophagy in cells infected with the Sindbis virus.
This gene product is a nuclear-encoded mitochondrial protein with similarity to dynamin-related GTPases. It is a component of the mitochondrial network. The OPA1 protein localizes to the inner mitochondrial membrane, where it regulates mitochondrial fusion and cristae structure. OPA1 mediates mitochondrial fusion in cooperation with mitofusins 1 and 2 and participates in cristae remodeling by the oligomerization of two L-OPA1 and one S-OPA1, which then interact with other protein complexes to alter cristae structure.
This gene encodes a spectrin repeat containing protein expressed in skeletal and smooth muscle, and peripheral blood lymphocytes, that localizes to the nuclear membrane. Enaptin is a nuclear envelope protein found in human myocytes and synapses, which is made up of 8,797 amino acids. Enaptin is involved in the maintenance of nuclear organization and structural integrity, tethering the cell nucleus to the cytoskeleton by interacting with the nuclear envelope and with F-actin in the cytoplasm.
The protein encoded by this gene is part of a complex termed negative elongation factor (NELF) which represses RNA polymerase II transcript elongation. This protein bears similarity to nuclear RNA-binding proteins; however, it has not been demonstrated that this protein binds RNA. The protein contains a tract of alternating basic and acidic residues, largely arginine (R) and aspartic acid (D). The gene localizes to the major histocompatibility complex (MHC class III) region on chromosome 6.
Serine/threonine-protein kinase PAK 4 is an enzyme that in humans is encoded by the PAK4 gene. PAK4 is one of six members of the PAK family of serine/threonine kinases which are divided into group I (PAK1, PAK2 and PAK3) and group II (PAK4, PAK6 and PAK5/7). PAK4 localizes in sub-cellular domains of the cytoplasm and nucleus. PAK4 regulates cytoskeleton remodeling, phenotypic signaling and gene expression, and affects directional motility, invasion, metastasis, and growth.
Cerebral deposition of amyloid beta peptide is an early and critical feature of Alzheimer's disease and a frequent complication of Down syndrome. Amyloid beta peptide is generated by proteolytic cleavage of amyloid precursor protein by 2 proteases, one of which is the protein encoded by this gene. This gene localizes to the 'Down critical region' of chromosome 21. The encoded protein, a member of the peptidase A1 protein family, is a type I integral membrane glycoprotein and aspartic protease.
Alpha-7 integrin is a protein that in humans is encoded by the ITGA7 gene. Alpha-7 integrin is critical for modulating cell-matrix interactions. Alpha-7 integrin is highly expressed in cardiac muscle, skeletal muscle and smooth muscle cells, and localizes to Z-disc and costamere structures. Mutations in ITGA7 have been associated with congenital myopathies and noncompaction cardiomyopathy, and altered expression levels of alpha-7 integrin have been identified in various forms of muscular dystrophy.
Chloride intracellular channel protein 1 is a protein that in humans is encoded by the CLIC1 gene. Chloride channels are a diverse group of proteins that regulate fundamental cellular processes including stabilization of cell membrane potential, transepithelial transport, maintenance of intracellular pH, and regulation of cell volume. Chloride intracellular channel 1 is a member of the p64 family; the protein localizes principally to the cell nucleus and exhibits both nuclear and plasma membrane chloride ion channel activity.
In drosophila, Sti (Sticky, ortholog of Citron-K) localizes to the cleavage furrow via association of a predicted coiled-coil region with actin and myosin. However, Sti depletion perturbs RhoA localization and causes excessive accumulation of phosphorylated MRLC (myosin regulatory light chain) at the cleavage site in late cytokinesis. Sti is believed to maintain correct RhoA localization at the cleavage site, which is in turn important for proper contractile ring organization at the end of cytokinesis.
CSA and CSB proteins are thought to function in transcription and DNA repair, most notably in transcription- coupled nucleotide excision repair. CSA and CSB-deficient cells exhibit a lack of preferential repair of UV-induced cyclobutane pyrimidine dimers in actively transcribed genes, consistent with a failed transcription coupled nucleotide excision repair response. Within the cell, the CSA protein localizes to sites of DNA damage, particularly inter-strand cross-links, double-strand breaks and some mono-adducts.
Six years later, the anillin gene was cloned from cDNA originating from a Drosophila ovary. Staining with anti-anillin (Antigen 8) antibody showed the anillin localizes to the nucleus during interphase and to the contractile ring during cytokinesis. These observations agree with further research that found anillin in high concentrations near the cleavage furrow coinciding with RhoA, a key regulator of contractile ring formation. The name of the protein anillin originates from a Spanish word, anillo.
Pericentrin (kendrin), also known as PCNT and pericentrin-B (PCNTB), is a protein which in humans is encoded by the PCNT gene on chromosome 21. This protein localizes to the centrosome and recruits proteins to the pericentriolar matrix (PCM) to ensure proper centrosome and mitotic spindle formation, and thus, uninterrupted cell cycle progression. This gene is implicated in many diseases and disorders, including congenital disorders such as microcephalic osteodysplastic primordial dwarfism type II (MOPDII) and Seckel syndrome.
PHYRE2 protein tertiary structure tool suggests that RUFY2 has 15 alpha helices and the longest helix spanning amino acids 199...512 as seen in the figure to the right. RUFY2 is a soluble protein that localizes to the nucleus and to membranes of early endosomes. RUFY2 protein contains no signal peptide, no DNA/RNA binding sites, no mitochondrial targeting motifs and no peroxisomal targeting signal in the C-terminus. There is no transmembrane domain in RUFY2.
HINT2 is a member of the HIT superfamily and Hint subfamily, which are characterized as nucleotide hydrolases and transferases that act on the alpha-phosphate of ribonucleotides. The Hint family is the oldest within the HIT superfamily and thus, its members are highly conserved among eukaryotes and archaebacteria. The Hint proteins function as AMP-lysine hydrolases and phosphoramidases. In mammals, HINT2 is expressed in the liver, adrenal cortex, and pancreas and localizes to the mitochondria within their cells.
In live cell imaging, fluorescent tags enable movements of proteins and their interactions to be monitored. Latest advances in methods involving fluorescent tags have led to the visualization of mRNA and its localization within various organisms. Live cell imaging of RNA can be achieved by introducing synthesized RNA that is chemically coupled with a fluorescent tag into living cells by microinjection. This technique was used to show how the oskar mRNA in the Drosophila embryo localizes to the posterior region of the oocyte.
This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and catalyzes the last steps of estrogen biosynthesis. Mutations in this gene can result in either increased or decreased aromatase activity; the associated phenotypes suggest that estrogen functions both as a sex steroid hormone and in growth or differentiation.
As a member of the BCL2 protein family, BAK1 functions as a pro-apoptotic regulator involved in a wide variety of cellular activities. In healthy mammalian cells, BAK1 localizes primarily to the MOM, but remains in an inactive form until stimulated by apoptotic signaling. The inactive form of BAK1 is maintained by the protein’s interactions with VDAC2, Mtx2, and other anti-apoptotic members of the BCL2 protein family. Nonetheless, VDAC2 functions to recruit newly synthesized BAK1 to the mitochondria to carry out apoptosis.
During mitosis, mitotic spindle orientation is essential for determining the site of cleavage furrowing and position of daughter cells for subsequent cell fate determination. This orientation is achieved by polarizing cortical factors and rapid alignment of the spindle with the polarity axis. In fruit flies, three cortical factors have been found to regulate the position of the spindle: heterotrimeric G protein α subunit (Gαi), Partner of Inscuteable (Pins), and Mushroom body defect (Mud). Gαi localizes at apical cortex to recruit Pins.
This gene encodes a member of the hook family of coiled coil proteins, which bind to microtubules and organelles through their N- and C-terminal domains, respectively. The encoded protein localizes to discrete punctuate subcellular structures, and interacts with several members of the Rab GTPase family involved in endocytosis. It is thought to link endocytic membrane trafficking to the microtubule cytoskeleton. Several alternatively spliced transcript variants have been identified, but the full-length nature of some of these variants has not been determined.
Cytochrome P450 2F1 is a protein that in humans is encoded by the CYP2F1 gene. This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and is known to dehydrogenate 3-methylindole, an endogenous toxin derived from the fermentation of tryptophan, as well as xenobiotic substrates, such as naphthalene and ethoxycoumarin.
This gene encodes a protein receptor that localizes phosphoglycoproteins within endosomes and at the cell periphery. This trafficking receptor for phosphoglycoproteins may play a role in neuroplasticity by modulating cell-cell interactions, intracellular adhesion, and protein binding at membrane surfaces. In hippocampal neurons, long-lasting down-regulation of ligation mRNA levels occurs via post-transcriptional RNA processing following glutamate receptor activation. This protein contains single PUA and SUI1 domains and these domains may function in RNA binding and translation initiation, respectively.
PreP is an Zn2+-dependent and ATP-independent metalloprotease, it doesn’t select substrates on the basis of post-translational modifications or embedded degradation tags. Instead, it uses a negatively charged catalytic chamber to engulf substrates peptides of up to ~65 residues while excluding larger, folded proteins. It primarily localizes to the mitochondrial matrix, and cuts a range of peptides into recyclable fragments. The substrates of PreP are vital to proteostasis, as they can insert to mitochondrial membranes, disrupting electrical potential and uncoupling respiration.
In this application, a trinocular stereo system is used to determine 3D estimates for keypoint locations. Keypoints are used only when they appear in all 3 images with consistent disparities, resulting in very few outliers. As the robot moves, it localizes itself using feature matches to the existing 3D map, and then incrementally adds features to the map while updating their 3D positions using a Kalman filter. This provides a robust and accurate solution to the problem of robot localization in unknown environments.
MIA3 is a member of the MIA/OTOR family. The full-length protein spans 1,907 amino acids and localizes to the ER exit sites. It contains an N-terminal, SH3-like domain, two predicted transmembrane domains, a coiled-coiled domain, and a C-terminal, proline-rich domain. The SH3-like domain faces the ER lumen, where it can bind cargo for COPII carrier biogenesis, while the proline-rich domain faces the cytoplasm, where it can bind the COPII components Sec23/24.
Gelsolin, an actin filament severing protein, localizes at the tail of Listeria and accelerates the bacterium's motility. Once at the cell surface, the actin-propelled Listeria pushes against the cell's membrane to form protrusions called filopods or "rockets". The protrusions are guided by the cell's leading edge to contact adjacent cells, which then engulf the Listeria rocket and the process is repeated, perpetuating the infection. Once phagocytosed, the bacterium is never again extracellular: it is an intracellular parasite like S. flexneri, Rickettsia spp.
Appendicitis as seen on CT imaging Diagnosis is based on a medical history (symptoms) and physical examination, which can be supported by an elevation of neutrophilic white blood cells and imaging studies if needed. Histories fall into two categories, typical and atypical. Typical appendicitis includes several hours of generalized abdominal pain that begins in the region of the umbilicus with associated anorexia, nausea, or vomiting. The pain then "localizes" into the right lower quadrant where the tenderness increases in intensity.
Filamin-binding LIM protein 1 is a protein that in humans is encoded by the FBLIM1 gene. This gene encodes a protein with an N-terminal filamin-binding domain, a central proline-rich domain, and, multiple C-terminal LIM domains. This protein localizes at cell junctions and may link cell adhesion structures to the actin cytoskeleton. This protein may be involved in the assembly and stabilization of actin-filaments and likely plays a role in modulating cell adhesion, cell morphology and cell motility.
This gene, CYP4F8, encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and functions as a 19-hydroxylase of the arachidonic acid metabolite, prostaglandin H2 (PGH2) and the Dihomo-γ-linolenic acid metabolite PGH1 in seminal vesicles. This gene is part of a cluster of cytochrome P450 genes on chromosome 19.
There are two basic types of Freund's adjuvants: Freund's Complete Adjuvant (FCA) and Freund's Incomplete Adjuvant (FIA). FCA is a water-in-oil emulsion that localizes antigen for release periods up to 6 months. It is formulated with mineral oil, the surfactant mannide monoleate and heat killed Mycobacterium tuberculosis, Mycobacterium butyricum or their extracts (for aggregation of macrophages at the inoculation site). This potent adjuvant stimulates both cell mediated and humoral immunity with preferential induction of antibody against epitopes of denatured proteins.
It has also been shown that Cdr2 recruits Wee1 to the medial cortical node. The mechanism of this recruitment has yet to be discovered. A Cdr2 kinase mutant, which is able to localize properly despite a loss of function in phosphorylation, disrupts the recruitment of Wee1 to the medial cortex and delays entry into mitosis. Thus, Wee1 localizes with its inhibitory network, which demonstrates that mitosis is controlled through Cdr2-dependent negative regulation of Wee1 at the medial cortical nodes.
Calcium-binding tyrosine phosphorylation-regulated protein is a protein that in humans is encoded by the CABYR gene. To reach fertilization competence, spermatozoa undergo a series of morphological and molecular maturational processes, termed capacitation, involving protein tyrosine phosphorylation and increased intracellular calcium. The protein encoded by this gene localizes to the principal piece of the sperm flagellum in association with the fibrous sheath and exhibits calcium-binding when phosphorylated during capacitation. A pseudogene on chromosome 3 has been identified for this gene.
DnaJ homolog subfamily C member 2 is a protein that in humans is encoded by the DNAJC2 gene. This gene is a member of the M-phase phosphoprotein (MPP) family. The gene encodes a phosphoprotein with a J domain and a Myb DNA- binding domain which localizes to both the nucleus and the cytosol. The protein is capable of forming a heterodimeric complex that associates with ribosomes, acting as a molecular chaperone for nascent polypeptide chains as they exit the ribosome.
Once designed, a TALEN is introduced into a cell as a plasmid or mRNA. The TALEN is expressed, localizes to its target sequence, and cleaves a specific site. After cleavage of the target DNA sequence by the TALEN, the cell uses non-homologous end joining as a DNA repair mechanism to correct the cleavage. The cell's attempt at repairing the cleaved sequence can render the encoded protein non-functional, as this repair mechanism introduces insertion or deletion errors at the repaired site.
For example, epicatechin gallate, a compound found in green tea, has shown signs of lowering the resistance to beta-lactams, to the point where oxacillin, which acts on PBP2 and PBP2a, effectively inhibits cell wall formation. Interactions with other genes decrease resistance to beta-lactams in resistant strains of S. aureus. These gene networks are mainly involved in cell division, and cell wall synthesis and function, where there PBP2a localizes. Furthermore, other PBP proteins also affect the resistance of S. aureus to antibiotics.
A second type of Lsm ring is the Lsm1-7 ring, which has the same structure as the Lsm2-8 ring except that LSm1 replaces LSm8. In contrast to the Lsm2-8 ring, the Lsm1-7 ring localizes in the cytoplasm where it assists in degrading messenger RNA in ribonucleoprotein complexes. This process controls the turnover of messenger RNA so that ribosomal translation of mRNA to protein responds quickly to changes in transcription of DNA to messenger RNA by the cell.
The main central plaque component is coiled-coil protein Spc42p (for spindle pole body component) also found to be a part of satellite, that forms a core crystal of SPB. The Spc42p protein is involved in initiation of SPB assembly and its duplication. The Spc42p associates with Spc110p and Spc29p, two other essential coiled-coil proteins that localize to the nuclear face of the SPB. Spc110 localizes to the central plaque and is thought to bind to Spc29p and calmodulin (Cmd1p).
The kinesin-13 superfamily of MAPs contains a class of plus-end-directed motor proteins with associated microtubule depolymerization activity including the well-studied mammalian MCAK and Xenopus XKCM1. MCAK localizes to the growing tips of microtubules at kinetochores where it can trigger catastrophe in direct competition with stabilizing +TIP activity. These proteins harness the energy of ATP hydrolysis to induce destabilizing conformational changes in protofilament structure that cause kinesin release and microtubule depolymerization. Loss of their activity results in numerous mitotic defects.
Manas-vijnana (Skt. "'मानस-विज्ञान"'; mānas-vijñāna; "mind-knowledge", compare man-tra, jñāna) is the seventh of the eight consciousnesses as taught in Yogacara and Zen Buddhism, the higher consciousness or intuitive consciousness that on the one hand localizes experience through thinking and on the other hand universalizes experience through intuitive perception of the universal mind of alayavijnana. Manas-vijnana, also known as klista-manas-vijnana or simply manas, is not to be confused with manovijnana which is the sixth consciousness.
This gene encodes a member of the kleisin family of SMC (structural maintenance of chromosome) protein partners. The protein localizes to the axial elements of chromosomes during meiosis in both oocytes and spermatocytes. REC8 protein appears to participate with other cohesins STAG3, SMC1ß and SMC3 in sister chromatid cohesion throughout the whole meiotic process in human oocytes. In the mouse, the homologous protein is a key component of the meiotic cohesion complex, which regulates sister chromatid cohesion and recombination between homologous chromosomes.
The BMI-1 gene is 10.04 kb with 10 exon and is highly conserved sequence between species. The human BMI-1 gene localizes at chromosome 10 (10p11.23). The Bmi-1 protein is consist of 326 amino acids and has a molecular weight of 36949 Da. Bmi1 has a RING finger at the N-terminus and a central helix-turn-helix domain. The ring finger domain is a cysteine rich domain (CRD) involved in zinc binding and contributes to the ubiquitination process.
The protein Numb is coded for by the gene, NUMB, whose mechanism appears to be evolutionarily conserved. Numb has been extensively studied in both invertebrates and mammals, though its function is best understood in Drosophila. Numb plays a crucial role in asymmetrical cell division during development, allowing for differential cell fate specification in the central and peripheral nervous systems. During neurogenesis, Numb localizes to one side of the mother cell such that it is distributed selectively to one daughter cell.
CYP3A4 is a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases that catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids, and other lipids components. The CYP3A4 protein localizes to the endoplasmic reticulum, and its expression is induced by glucocorticoids and some pharmacological agents. Cytochrome P450 enzymes metabolize approximately 60% of prescribed drugs, with CYP3A4 responsible for about half of this metabolism; substrates include acetaminophen, codeine, ciclosporin (cyclosporin), diazepam, and erythromycin.
The protein encoded by this gene was identified by its ability to protect retroviruses from intramolecular integration and therefore promote intermolecular integration into the host cell genome. The endogenous function of the protein is unknown. The protein forms a homodimer which localizes to the nucleus and is specifically associated with chromosomes during mitosis. This protein binds to DNA in a non-specific manner and studies in rodents suggest that it also binds to lamina-associated polypeptide 2, a component of the nuclear lamina.
The protein was discovered in Masatoshi Takeichi’s lab while looking for potential binding partners for the N-terminal region of p120-catenin. PLEKHA7 was identified by mass spectrometry in lysates of human intestinal carcinoma (Caco-2) cells in a GST-pull down using N-terminal GST- fusion p120 catenin as bait. It was also independently discovered in Sandra Citi’s group as a protein interacting with globular head domain of the Paracingulin in a yeast two-hybrid screen. PLEKHA7 localizes at epithelial zonular AJs.
CAXII, with either the His121Gln or Glu143Lys mutation, localizes to basolateral membranes of polarized MDCK cells similar to the wild type enzyme, indicating no deleterious effect on subcellular location. However, CAXII mutant enzymes show reduced activity. These observations made it very hard to explain the mechanism for the autosomal recessive disorder of hyponatremia, causing salt wasting in sweat due to mutant CAXII. In a separate study, researchers observed that mutant enzyme activity is completely reduced at physiological concentrations of sodium chloride.
Casein kinase II subunit beta is a protein that in humans is encoded by the CSNK2B gene. This gene encodes the beta subunit of casein kinase II, a ubiquitous protein kinase which regulates metabolic pathways, signal transduction, transcription, translation, and replication. The enzyme localizes to the endoplasmic reticulum and the Golgi apparatus. Casein kinase, a ubiquitous, well-conserved protein kinase involved in cell metabolism and differentiation, is characterised by its preference for Serine or Threonine in acidic stretches of amino acids.
Sulfatase-modifying factor 2 is an enzyme that in humans is encoded by the SUMF2 gene. The catalytic sites of sulfatases are only active if they contain a unique amino acid, C-alpha-formylglycine (FGly). The FGly residue is posttranslationally generated from a cysteine by enzymes with FGly-generating activity. The gene described in this record is a member of the sulfatase- modifying factor family and encodes a protein with a DUF323 domain that localizes to the lumen of the endoplasmic reticulum.
Breast cancer metastasis suppressor 1 is a protein that in humans is encoded by the BRMS1 gene. This gene reduces the metastatic potential, but not the tumorogenicity, of human breast cancer and melanoma cell lines.Penn State Researchers Find Breast Cancer Metastasis Suppressor Gene The protein encoded by this gene localizes primarily to the nucleus, and is a component of the mSin3a family of histone deacetylase complexes (HDAC). The protein contains two coiled-coil motifs and several imperfect leucine zipper motifs.
The zeta-sarcoglycan gene measures over 465 kb and localizes to 8p22. This protein is part of the sarcoglycan complex, a group of 6 proteins. The sarcoglycans are all N-glycosylated transmembrane proteins with a short intra-cellular domain, a single transmembrane region and a large extra-cellular domain containing a carboxyl-terminal cluster with several conserved cysteine residues. The sarcoglycan complex is part of the dystrophin-associated glycoprotein complex (DGC), which bridges the inner cytoskeleton and the extracellular matrix.
When smARF is overexpressed, it localizes to the mitochondrial matrix, damaging the mitochondria membrane potential and structure, and leading to autophagic cell death. The translation of the truncated ARF, smARF, is initiated at an internal methionine (M45) of the ARF transcript in human and mouse cells. SmARF is also detected in rat, even though an internal methionine is not present in the rat transcript. This suggests that there is an alternate mechanism to form smARF, underscoring the importance of this isoform.
NF1 encodes neurofibromin (NF1), which is a 320-kDa protein that contains 2,818 amino acids. Neurofibromin is a GTPase- activating protein (GAP) that negatively regulates Ras pathway activity by accelerating hydrolysis of Ras-bound guanosine triphosphate (GTP). Neurofibromin localizes in the cytoplasm; however, some studies have found neurofibromin or fragments of it in the nucleus. Neurofibromin does contain a nuclear localization signal that is encoded by exon 43, but whether or not neurofibromin plays a role in the nucleus is currently unknown.
PET100 homolog is a protein that in humans is encoded by the PET100 gene. Mitochondrial complex IV, or cytochrome c oxidase, is a large transmembrane protein complex that is part of the respiratory electron transport chain of mitochondria. The small protein encoded by the PET100 gene plays a role in the biogenesis of mitochondrial complex IV. This protein localizes to the inner mitochondrial membrane and is exposed to the intermembrane space. Mutations in this gene are associated with mitochondrial complex IV deficiency.
Cytochrome c oxidase assembly factor COX14 is a protein that in humans is encoded by the COX14 gene. This gene encodes a small single-pass transmembrane protein that localizes to mitochondria. This protein may play a role in coordinating the early steps of cytochrome c oxidase (COX; also known as complex IV) subunit assembly and, in particular, the synthesis and assembly of the COX I subunit of the holoenzyme. Mutations in this gene have been associated with mitochondrial complex IV deficiency.
They discovered that Ebolavirus uses macropinocytosis to enter the host cells. Induction of macropinocytosis leads to the formation of macropinocytosis-specific endosomes (macropinosomes), which are large enough to accommodate Ebola virions. This discovery was proven by the fact that Ebolavirus co-localizes with sorting nexin 5 (SNX5), which consists of a large family of peripheral membrane proteins that associate with newly formed macropinosomes. Then, internalized EBOV particles are transported to late endosomes and, there, co-localization with GTPase Rab7 (marker of late endosomes) is observed.
Tensin-1 is a protein that in humans is encoded by the TNS1 gene. The protein encoded by this gene localizes to focal adhesions, regions of the plasma membrane where the cell attaches to the extracellular matrix. This protein crosslinks actin filaments and contains a Src homology 2 (SH2) domain, which is often found in molecules involved in signal transduction. This protein is a substrate of calpain II. A second transcript from this gene has been described, but its full length nature has not been determined.
The survivin protein is expressed highly in most human tumours and fetal tissue, but is completely absent in terminally differentiated cells. These data suggest survivin might provide a new target for cancer therapy that would discriminate between transformed and normal cells. Survivin expression is also highly regulated by the cell cycle and is only expressed in the G2-M phase. It is known that Survivin localizes to the mitotic spindle by interaction with tubulin during mitosis and may play a contributing role in regulating mitosis.
Metalloreductase STEAP2 is an enzyme that in humans is encoded by the STEAP2 gene. This gene is a member of the STEAP family and encodes a multi-pass membrane protein that localizes to the Golgi complex, the plasma membrane, and the vesicular tubular structures in the cytosol. A highly similar protein in mouse has both ferri reductase and cupric reductase activity, and stimulates the cellular uptake of both iron and copper in vitro. Increased transcriptional expression of the human gene is associated with prostate cancer progression.
Human KCNE4L transcripts are most highly expressed in uterus, and next most highly expressed in atria, adrenal gland, lymph nodes, pituitary gland, spleen and ureter. KCNE4L transcript is also detectable in cervix, colon, optic nerve, ovary, oviduct, pancreas, skin, retina, spinal cord, stomach, thymus, and vagina. In the rat heart, KCNE4 protein co-localizes with Kv4.2, a channel that KCNE4 also functionally regulates. In mouse heart, KCNE4 is preferentially expressed in ventricles versus atria, and in young adult males much more than young adult females.
Bicoid functions as a graded morphogen transcription factor that localizes to the nucleus. The head of the embryo forms at the point of highest concentration of bicoid and the anterior pattern depends upon the concentration of bicoid. Bicoid works as a transcriptional activator of the gap genes hunchback (hb), buttonhead (btd), empty spiracles (ems), and orthodentical (otd) while also acting to repress translation of caudal. A different affinity for bicoid in the promoters of the genes it activates allows for the concentration dependent activation.
See also DN-SD-06-08197 for a 2004 image of the RMS, aboard , with logo that says "Remote Minehunting System". which includes the Remote Mine- hunting Vehicle (RMV), an unmanned craft that detects, classifies, and localizes underwater mines. Bainbridge was floated from drydock and christened on 13 November 2004 at Bath Iron Works, Bath, Maine, sponsored by Susan Bainbridge Hay, Commodore William Bainbridge's great-great-great- granddaughter. She was commissioned on 12 November 2005, with Commander John M. Dorey commanding in Port Everglades, Florida.
Studies have shown that Rab11FIP5 localizes to the perinuclear endosomes where it aids in sorting vesicles into the slow recycling route. This process involves the transport of cargo proteins, like endocytosed receptors, to endosome recycling complexes and subsequently to the plasma membrane. This is in contrast to the fast constitutive recycling route which allows for the direct transport of cargo from the endosome to the plasma membrane. Rab11FIP5 aids in this sorting process by binding to kinesin II and forming a protein complex to regulate vesicular trafficking.
This gene encodes a member of the Sp subfamily of Sp/XKLF transcription factors. Sp family proteins are sequence-specific DNA-binding proteins characterized by an amino-terminal trans-activation domain and three carboxy-terminal zinc finger motifs. This protein contains the least conserved DNA-binding domain within the Sp subfamily of proteins, and its DNA sequence specificity differs from the other Sp proteins. It localizes primarily within subnuclear foci associated with the nuclear matrix, and can activate or in some cases repress expression from different promoters.
Protein DGCR14 is a protein that in humans is encoded by the DGCR14 gene. This gene is located within the minimal DGS critical region (MDGCR) thought to contain the gene(s) responsible for a group of developmental disorders. These disorders include DiGeorge syndrome, velocardiofacial syndrome, conotruncal anomaly face syndrome, and some familial or sporadic conotruncal cardiac defects which have been associated with microdeletion of 22q11.2. The encoded protein may be a component of C complex spliceosomes, and the orthologous protein in the mouse localizes to the nucleus.
The correlation of anti-sperm antibodies with cases of unexplained infertility implicates a role for these antibodies in blocking fertilization. Improved diagnosis and treatment of immunologic infertility, as well as identification of proteins for targeted contraception, are dependent on the identification and characterization of relevant sperm antigens. The protein expressed by this gene is recognized by anti-sperm antibodies from an infertile man. This protein localizes to the tail of permeabilized human sperm and contains eight contiguous armadillo repeats, a motif known to mediate protein-protein interactions.
The enzyme encoded by this gene catalyzes the activation of Neu5Ac to Cytidine 5-prime-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac), which provides the substrate required for the addition of sialic acid. Sialic acids of cell surface glycoproteins and glycolipids play a pivotal role in the structure and function of animal tissues. The pattern of cell surface sialylation is highly regulated during embryonic development, and changes with stages of differentiation. Studies of a similar murine protein suggest that this protein localizes to the nucleus.
CENP-H localizes outside of centromeric heterochromatin, where CENP-B is localized, and inside the kinetochore corona, where CENP-E is localized during prometaphase. It is thought that this protein can bind to itself, as well as to CENP-A, CENP-B or CENP-C. Multimers of the protein localize constitutively to the inner kinetochore plate and play an important role in the organization and function of the active centromere-kinetochore complex. CENP-H contains a coiled-coil structure and a nuclear localisation signal.
Kinetochore-associated protein NSL1 homolog is a protein that in humans is encoded by the NSL1 gene. This gene encodes a protein with two coiled-coil domains that localizes to kinetochores, which are chromosome-associated structures that attach to microtubules and mediate chromosome movements during cell division. The encoded protein is part of a conserved protein complex that includes two chromodomain-containing proteins and a component of the outer plate of the kinetochore. This protein complex is proposed to bridge centromeric heterochromatin with the outer kinetochore structure.
Unlike LAM and its paralogs except GRAMD2B, GRAMD2A lacks a VASt domain. The protein localizes to sites where membranes from different organelles are in close apposition. There, it tethers the endoplasmic reticulum to the plasma membrane through its GRAM domain binding phosphatidylinositol 4,5-bisphosphate in the plasma membrane at sites enriched for the phospholipid. The protein ensures proper stromal interaction molecule 1 (STIM1) recruitment to these sites of membrane contact as part of the store-operated calcium entry pathway – a component of intracellular calcium homeostasis.
The protein encoded by this gene contains a leucine zipper-like motif and a proline-rich region that shares marked similarity with an SH3-binding domain. The protein localizes to the nucleus and is down-regulated in some cancer cell lines. It is thought to regulate the transcriptional response mediated by the nuclear factor kappa B (NF-kappaB). The gene has been proposed as a tumor suppressor gene whose protein product may have an important role in the development and/or progression of some cancers.
Spermatogenesis is a complex process regulated by extracellular and intracellular factors as well as cellular interactions among interstitial cells of the testis, Sertoli cells, and germ cells. This gene is expressed in the testis in Sertoli cells but not germ cells. The protein encoded by this gene contains plant homeodomain (PHD) finger domains, also known as leukemia associated protein (LAP) domains, believed to be involved in transcriptional regulation. The protein, which localizes to the nucleus of transfected cells, has been implicated in the transcriptional regulation of spermatogenesis.
Local interaction of BDNF with the TrkB receptor on a single dendritic segment is able to stimulate an increase in PSD-95 trafficking to other separate dendrites as well as to the synapses of locally stimulated neurons. PSD-95 localizes the actin-remodeling GTPases, Rac and Rho, to synapses through the binding of its PDZ domain to kalirin, increasing the number and size of spines. Thus, BDNF-induced trafficking of PSD-95 to dendrites stimulates actin remodeling and causes dendritic growth in response to BDNF.
While OGT catalyzes the addition of O-GlcNAc to serine and threonine, OGA catalyzes the hydrolytic cleavage of O-GlcNAc from post- transitionally modified proteins. OGA is a member of the family of hexosaminidases. However, unlike lysosomal hexosaminidases, OGA activity is the highest at neutral pH (approximately 7) and it localizes mainly to the cytosol. OGA and OGT are synthesized from two conserved genes (OGA is encoded by MGEA5) and are expressed throughout the human body with high levels in the brain and pancreas.
Two single-pass membrane proteins, Kar1p and Mps3p, localize to the half-bridge and are required to form and/or maintain the structure. Both proteins bind to Cdc31p, the yeast centrin homolog, which also localizes to the half-bridge and is required for half-bridge integrity. An additional half-bridge component, Sfi1p, shows ability to bind to Cdc31p through multiple conserved Cdc31-binding sites throughout its length. Kar1p is also involved in connecting the half- bridge to the core SPB via its interaction with Bbp1p.
This new method mitigates these issues by changing the method of multiscale decomposition. As mentioned before, the original contourlet used the Laplacian Pyramid for multiscale decomposition. This new method as proposed by Lu and Do uses a multiscale pyramid that can be adjusted by applying low pass or high pass filters for the different levels. This method fixes multiple issues, it reduces the amount of cross terms and localizes the basis images in frequency, removes aliasing and has proven in some instances more effective in denoising images.
In a long note he attacks Droysen's thesis as "altogether slender and unsatisfactory." Grote may have been right, but he ignores entirely Droysen's main thesis, that the concepts of "successors" and "sons of successors" were innovated and perpetuated by historians writing contemporaneously or nearly so with the period. Not enough evidence survives to prove it conclusively, but enough survives to win acceptance for Droysen as the founding father of Hellenistic history. M. M. Austin localizes what he considers to be a problem with Grote's view.
Cadherins are a family of adhesion proteins that localize to the cell surface where they anchor a cell to its neighbors by clasping on to the extracellular portion of the neighbor’s cadherins. Actin binds a-catenin which binds beta-catenin which in turn binds E-cadherin. E-cadherin juts into the extracellular space to grasp the extracellular domains of neighboring E-cadherins. IQGAP1 localizes to cell-cell contacts and binds actin, b-catenin, and E-cadherin, weakening these junctions and thus decreasing cell- cell adhesion.
DNAJA3 is a member of the DNAJ/Hsp40 protein family, which stimulates the ATPase activity of Hsp70 chaperones and plays critical roles in protein folding, degradation, and multiprotein complex assembly. DNAJA3 localizes to the mitochondria, where it interacts with the mitochondrial Hsp70 chaperone (mtHsp70) to carry out the chaperone system. This protein is crucial for maintaining a homogeneous distribution of mitochondrial membrane potential and the integrity of mtDNA. DNAJA3 homogenizes membrane potential through regulation of complex I aggregation, though the mechanism for maintaining mtDNA remains unknown.
The protein encoded by this gene mediates transcriptional control by interaction with the activation function 2 (AF2) region of several nuclear receptors, including the estrogen, retinoic acid, and vitamin D3 receptors. The protein localizes to nuclear bodies and is thought to associate with chromatin and heterochromatin-associated factors. The protein is a member of the tripartite motif (TRIM) family. The TRIM motif includes three zinc-binding domains – a RING, a B-box type 1 and a B-box type 2 – and a coiled-coil region.
Proline-rich extensin-like receptor kinases 4 (PERK4) is a gene expressed in the roots and flowers in Arabidopsis thaliana that localizes in the plasma membrane and plays a role in ABA signaling. Using protein motif analysis, a membrane localization signal, a transmembrane domain, and an intracellular kinase domain were identified in PERK4. To study the role of PERK4 and ABA, mutants were made by inserting T-DNA. PERK4 mutants showed a decrease in ABA sensitivity which affects seedling germination and root tip growth.
The FL protein contains HEAT repeats and a C-terminal coiled coil domain that also contains multiple dibasic motifs, and ends in the dibasic motif RKLD-COOH. Scyl1 localizes to the cis-Golgi and ER-Golgi Intermediate Compartment (ERGIC). Scyl1 binds to Coatomer I (COPI) and colocalizes with beta-COPI and ERGIC53. siRNA mediated knockdown of the protein disrupted retrograde flow of the KDEL receptor from the Golgi to the ER. Furthermore, Scyl1 localization in rat hippocampal neurons also demonstrates a similar relationship to COPI.
The function of PNKD proteins are unknown but the long and medium isoforms of PNKD contain a conserved β-lactamase domain which suggest it may function as an enzyme. The closest mammalian homolog to PNKD is HAGH, an enzyme involves in a two-step reaction to hydrolyze SLG and produce D-lactic acid and reduced GSH. However, the hydrolytic activity of PNKD is minimal. The long form of PNKD is neuronal specific and encodes a synaptic protein that localizes dominantly to the pre- synaptic membrane.
As a result, SUMO-4 isn't processed and conjugated under normal conditions, but is used for modification of proteins under stress-conditions like starvation. During mitosis, SUMO-2/3 localize to centromeres and condensed chromosomes, whereas SUMO-1 localizes to the mitotic spindle and spindle midzone, indicating that SUMO paralogs regulate distinct mitotic processes in mammalian cells. One of the major SUMO conjugation products associated with mitotic chromosomes arose from SUMO-2/3 conjugation of topoisomerase II, which is modified exclusively by SUMO-2/3 during mitosis.
The production of the copper carbonate is produced in the presence of proteins made and secreted by the fungi. These fungal proteins that are found extracellularly aid in the size and morphology of the carbonate minerals precipitated by the fungi. In addition to precipitating carbonate minerals, fungi can also precipitate uranium- containing phosphate biominerals in the presence of organic phosphorus that acts a substrate for the process. The fungi produce a hyphal matrix, also known as mycelium, that localizes and accumulates the uranium minerals that have been precipitated.
It localizes preferentially to the trans-Golgi network (TGN) of mammalian cells and regulates, for example, the secretory transport of bone-specific proteins from the Golgi complex. Thus Cdc42 and FGD1 regulate secretory membrane trafficking that occurs especially during bone growth and mineralization in humans. FGD1 promotes nucleotide exchange on the GTPase Cdc42, a key player in the establishment of cell polarity in all eukaryotic cells. The GEF activity of FGD1, which activates Cdc42, is harbored in its DH domain and causes the formation of filopodia, enabling the cells to migrate.
Nonetheless, experiments reveal a lack of pore-forming ability in the VDAC3 isoform, suggesting that it may perform different biological functions. Notably, though all VDAC isoforms are ubiquitously expressed, VDAC3 is majorly found in the sperm outer dense fiber (ODF), where it is hypothesized to promote proper assembly and maintenance of sperm flagella. Because the ODF membranes are not likely to support pore formation, VDAC3 may interact with protein partners to carry out other functions in the ODF. For instance, within cells, VDAC3 predominantly localizes to the centrosome and recruits Mps1 to regulate centriole assembly.
AdPLA active site with labeled His-23 and Cys-113 residues are responsible for AdPLA catalysis.AdPLA contains a membrane-spanning domain on the C-terminus, which localizes intracellularly for phospholipase activity in proximity to cyclooxygenase 1 (COX-1). His-23 and Cys-113 residues have been shown to be essential in AdPLA activity, which differs from the known His/Asp catalytic dyad or Ser/His/Asp catalytic triad of other PLA2 enzymes. Gln-129 and Asn-112 have also been shown to be necessary in catalysis but their role is not known.
Proteins containing PDZ domains have been shown frequently to bind the C-termini of transmembrane receptors or ion channels. They have also been shown to bind to other PDZ domain proteins and could possibly be involved in intracellular signalling. The protein encoded by this gene contains six PDZ domains and shares sequence similarity with pro- interleukin-16 (pro-IL-16). Like pro-IL-16, the encoded protein localizes to the endoplasmic reticulum and is thought to be cleaved by a caspase to produce a secreted peptide containing two PDZ domains.
Infection with serotype 2 causes severe arthritis, but coinfection with serotype 1 has little effect on this. This shows that the combination of serotype present during mixed infection significantly influences the manifestations of infection with B. turicatae. Bt2 (20-kDa Vsp2) causes higher spirochetemia and neonatal mortality, as well as severe arthritis, while Bt1 (23-kDa Vsp1) is more neurotropic. Bt1 localizes to the brain in five- to 10-fold higher numbers than Bt2, while Bt2 features five- to 10-fold higher pathogen load in the blood, joints, heart, and skin than Bt1.
Growth hormone-inducible transmembrane protein (GHITM), also known as transmembrane BAX inhibitor motif containing protein 5 (TMBIM5), is a protein that in humans is encoded by the GHITM gene on chromosome 10. It is a member of the BAX inhibitor motif containing (TMBIM) family and localizes to the inner mitochondrial membrane (IMM), as well as the endoplasmic reticulum (ER), where it plays a role in apoptosis through mediating mitochondrial morphology and cytochrome c release. Through its apoptotic function, GHITM may be involved in tumor metastasis and innate antiviral responses.
This gene encodes a nonadrenergic imidazoline-1 receptor protein that localizes to the inner layer of the plasma membrane as well as early and recycling endosome membranes. It is a scaffold protein related to Sorting nexins and it regulates protein cargo traffic. The orthologous mouse protein has been shown to influence cytoskeletal organization and cell migration by binding to alpha-5-beta-1 integrin. In humans, this protein has been shown to bind to the adapter insulin receptor substrate 4 (IRS4) to mediate translocation of alpha-5 integrin from the cell membrane to endosomes.
Activator of apoptosis Hrk regulates apoptosis through interaction with death-repressor proteins Bcl-2 and Bcl-X(L). The HRK protein lacks significant homology to other BCL2 family members except for an 8-amino acid region that was similar to the BCL2 homology domain-3 (BH3) motif of BIK. HRK interacts with BCL2 and BCLXL via the BH3 domain, but not with the death-promoting BCL2-related proteins BAX, BAK, or BCLXS. HRK localizes to membranes of intracellular organelles in a pattern similar to that previously reported for BCL2 and BCLXL.
Cadherin-16 is a protein that in humans is encoded by the CDH16 gene. This gene is a member of the cadherin superfamily, genes encoding calcium- dependent, membrane-associated glycoproteins. Mapped to a previously identified cluster of cadherin genes on chromosome 16q22.1, the gene localizes with superfamily members CDH1, CDH3, CDH5, CDH8 and CDH11. The protein consists of an extracellular domain containing 6 cadherin domains, a transmembrane region and a truncated cytoplasmic domain but lacks the prosequence and tripeptide HAV adhesion recognition sequence typical of most classical cadherins.
Serine/threonine-protein kinase, Intestinal cell kinase or ICK is an enzyme that in humans is encoded by the ICK gene. Eukaryotic protein kinases are enzymes that belong to a very extensive family of proteins which share a conserved catalytic core common with both serine/threonine and tyrosine protein kinases. This gene encodes an intestinal serine/threonine kinase harboring a dual phosphorylation site found in mitogen-activating protein (MAP) kinases. The protein localizes to the intestinal crypt region and is thought to be important in intestinal epithelial cell proliferation and differentiation.
Specific localization of tenderness to McBurney's point indicates that inflammation is no longer limited to the lumen of the bowel (which localizes pain poorly), and is irritating the lining of the peritoneum at the place where the peritoneum comes into contact with the appendix. Tenderness at McBurney's point suggests the evolution of acute appendicitis to a later stage, and thus, the increased likelihood of rupture. Other abdominal processes can also sometimes cause tenderness at McBurney's point. Thus, this sign is highly useful but neither necessary nor sufficient to make a diagnosis of acute appendicitis.
MTHFD2L is a member of the tetrahydrofolate dehydrogenase/cyclohydrolase family. This enzyme is expressed in all adult tissues and localizes to the mitochondria, specifically as a peripheral membrane protein in the mitochondrial matrix side of the inner mitochondrial membrane. Within the mitochondria, it participates the conversion of folate to formate as part of the mitochondrial pathway for 1-carbon metabolism. In the final step of this pathway, the NADP+-dependent CH2-THF dehydrogenase/CH+-THF cyclohydrolase activity of bifunctional MTHFD2L complements the 10-CHO-THF synthetase activity of monofunctional MTHFD1L.
These two topics converged in the 1990 discovery of the XIST gene, which localizes to the X-inactivation center and is expressed solely from the inactive X chromosome. This discovery was reported in two papers in Nature in 1991. Willard has referred to Brown as "the critical individual who transformed the study of X inactivation". Brown became Research Associate in 1990 in the Stanford Department of Genetics , and two years later moved with Willard’s laboratory to the Department of Genetics of Case Western Reserve University, Ohio, , where she continued studying the XIST long noncoding RNA.
MBP knockout mice called shiverer mice were subsequently developed and characterized in the early 1980s. Shiverer mice exhibit decreased amounts of CNS myelination and a progressive disorder characterized by tremors, seizures, and early death. The human gene for MBP is on chromosome 18; the protein localizes to the CNS and to various cells of the hematopoietic lineage. The pool of MBP in the central nervous system is very diverse, with several splice variants being expressed and a large number of post-translational modifications on the protein, which include phosphorylation, methylation, deamidation, and citrullination.
Like most Atg proteins, Atg8 is localized in the cytoplasm and at the PAS under nutrient-rich conditions, but becomes membrane-associated in case of autophagy induction. It then localizes to the site of autophagosome nucleation, the phagophore-assembly site (PAS). Nucleation of the phagophore requires the accumulation of a set of Atg proteins and of class III phosphoinositide 3-kinase complexes on the PAS. The subsequent recruitment of Atg8 and other autophagy-related proteins is believed to trigger vesicle expansion in a concerted manner, presumably by providing the driving force for membrane curvature.
Myc also represses p15(Ink4b) and p21(Cip1), which are inhibitors of Cdk4 and Cdk2 respectively. When there is no TGF-B present, a repressor complex composed of Smad3, and the transcription factors E2F4 and p107 exist in the cytoplasm. However, when TGF-B signal is present, this complex localizes to the nucleus, where it associates with Smad4 and binds to the TGF-B inhibitory element (TIE) of the Myc promoter to repress its transcription. In addition to Myc, Smads are also involved in the downregulation of Inhibitor of DNA Binding (ID) proteins.
The APC, which is activated by Fizzy-Cdc20 family proteins, is a cell cycle ubiquitin-protein ligase (E3) that degrades mitotic cyclins, chromosomal proteins that maintain cohesion of sister chromatids, and anaphase inhibitors. Abnormal spindle (Asp), a Polo kinase substrate, is a microtubule-associated protein essential for correct behavior of spindle poles and M-phase microtubules. Plk1 localizes to the central region of the spindle in late mitosis and associates with kinesin-like protein CHO1/MKLP1. The homologous motor protein in Drosophila is the pavarotti gene product (PAR).
For those having two axes of symmetry, the shear center lies on the centroid of the cross-section. In some materials such as metals, plastics, or granular materials like sand or soils, the shearing motion rapidly localizes into a narrow band, known as a shear band. In that case, all the sliding occurs within the band while the blocks of material on either side of the band simply slide past one another without internal deformation. A special case of shear localization occurs in brittle materials when they fracture along a narrow band.
Overview of signal transduction pathways involved in apoptosis. Cellular localization plays an essential role in the function of SMO, which anchors to the cell membrane as a 7-pass transmembrane protein. Stimulation of the patched 12-pass transmembrane receptor by the sonic hedgehog ligand leads to translocation of SMO to the primary cilium in vertebrates in a process that involves the exit of patched from the primary cilium, where it normally localizes in its unstimulated state. Vertebrate SMO that is mutated in the domain required for ciliary localisation often cannot contribute to hedgehog pathway activation.
The human NEDD4 gene is located on chromosome 15q21.3, and consists of 30 exons that transcribe five protein variants of NEDD4, all of which vary in the C2 domain but share 100% identity from the first WW domain through to the end of the protein. The mouse Nedd4 gene is located on chromosome 9. NEDD4 is a 120kDa protein that is expressed in most tissues, including brain, heart, lung, kidney, and skeletal muscle. The NEDD4 protein localizes to the cytoplasm, mainly in the perinuclear region and cytoplasmic periphery.
RAN is a small GTP-binding protein of the RAS superfamily. Ran GTPase is a master regulatory switch, which among other functions, controls the shuttling of proteins between the nuclear and cytoplasm compartments of the cell. Ran GTPase controls a variety of cellular functions through its interactions with other proteins. The RanBP2 gene encodes a very large RAN-binding protein that localizes to cytoplasmic filaments emanating from the nuclear pore complex. RanBP2/Nup358 is a giant scaffold and mosaic cyclophilin-related nucleoporin implicated in controlling selective processes of the Ran-GTPase cycle.
The entire floor plan of these buildings can be more open because there are fewer fixed vertical penetrations through the floor and walls. Another way to use an interstitial space is to incorporate a design that divides the functions of the building into groups and localizes them. The Zeidler Partnership Architects’ (ZPA) design of the William Osler Health Centre (WOHC) in Brampton, Ontario, is one example of this design. (Note: this was designed but ZPA was not awarded the project.) The groups in this design are based on similar structural and mechanical systems.
This gene is a member of the equilibrative nucleoside transporter family. The gene encodes a transmembrane glycoprotein that localizes to the plasma and mitochondrial membranes and mediates the cellular uptake of nucleosides from the surrounding medium. The protein is categorized as an equilibrative (as opposed to concentrative) transporter that is sensitive to inhibition by nitrobenzylmercaptopurine ribonucleoside (NBMPR). Nucleoside transporters are required for nucleotide synthesis in cells that lack de novo nucleoside synthesis pathways, and are also necessary for the uptake of cytotoxic nucleosides used for cancer and viral chemotherapies.
This gene is a member of the Src family of protein tyrosine kinases (PTKs). The encoded protein contains N-terminal sites for myristoylation and palmitoylation, a PTK domain, and SH2 and SH3 domains which are involved in mediating protein-protein interactions with phosphotyrosine-containing and proline-rich motifs, respectively. The protein localizes to plasma membrane ruffles, and functions as a negative regulator of cell migration and adhesion triggered by the beta-2 integrin signal transduction pathway. Infection with Epstein-Barr virus results in the overexpression of this gene.
HSD3B1 is a human gene that encodes for a 3beta-hydroxysteroid dehydrogenase/delta(5)-delta(4)isomerase type I or hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1. While it can carry out the same function as HSD3B2, it localizes primarily to different tissues, such as the placenta and nonsteroidogenic tissues. Its requirement for the production of progesterone by the placenta, which has a vital role in pregnancy, may be one reason why no disease based on mutations in this gene has been identified to date, besides prostate cancer.
This resulted in the formation of a new ectopic MHB and showed that Fgf8 could mimic the activity of the MHB to induce the formation of midbrain and hindbrain structures from the anterior tissues. Fgf8 signaling at the MHB combined with Otx2 expression induces dopaminergic neuron differentiation in the midbrain. On the other hand, when Fgf8 expression spreads into the Gbx2 expressing hindbrain, it leads to serotonergic neuron differentiation. Later on in embryonic development, Fgf8 expression localizes to the rostral most Gbx2 expressing cells (caudal region of the MHB) in the neural tube.
The protein encoded by this gene was first identified by its binding to the APC (Adenomatous polyposis coli) protein which is often mutated in familial and sporadic forms of colorectal cancer. Immunofluorescence has demonstrated that EB1 localizes to the centrosome, mitotic spindle, and distal tips of cytoplasmic microtubules. Throughout the cell cycle, EB1 proteins situate on the microtubule plus ends, which is why EB1 is categorized as a microtubule plus end tracking protein(+TIP protein). The protein also associates with components of the dynactin complex and the intermediate chain of cytoplasmic dynein.
Lipoma-preferred partner is a subfamily of LIM domain proteins that are characterized by an N-terminal proline rich region and three C-terminal LIM domains. The encoded protein localizes to the cell periphery in focal adhesions and may be involved in cell-cell adhesion and cell motility. This protein also shuttles through the nucleus and may function as a transcriptional co-activator. This gene is located at the junction of certain disease related chromosomal translocations which result in the expression of fusion proteins that may promote tumor growth.
First, ErbB2 recruits Memo (mediator of ErbB2-driven motility) to the plasma membrane, which then promotes the phosphorylation of GSK3β on serine 9. This decreases the amount of GSK3β activity, and permits the localization of APC and CLASP2 to the cell membrane, which are both microtubule +TIPs. Although CLASP2 is present at the cell membrane, it appears to have a separate, independent mechanism for microtubule growth than APC. When ErbB2 inactivates GSK3β, APC localizes to the membrane and is then able to recruit MACF1 to the membrane as well.
Emerin is a 29.0 kDa (34 kDa observed MW) protein composed of 254 amino acids. Emerin is a serine-rich protein with an N-terminal 20-amino acid hydrophobic region that is flanked by charged residues; the hydrophobic region may be important for anchoring the protein to the membrane, with the charged terminal tails being cytosolic. In cardiac, skeletal, and smooth muscle, emerin localizes to the inner nuclear membrane; expression of emerin is highest in skeletal and cardiac muscle. In cardiac muscle specifically, emerin also resides at adherens junctions within intercalated discs.
Myosin-10 also known as myosin heavy chain 10 or non-muscle myosin IIB (NM- IIB) is a protein that in humans is encoded by the MYH10 gene. Non-muscle myosins are expressed in a wide variety of tissues, but NM-IIB is the only non-muscle myosin II isoform expressed in cardiac muscle, where it localizes to adherens junctions within intercalated discs. NM-IIB is essential for normal development of cardiac muscle and for integrity of intercalated discs. Mutations in MYH10 have been identified in patients with left atrial enlargement.
LUC7 like 3 pre-mRNA splicing factor (LUC7L3), also known as Cisplatin resistance-associated overexpressed protein, or CROP, is a human gene. This gene encodes a cisplatin resistance-associated overexpressed protein (CROP). The N-terminal half of the CROP contains cysteine/histidine motifs and leucine zipper-like repeats, and the C-terminal half is rich in arginine and glutamate residues (RE domain) and arginine and serine residues (RS domain). This protein localizes with a speckled pattern in the nucleus, and could be involved in the formation of splicesome via the RE and RS domains.
CTCF physically binds to itself to form homodimers, which causes the bound DNA to form loops. CTCF also occurs frequently at the boundaries of sections of DNA bound to the nuclear lamina. Using chromatin immuno-precipitation (ChIP) followed by ChIP-seq, it was found that CTCF localizes with cohesin genome-wide and affects gene regulatory mechanisms and the higher-order chromatin structure. It is currently believed that the DNA loops are formed by the "loop extrusion" mechanism, whereby the cohesin ring is actively being translocated along the DNA until it meets CTCF.
If a related polymorphism exists, and if the HM13 serves as a Minor histocompatibility antigen, however, remains to be addressed. The protein encoded by the M13/HM13 gene is the signal peptide peptidase (SPP), an ER-resident intramembrane protease. SPP localizes to the endoplasmic reticulum, catalyzes intramembrane proteolysis of some signal peptides after they have been cleaved from a preprotein. This activity is required to generate signal sequence-derived human lymphocyte antigen-E epitopes that are recognized by the immune system, and to process hepatitis C virus core protein.
It was later elaborated by McPherson and Ranger-Moore. The organizing force in Blau space is the homophily principle, which argues that the flow of information from person to person is a declining function of distance in Blau space. Persons located at great distance in Blau space are very unlikely to interact, which creates the conditions for social differences in any characteristic that is transmitted through social communication. The homophily principle thus localizes communication in Blau space, leading to the development of social niches for human activity and social organization.
Plotting all of the potential locations of the receiver for the measured delay localizes the receiver to a hyperbolic line on a chart. Taking timing measurements from two pairs of beacons gives two such hyperbolic lines, and the receiver's location is at the intersection of the lines. The two lines may intersect in two points, in which case other navigation information is used to determine which point is the receiver's location. Hyperbolic location systems were first used during World War I in acoustic location systems for locating enemy artillery.
In a standard Windows installation, the 'Program Files' directory will be at `%SystemDrive%\Program Files` (or the localized equivalent thereof), and the 'Common Program Files' (or the localized equivalent thereof) will be a subdirectory under 'Program Files'. In Windows Vista and later, the paths to the 'Program Files' and 'Common Program Files' directories are not localized on disk. Instead, the localized names are NTFS junction points to the non-localized locations. Additionally, the Windows shell localizes the name of the Program Files folder depending on the system's user interface display language.
Although ciliopathies are usually considered to involve proteins that localize to motile and/or immotile (primary) cilia or centrosomes, it is possible for ciliopathies to be associated with unexpected proteins such as XPNPEP3, which localizes to mitochondria but is believed to affect ciliary function through proteolytic cleavage of ciliary proteins. Significant advances in understanding the importance of cilia were made in the mid-1990s. However, the physiological role that this organelle plays in most tissues remains elusive. Additional studies of how ciliary dysfunction can lead to such severe disease and developmental pathologies is still a subject of current research.
Other famous former CW staffers include longtime New York Yankees broadcaster Mel Allen, Crazy in Alabama author Mark Childress, and New Journalism pioneer Gay Talese. The newspaper has a tradition of confrontation with authority figures, including UA administrators, city and state officials, and the Machine, a select coalition of traditionally white fraternities and sororities designed to influence campus politics. The Crimson White named this society in 1928 and has covered its behavior since the late 1960s. In addition to campus news coverage, the newspaper regularly localizes national stories, and it often reports on government affairs and breaking news in Tuscaloosa and Alabama.
Figure 2: Characterization of Pom1 localization at different points in the cell cycle. Pom1 is represented by the dark gray shading. White regions represent low concentrations of Pom1 after the cell has elongated and Pom1 localizes at the cell ends. GFP-tagged Pom1 has been shown to create a gradient in elongated cells as characterized in Figure 1. According to Figure 2, the decreased Pom1 at the location of Cdr2 in the medial node decreases the inhibition of Cdr2. In confirmation of this model’s interaction, results show that cells with delocalized Pom1 that retain full kinase activity from tea1 mutants delay mitotic entry.
The ANT4 protein is a mitochondrial ADP/ATP carrier that catalyzes the exchange of ADP and ATP between the mitochondrial matrix and cytoplasm during ATP synthesis. In addition, ANT4 stabilizes the mitochondrial membrane potential and decreases the permeability transition pore complex (PTPC) opening in order to prevent nuclear chromatin fragmentation and resulting cell death. In humans, the protein localizes to the liver, brain and testis, though in adult males, it is expressed primarily in the testis. Studies on Ant4-deficient mice reveal increased apoptosis in the testis leading to infertility, thus indicating that Ant4 is required as for spermatogenesis.
Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and sometimes MLL2 in humans and Mll4 in mice, is a major mammalian histone H3 lysine 4 (H3K4) mono-methyltransferase. It is part of a family of six Set1-like H3K4 methyltransferases that also contains KMT2A (or MLL1), KMT2B (or MLL2), KMT2C (or MLL3), KMT2F (or SET1A), and KMT2G (or SET1B). KMT2D is a large protein over 5,500 amino acids in size and is widely expressed in adult tissues. The protein co-localizes with lineage determining transcription factors on transcriptional enhancers and is essential for cell differentiation and embryonic development.
The human NDUFA5 gene codes for the B13 subunit of complex I of the respiratory chain, which transfers electrons from NADH to ubiquinone. The NDUFA5 protein localizes to the mitochondrial inner membrane and it is thought to aid in this transfer of electrons. Initially, NADH binds to Complex I and transfers two electrons to the isoalloxazine ring of the flavin mononucleotide (FMN) prosthetic arm to form FMNH2. The electrons are transferred through a series of iron-sulfur (Fe-S) clusters in the prosthetic arm and finally to coenzyme Q10 (CoQ), which is reduced to ubiquinol (CoQH2).
When strain localizes faster than these relaxation processes can redistribute it, brittle deformation occurs. The mechanism for brittle deformation involves a positive feedback between the accumulation or propagation of defects especially those produced by strain in areas of high strain, and the localization of strain along these dislocations and fractures. In other words, any fracture, however small, tends to focus strain at its leading edge, which causes the fracture to extend. In general, the mode of deformation is controlled not only by the amount of stress, but also by the distribution of strain and strain associated features.
In S. cerevisiae, Cdc14 is regulated by its competitive inhibitor Cfi/Net1, which localizes Cdc14 to the nucleolus. During anaphase, Cdc14 is "uncaged" and spreads to the rest of the cell. Two networks mediate the release of Cdc14 from the nucleolus: FEAR (CDC Fourteen Early Anaphase Release) and MEN (Mitotic Exit Network); while these networks are complex, it is thought that these networks result in the phosphorylation of Cfi/Net1 and/or Cdc14, resulting in disassociation of the complex. In S. pombe, phosphorylation of the Cdc14 ortholog by Cdk1 is known to directly inhibit the catalytic activity of the phosphatase.
When oocytes are depleted of Msps expression, bicoid mRNA localization is less efficient during early stages of oogenesis, but then completely dispersed later in development. Msps is not only responsible for transporting bicoid mRNA throughout the cell, but it also localizes mRNA to the anterior (head) end of the oocyte Additionally, this gene is critical for the organization of tubular endoplasmic reticulum and in Exuperantia protein localization. Exuperantia is necessary for accumulating bicoid mRNA in the head region of the oocyte. Another key function of XMAP215 in microtubule dynamics is in the regulation of axon guidance.
Melanoma inhibitory activity protein 3 (MIA3), also known as transport and Golgi organization protein 1 (TANGO1), is a protein that in humans is encoded by the MIA3 gene on chromosome 1. It is ubiquitously expressed in many tissues and cell types. MIA3 localizes to the endoplasmic reticulum (ER) exit site, where it binds bulky cargo molecules such as collagens and creates mega transport carriers for the export of cargoes from the ER. This function suggests that it plays a role in assembly of extracellular matrix (ECM) and bone formation. MIA3 has been demonstrated to contribute to both tumor suppression and progression.
The Developer Tools division is one of the primary business units of the company bringing in roughly 30% of the company revenues. In addition to developing and marketing its own products, in Japan GrapeCity’s Developer Tools division localizes, sells, and supports products made by other software vendors. In the US and the rest of the world market, since acquiring Data Dynamics and FarPoint, GrapeCity has consolidated its line of developer tools around ComponentOne, FarPoint Spread, ActiveReports, and Data Dynamics Analysis. These products provide user interface, spreadsheet, reporting, and analysis functionality to software developers using the Microsoft platform and developer tools.
PRC1 protein is expressed at relatively high levels during S and G2/M phases of the cell cycle before dropping dramatically after mitotic exit and entrance into G1 phase. PRC1 is located in the nucleus during interphase, becomes associated with the mitotic spindle in a highly dynamic manner during anaphase, and localizes to the cell midbody during cytokinesis. PRC1 was first identified in 1998 using an in vitro phosphorylation screening method and shown to be a substrate of several cyclin-dependent kinases (CDKs). Correspondingly, ablation of PRC1 has been shown to disrupt spindle midzone assembly in mammalian systems.
Temporal expression patterns and subcellular localization of Aurora kinases in mitotic cells from G2 to cytokinesis indicate association with mitotic and meiotic structure. Although yeast contain only one Aurora kinase and C. elegans and Drosophila contain only two, mammals have three Aurora kinases with 67-76% homology that are structurally similar and localize similarly. Aurora C localizes to the centrosome and then to the midzone of mitotic cells from anaphase to cytokinesis. It is expressed about an order of magnitude less than Aurora B in diploid human fibroblasts, with mRNA and protein concentrations peaking during the G2/M phase.
Also, gammaproteobacteria and eukaryotic organisms such as lichens and bryophytes have been shown to produce both sterols and hopanoids, suggesting these lipids may have other distinct functions. Notably, the way hopanoids pack into the plasma membrane can change depending on what functional groups are attached. The hopanoid bacteriohopanetetrol assumes a transverse orientation in lipid bilayers, but diploptene localizes between the inner and outer leaflet, presumably thickening the membrane to decrease permeability. The hopanoid diplopterol orders membranes by interacting with lipid A, a common membrane lipid in bacteria, in ways similar to how cholesterol and sphingolipids interact in eukaryotic plasma membranes.
In prokaryotes, RNase H2 is enzymatically active as a monomeric protein. In eukaryotes, it is an obligate heterotrimer composed of a catalytic subunit A and structural subunits B and C. While the A subunit is closely homologous to the prokaryotic RNase H2, the B and C subunits have no apparent homologs in prokaryotes and are poorly conserved at the sequence level even among eukaryotes. The B subunit mediates protein-protein interactions between the H2 complex and PCNA, which localizes H2 to replication foci. Both prokaryotic and eukaryotic H2 enzymes can cleave single ribonucleotides in a strand.
TMEM33 localizes to the endoplasmic reticulum (ER) membrane and the nuclear envelope, and therefore must function in these regions. TMEM33 exogenously suppresses reticulon 4C function, which is a protein that induces the formation of the tubular structure of the ER. Therefore, TMEM33 is thought to regulate tubular ER structure through modulation of reticulon activity. Tts1, TMEM33 ortholog in S. pombe, has been found to be involved in dictating ER curvature as well. In the nucleus, knock-out studies indicate Tts1 has a role in directing the spindle pole bodies and nuclear core complexes in the nuclear envelope during mitosis.
The Rigid-Band Model (or RBM) is one of the models used to describe the behavior of metal alloys. In some cases the model is even used for non-metal alloys such as Si alloys. According to the RBM the shape of the constant energy surfaces (hence the Fermi surface as well) and curve of density of states of the alloy are the same as those of the solvent metal under the following conditions: # The excess charge of the solute atoms localizes around them. # The mean free path of the electrons is much greater than the lattice spacing of the alloy.
As a member of the FASTKD family, FASTKD2 localizes to the inner mitochondrial membrane to modulate their energy balance, especially under conditions of stress. Though ubiquitously expressed in all tissues, FASTKD2 appears more abundantly in skeletal muscle, heart muscle, and other tissues enriched in mitochondria. Nonetheless, FASTKD2 has been observed to mediate apoptosis independent of import into the mitochondria, suggesting that it interacts with proteins on the outer mitochondrial membrane. This protein possibly contributes its proapoptotic function through a caspase-dependent pathway, by activating proapoptotic factors or inhibiting antiapoptotic factors, but the exact mechanism remain unclear.
The pain associated with MI is usually diffuse, does not change with position, and lasts for more than 20 minutes. It might be described as pressure, tightness, knifelike, tearing, burning sensation (all these are also manifested during other diseases). It could be felt as an unexplained anxiety, or even pain might be absent at all. Levine's sign, in which a person localizes the chest pain by clenching one or both fists over their sternum, has classically been thought to be predictive of cardiac chest pain, although a prospective observational study showed it had a poor positive predictive value.
This protein is a member of the rhodopsin-like family of G protein-coupled receptors and is a multi-pass membrane protein that localizes to the plasma membrane. The protein binds estradiol, resulting in intracellular calcium mobilization and synthesis of phosphatidylinositol (3,4,5)-trisphosphate in the nucleus. This protein therefore plays a role in the rapid nongenomic signaling events widely observed following stimulation of cells and tissues with estradiol. The distribution of GPER is well established in the rodent, with high expression observed in the hypothalamus, pituitary gland, adrenal medulla, kidney medulla and developing follicles of the ovary.
The putative phospholipid-binding site, which is the active site of Tafazzin, is a 57 amino acid cleft with two open ends and positively charged residues. In addition, tafazzin localizes to the membrane leaflets facing the intermembrane space (IMS), which is crucial for remodeling. Tafazzin differs from phospholipases in that it contains a conserved histidine residue, His-77, as part of the conserved HX4D motif seen in acyltransferases. This motif is responsible for facilitating the Asp-His dyad mechanism seen in many serine proteases. Many unique forms of tafazzin have been identified, with lengths from 129 to 292 amino acids.
The TAZ gene contains two peptides independent of its active site for directing the protein to the mitochondria, forming residues 84-95 in exon 3 and residues 185-200 in exon 7/8 targets. Tafazzin localizes with peripheral association to membrane leaflets between the inner mitochondrial membrane (IMM) and outer mitochondrial membrane (OMM), facing the intermembrane space (IMS). Tafazzin’s characteristic interfacial anchoring is achieved by its hydrophobic sequence from residues 215-232. Finally, the translocase of the outer membrane (TOM) and the translocase of the inner membrane (TIM) mediates tafazzin’s movement and insertion into the OMM and anchoring to IMM.
Nef (Negative Regulatory Factor) is a small 27-35 kDa myristoylated protein encoded by primate lentiviruses. These include Human Immunodeficiency Viruses (HIV-1 and HIV-2) and Simian Immunodeficiency Virus (SIV). Nef localizes primarily to the cytoplasm but also partially to the Plasma membrane (PM) and is one of many pathogen-expressed proteins, known as virulence factors, which function to manipulate the host's cellular machinery and thus allow infection, survival or replication of the pathogen. Nef stands for "Negative Factor" and although it is often considered dispensable for HIV-1 replication, in infected hosts the viral protein markedly elevates viral titers.
DNA adenine methyltransferase identification, often abbreviated DamID, is a molecular biology protocol used to map the binding sites of DNA- and chromatin-binding proteins in eukaryotes. DamID identifies binding sites by expressing the proposed DNA-binding protein as a fusion protein with DNA methyltransferase. Binding of the protein of interest to DNA localizes the methyltransferase in the region of the binding site. Adenine methylation does not occur naturally in eukaryotes and therefore adenine methylation in any region can be concluded to have been caused by the fusion protein, implying the region is located near a binding site.
RHEB is vital in regulation of growth and cell cycle progression due to its role in the insulin/TOR/S6K signaling pathway. Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a serine/threonine kinase whose activation leads to phosphorylation cascades within the cell that lead to cell growth and proliferation. RHEB localizes at the lysosome to activate mTORC1 and Rag7 proteins localize mTORC1 to the lysosome and the Ragulator-Rag complex, allowing RHEB to activate the protein. RHEB acts as an activator for mTORC1 in its GTP-bound form, therefore GTP-bound RHEB activates cell growth and proliferation within the cell.
In addition, higher resolution Hi-C coupled with machine learning methods has revealed that A/B compartments can be refined into subcompartments. The fact that compartments self-interact is consistent with the idea that the nucleus localizes proteins and other factors such as long non-coding RNA (lncRNA) in regions suited for their individual roles. An example of this is the presence of multiple transcription factories throughout the nuclear interior. These factories are associated with elevated levels of transcription due to the high concentration of transcription factors (such as transcription protein machinery, active genes, regulatory elements, and nascent RNA).
This gene encodes a member of the family of discs large (DLG) homologs, a subset of the membrane-associated guanylate kinase (MAGUK) superfamily. The MAGUK proteins are composed of a catalytically inactive guanylate kinase domain, in addition to PDZ and SH3 domains, and are thought to function as scaffolding molecules at sites of cell-cell contact. The protein encoded by this gene localizes to the plasma membrane and cytoplasm, and interacts with components of adherens junctions and the cytoskeleton. It is proposed to function in the transmission of extracellular signals to the cytoskeleton and in the maintenance of epithelial cell structure.
Cyclin A2 belongs to the cyclin family, whose members regulate cell cycle progression by interacting with CDK kinases. Cyclin A2 is unique in that it can activate two different CDK kinases; it binds CDK2 during S phase, and CDK1 during the transition from G2 to M phase. Cyclin A2 is synthesized at the onset of S phase and localizes to the nucleus, where the cyclin A2-CDK2 complex is implicated in the initiation and progression of DNA synthesis. Phosphorylation of CDC6 and MCM4 by the cyclin A2-CDK2 complex prevents re- replication of DNA during the cell cycle.
ARPP localizes to both nuclei and sarcomeres in muscle cells. ARPP may play a role in the differentiation of myocytes, as ARPP expression was shown to be induced during the C2C12 differentiation in vitro. A role for ARPP in regulating muscle gene expression and sensing stress signals was implicated in the finding that ARPP colocalizes with the transcriptional co-activator and co- repressor PML in myoblast nuclei, and binds p53 to enhance the p21(WAFI/CIPI) promoter. It was further demonstrated that Nkx2.5 and p53 synergistically activate the ANKRD2 promoter to promote effects on myogenic differentiation.
Certain viruses, such as human cytomegalovirus (HCMV) and hepatitis C (HCV), have adapted to suppress the function of MAVS in the antiviral innate immune response, aiding in viral replication. HCMV impairs MAVS through the viral mitochondria-localized inhibitor of apoptosis protein (vMIA), thus reducing the pro-inflammatory cytokine response. vMIA also localizes to the peroxisome where vMIA interacts with cytoplasmic chaperone protein Pex19, disabling the transport machinery of peroxisomal membrane proteins. The HCV NS3-NS4A strain inactivates MAVS signaling by cleaving the MAVS protein directly upstream of MAVS membrane-targeting domain in the MAM and peroxisome, preventing MAVS downstream signaling.
Protein SCO1 homolog, mitochondrial, also known as SCO1, cytochrome c oxidase assembly protein, is a protein that in humans is encoded by the SCO1 gene. SCO1 localizes predominantly to blood vessels, whereas SCO2 is barely detectable, as well as to tissues with high levels of oxidative phosphorylation. The expression of SCO2 is also much higher than that of SCO1 in muscle tissue, while SCO1 is expressed at higher levels in liver tissue than SCO2. Mutations in both SCO1 and SCO2 are associated with distinct clinical phenotypes as well as tissue-specific cytochrome c oxidase (complex IV) deficiency.
The C19orf70 gene encodes for a subunit of the MICOS (mitochondrial contact site and cristae junction organizing system) complex of the mitochondrial inner membrane. The 700-kD complex plays diverse roles such as the maintenance of crista junctions, formation of contact junctions to the outer membrane, and the dynamic regulation of mitochondrial membrane architecture. C19orf70, a component of the mature MICOS complex, localizes to the inner mitochondrial membrane at the cristae junctions and incorporates MINOS1 and MIC10 into the MICOS complex. The protein is necessary for the creation of the cristae junction, integrity of the cristae junction, and maintenance of cristae morphology.
In myocytes, sarcomeres adhere to the sarcolemma via costameres, which align at Z-discs and M-lines. The two primary cytoskeletal components of costameres are desmin intermediate filaments and gamma-actin microfilaments. It has been shown that gamma-actin interacting with another costameric protein dystrophin is critical for costameres forming mechanically strong links between the cytoskeleton and the sarcolemmal membrane. Additional studies have shown that gamma-actin colocalizes with alpha-actinin and GFP-labeled gamma actin localized to Z-discs, whereas GFP-alpha-actin localized to pointed ends of thin filaments, indicating that gamma actin specifically localizes to Z-discs in striated muscle cells.
The protein encoded by this gene is included in class IV of the sirtuin family. In humans cells, SIRT7 has only been shown to interact with two other molecules: RNA polymerase I (RNA Pol I) and upstream binding factor (UBF). SIRT7 is localized to the nucleolus and interacts with RNA Pol I. Chromatin immunoprecipitation studies demonstrate that SIRT7 localizes to rDNA, and coimmunoprecipitation shows that SIRT7 binds RNA Pol I. In addition SIRT7 interacts with UBF, a major component of the RNA Pol I initiation complex. It is not known whether or not SIRT7 is modifying RNA Pol I and/or UBF, and if so, what those modifications are.
Inactive ubiquitin carboxyl-terminal hydrolase 53 is a protein that in humans is encoded by the USP53 gene. Although USP53 is classified as a deubiquitinating enzyme based on sequence homology to other proteases from this group, it lacks a functionally essential histydine in the catalytic domaine and activity assays suggest that USP53 is catalytically inactive. Even though USP53 is devoid of catalytic activity, USP53 serves important physiological functions: mutations in Usp53 have been shown to cause progressive hearing loss in mice, as well as late-onset hearing loss and cholestasis in humans. USP53 localizes at cellular tight junctions and interacts with tight junction protein 2 (TJP2).
NDUFB3 is one of about 31 hydrophobic subunits that form the transmembrane region of Complex I. This protein localizes to the inner membrane of the mitochondrion as a single-pass membrane protein. It has been noted that the N-terminal hydrophobic domain has the potential to be folded into an alpha helix spanning the inner mitochondrial membrane with a C-terminal hydrophilic domain interacting with globular subunits of Complex I. The highly conserved two-domain structure suggests that this feature is critical for the protein function and that the hydrophobic domain acts as an anchor for the NADH dehydrogenase (ubiquinone) complex at the inner mitochondrial membrane.
Cytochrome c oxidase assembly protein COX15 homolog (COX15), also known as heme A synthase, is a protein that in humans is encoded by the COX15 gene. This protein localizes to the inner mitochondrial membrane and involved in heme A biosynthesis. COX15 is also part of a three-component mono-oxygenase (ferredoxin, ferredoxin reductase, and COX15) that catalyses the hydroxylation of the methyl group at position eight of the protoheme molecule. Mutations in this gene has been reported in patients with hypertrophic cardiomyopathy as well as Leigh syndrome, and characterized by delayed onset of symptoms, hypotonia, feeding difficulties, failure to thrive, motor regression, and brain stem signs.
Different vehicles are used throughout China due to various provinces/cities' taxi company choices: In China, taxicabs are very common throughout the country. Tencent's Dididache is a smartphone application especially designed for Meizu, Zte and Huawei which matches passengers and willing taxi drivers who are situated in close proximity. For passengers, a list of nearby taxicabs is created via GPS, and a signal is sent out indicating an expression of interest. Conversely, for taxi drivers with the app installed on their phones, the GPS system quickly lists and localizes nearby potential clients; and once a match is created, the taxi can efficiently pick up awaiting passengers.
GHITM is a mitochondrial protein and a member of the TMBIM family and BAX inhibitor-1 (BI1) superfamily. It is ubiquitously expressed but is especially abundant in the brain, heart, liver, kidney, and skeletal muscle and scarce in the intestines and thymus. This protein localizes specifically to the IMM, where it regulates apoptosis through two separate processes: (1) the BAX-independent management of mitochondrial morphology and (2) the release of cytochrome c. In the first process, GHITM maintains cristae organization, and its downregulation results in mitochondrial fragmentation, possibly through inducing fusing of the cristae structures, thus leading to the release of proapoptotic proteins such as cytochrome c, Smac, and Htra2.
Following the motor domain is a light-chain-binding 'neck' region containing 1-6 copies of a repeat element, the IQ motif, that serves as a binding site for calmodulin or other members of the EF-hand superfamily of calcium-binding proteins. At the C-terminus, each myosin class has a distinct tail domain that serves in dimerization, membrane binding, protein binding, and/or enzymatic activities and targets each myosin to its particular subcellular location. The myosin-1a protein is expressed by enterocytes, the epithelial cells that line the luminal surface of the small intestine. In these cells the myosin-1a protein localizes specifically to the brush border.
Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 is a protein that in humans is encoded by the ASAP2 gene. This gene encodes a multidomain protein containing an N-terminal alpha-helical region with a coiled-coil motif, followed by a pleckstrin homology (PH) domain, an Arf-GAP domain, an ankyrin homology region, a proline-rich region, and a C-terminal Src homology 3 (SH3) domain. The protein localizes in the Golgi apparatus and at the plasma membrane, where it colocalizes with protein tyrosine kinase 2-beta (PYK2). The encoded protein forms a stable complex with PYK2 in vivo.
HGTD-P localizes to the mitochondria, where it participates in regulation of apoptosis. This localization is aided by the chaperone Hsp90, which is required to stabilize the protein during the transit. HGTD-P primarily acts in response to hypoxia by interacting with HIF-1α, which then triggers apoptotic cascades that result in the release of cytochrome C, induction of mitochondrial permeability transition, and activation of caspase-9 and 3. In neuronal cells, it additionally stimulates mitochondrial release of AIFM1, which then translocates to the nucleus to effect apoptosis, which indicates that it may participate in the caspase-independent apoptotic pathway depending on cell type or organism.
This is distinct from immunohistochemistry, which usually localizes proteins in tissue sections. In situ hybridization is used to reveal the location of specific nucleic acid sequences on chromosomes or in tissues, a crucial step for understanding the organization, regulation, and function of genes. The key techniques currently in use include in situ hybridization to mRNA with oligonucleotide and RNA probes (both radio-labeled and hapten-labeled), analysis with light and electron microscopes, whole mount in situ hybridization, double detection of RNAs and RNA plus protein, and fluorescent in situ hybridization to detect chromosomal sequences. DNA ISH can be used to determine the structure of chromosomes.
The product of this gene is a component of the centrosome, a non-membraneous organelle that functions as the major microtubule-organizing center in animal cells. During interphase, the encoded protein localizes to the sub-distal appendages of mature centrioles, which are microtubule-based structures thought to help organize centrosomes. During mitosis, the protein associates with spindle microtubules near the centrosomes. The protein interacts with the intraflagellar transport protein 81 (IFT81), the SH3-domain containing protein PRAX-1, and is phosphorylated by cyclin dependent kinase 1 (Cdk1) and polo-like kinase 1 (PLK1), and functions in maintaining Microtubule organization, cell morphology and cilium stability.
Desmoglein-2 is an integral component of desmosomes, which are cell-cell junctions between epithelial, myocardial, and certain other cell types. Desmogleins and desmocollins connect extracellularly via homophilic and heterophilic interactions. The cytoplasmic tails of desmosomal cadherins bind to plakoglobin and plakophilins, which bind desmoplakin. In cardiac muscle, desmoglein-2 localizes to the intercalated disc, responsible for mechanically and electrically coupling adjacent cardiomyocytes. In vitro studies in HL-1 cardiomyocytes have shown that inhibition of desmoglein-2 binding or mutation of desmoglein-2 protein (Ala517Val or Val920Gly) at cardiac intercalated discs results in a reduced strength of cell-cell contact, demonstrating that desmoglein-2 is critical for cardiomyocyte cohesion.
In the mid 1990s, Kemphues research group cloned Par1 and Par3 genes in C. elegans, showing PAR1 is enriched at the posterior periphery in the cell while PAR3 is found at the anterior periphery. In 1998, Ohno's research group found that aPKC is essential for proper asymmetric cell divisions and co-localizes with PAR3 in C. elegans, indicating the relationship between intracellular signal transduction and cell polarity. Also, they discovered aPKC-specific interacting protein, ASIP, which is a mammalian homologue of C. elegans PAR3. These pioneer works led the significant finding of a conserved PAR3-PAR6-aPKC protein complex regulating cell polarity in response to cell signaling.
Global marketing requires a firm to understand the requirements associated with servicing customers locally with global standard solutions or products and localizes that product as required to maintain an optimal balance of cost, efficiency, customization and localization in a control-customization continuum to meet local, national and global requirements. Global marketing and global branding are integrated. Branding involves a structured process of analyzing "soft" assets and "hard" assets of a firm's resources. The strategic analysis and development of a brand includes customer analysis (trends, motivation, unmet needs, segmentation), competitive analysis (brand image/brand identity, strengths, strategies, vulnerabilities), and self-analysis (existing brand image, brand heritage, strengths/capabilities, organizational values).
In addition to PPIase and protein chaperone activities, cyclophilins function in mitochondrial metabolism, apoptosis, immunological response, inflammation, and cell growth and proliferation. Along with PPIC, PPIB localizes to the endoplasmic reticulum (ER), where it maintains redox homeostasis. Depletion of these two cyclophilins leads to hyperoxidation of the ER. In the ER, PPIB interacts with proteins such as P3H1, CRTAP, BiP, GRP94, PDI, and calreticulin to form foldase and chaperone complexes and facilitate protein folding, especially for type I collagen. This protein is the major PPIase for type I collagen, since the collagen contains an abundance of prolines that require cis-trans isomerization for proper folding.
Beta-mannosidase (, mannanase, mannase, beta-D-mannosidase, beta-mannoside mannohydrolase, exo-beta-D-mannanase, lysosomal beta A mannosidase) is an enzyme with systematic name beta-D-mannoside mannohydrolase, which is in humans encoded by the MANBA gene. This enzyme catalyses the following chemical reaction : Hydrolysis of terminal, non-reducing beta-D-mannose residues in beta-D-mannosides This gene encodes a member of the glycosyl hydrolase 2 family. The encoded protein localizes to the lysosome where it is the final exoglycosidase in the pathway for N-linked glycoprotein oligosaccharide catabolism. Mutations in this gene are associated with beta-mannosidosis, a lysosomal storage disease that has a wide spectrum of neurological involvement.
PVRL1 is an adhesion molecule found in a wide range of tissues where it localizes in various junctions such as the adherens junction of epithelial tissue or the chemical synapse of neurons. The cytoplasmic tail of PVRL1 can bind the protein afadin which is a scaffolding protein that binds actin. In the chemical synapse PVRL1 interacts with PVRL3 (nectin-3) and both proteins can be found in neuronal tissue already in early stages of brain development as well as in aging brains. Interestingly the two proteins have been found to localize asymmetrically along the chemical synapse, with PVRL1 primarily on the axonal side and PVRL3 on the dendritic side.
The activated Dvl associates with Axin and prevents GSK3β and casein kinase 1α (CK1α) from phosphorylating critical substrates, such as β-catenin. Phosphorylation of β-catenin marks the protein for ubiquitylation and rapid degradation by proteasomes. Thus, the binding of Wnt to the receptor results in a non-phosphorylated form of β-catenin which localizes to the nucleus and, after displacing the Groucho corepressor protein, forms a complex with Tcf/Lef transcription factors and co-activators (such as CREB binding protein) and induces the expression of downstream target genes. β-catenin is actively stabilized in over 50% of breast cancers and its nuclear localization correlates with poor patient prognosis.
Bromodomain-containing protein 2 is a protein that in humans is encoded by the BRD2 gene. BRD2 is part of the Bromodomain and Extra-Terminal motif (BET) protein family that also contains BRD3, BRD4, and BRDT in mammals Early descriptions demonstrated that BRD2 gene product is a mitogen-activated kinase which localizes to the nucleus. The gene maps to the major histocompatibility complex (MHC) class II region on chromosome 6p21.3 but sequence comparison suggests that the protein is not involved in the immune response. Homology to the Drosophila gene female sterile homeotic suggests that this human gene may be part of a signal transduction pathway involved in growth control.
On the left, the signaling cascade is inactivated so YAP readily localizes to the nucleus for transcription. On the right, the signal cascade causes YAP to localize to the cytoplasm, preventing transcription. At the biochemical level, YAP is part of and regulated by the Hippo signaling pathway where a kinase cascade results in its “inactivation”, along with that of TAZ. In this signaling cascade, TAO kinases phosphorylate Ste20-like kinases, MST1/2, at their activation loops (Thr183 for MST1 and Thr180 for MST2). Active MST1/2 then phosphorylate SAV1 and MOB1A/B which are scaffold proteins that assist in the recruitment and phosphorylation of LATS1/2.
DAP3 is a 28S subunit protein of mitoribosomes and localizes to the mitochondrial matrix. As part of the mitoribosome, DAP3 participates in the translation of the 13 ETC complex proteins encoded in the mitochondrial genome, and consequently, in the regulation of cellular respiration. As a member of the death-associated protein (DAP) family, DAP3 can also be found outside of the mitochondria to initiate the extrinsic apoptotic pathway through its interactions with apoptotic factors, such as tumor necrosis factor-alpha, Fas ligand, and gamma interferon. Additionally, DAP3 interacts with the factor IPS-1 to activate caspases 3, 8, and 9, resulting in a type of extracellular apoptosis called anoikis.
This gene encodes the protein for complementation groufcrp E. A nuclear complex containing FANCE protein (as well as FANCC, FANCF and FANCG) is essential for the activation of the FANCD2 protein to the mono- ubiquitinated isoform. In normal, non-mutant cells, FANCD2 is mono-ubiquinated in response to DNA damage. FANCE together with FANCC acts as the substrate adapter for this reaction Activated FANCD2 protein co-localizes with BRCA1 (breast cancer susceptibility protein) at ionizing radiation-induced foci and in synaptonemal complexes of meiotic chromosomes. Activated FANCD2 protein may function prior to the initiation of meiotic recombination, perhaps to prepare chromosomes for synapses, or to regulate subsequent recombination events.
Cartoon diagram of the Human vaccinia-related kinase protein PDB entry Serine/threonine-protein kinase VRK1 is an enzyme that in humans is encoded by the VRK1 gene. This gene encodes a member of the vaccinia-related kinase (VRK) family of serine/threonine protein kinases. This gene is widely expressed in human tissues and has increased expression in actively dividing cells, such as those in testis, thymus, fetal liver, and carcinomas. Its protein localizes to the nucleus and has been shown to promote the stability and nuclear accumulation of a transcriptionally active p53 molecule and, in vitro, to phosphorylate Thr18 of p53 and reduce p53 ubiquitination.
Neutrophil elastase (, leukocyte elastase, ELANE, ELA2, elastase 2, neutrophil, elaszym, serine elastase, subtype human leukocyte elastase (HLE)) is a serine proteinase in the same family as chymotrypsin and has broad substrate specificity. Secreted by neutrophils and macrophages during inflammation, it destroys bacteria and host tissue. It also localizes to neutrophil extracellular traps (NETs), via its high affinity for DNA, an unusual property for serine proteases. As with other serine proteinases it contains a charge relay system composed of the catalytic triad of histidine, aspartate, and serine residues that are dispersed throughout the primary sequence of the polypeptide but that are brought together in the three dimensional conformation of the folded protein.
CSB protein forms a complex with another DNA repair protein, SNM1A (DCLRE1A), a 5' – 3' exonuclease, that localizes to inter-strand cross- links in a transcription dependent manner. The accumulation of CSB protein at sites of DNA double-strand breaks occurs in a transcription dependent manner and facilitates homologous recombinational repair of the breaks. During the G0/G1 phase of the cell cycle, DNA damage can trigger a CSB-dependent recombinational repair process that uses an RNA (rather than DNA) template. The premature aging features of CS are likely due, at least in part, to the deficiencies in DNA repair (see DNA damage theory of aging).
The disorder was regarded as a subtype of follicular lymphoma termed primary intestinal follicular lymphomas or Primary gastrointestinal tract follicular lymphomas. However, follicular lymphomas of the duodenum and other parts of the small intestine differ from the other forms of primary intestinal lymphomas in that they are indolent, highly localizes disorders that have a low rate of progression to a systemic disease. In consequence, the World Health Organization (2017) kept the more widespread primary intestinal lymphomas within the follicular lymphoma category and reclassified duodenal-/small intestinal-localized lymphoma as a distinct disease entity, DFL. DFL, while currently considered a malignant disease, has many clinical features which are more similar to the benign predecessor of follicular lymphomas viz.
NADH:ubiquinone oxidoreductase (complex I) catalyzes the transfer of electrons from NADH to ubiquinone (coenzyme Q) in the first step of the mitochondrial respiratory chain, resulting in the translocation of protons across the mitochondrial inner membrane. The NDUFAF3 gene encodes a mitochondrial complex I assembly protein that localizes to the mitochondrial inner membrane and interacts with complex I subunits and is important for the correct function of the mitochondrial respiratory chain. NDUFAF3 colocalizes, comigrates to several assembly intermediates, and is codependent with NDUFAF4 from the early to late stages of complex I assembly. In addition to their close interactions with each other, NDUFAF3 and NDUFAF4 interact with NDUFS2, NDUFS3, NDUFS8, and NDUFA5 in a translation-dependent early assembly mechanism.
The technetium-99m radioisotope is used predominantly in bone and brain scans. For bone scans, the pertechnetate ion is used directly, as it is taken up by osteoblasts attempting to heal a skeletal injury, or (in some cases) as a reaction of these cells to a tumor (either primary or metastatic) in the bone. In brain scanning, Tc-99m is attached to the chelating agent HMPAO to create technetium (99mTc) exametazime, an agent which localizes in the brain according to region blood flow, making it useful for the detection of stroke and dementing illnesses that decrease regional brain flow and metabolism. Most recently, technetium-99m scintigraphy has been combined with CT coregistration technology to produce SPECT/CT scans.
Epigenetic changes of this type thus have the potential to direct increased frequencies of permanent genetic mutation. DNA methylation patterns are known to be established and modified in response to environmental factors by a complex interplay of at least three independent DNA methyltransferases, DNMT1, DNMT3A, and DNMT3B, the loss of any of which is lethal in mice. DNMT1 is the most abundant methyltransferase in somatic cells, localizes to replication foci, has a 10–40-fold preference for hemimethylated DNA and interacts with the proliferating cell nuclear antigen (PCNA). By preferentially modifying hemimethylated DNA, DNMT1 transfers patterns of methylation to a newly synthesized strand after DNA replication, and therefore is often referred to as the ‘maintenance' methyltransferase.
In pathways that do not use p53 in inducing apoptosis, PML have been shown to interact with CHK2 and induce it to autophosphorylate to become active. In addition to those two apoptotic pathways, Fas-induced apoptosis relies on the PML-NBs to release FLICE-Associated huge protein, which then localizes to the mitochondria to promote the activation of Caspase-8. Beyond apoptosis, other studies have implicated PML-NBs in cellular senescence, particularly its induction. It has been shown to be involved with the formation of certain chromatin features of cells experiencing senescence, such as senescence-associated heterochromatin foci (SAHFs), which are believed to suppress the expression of growth-promoting factors and genes.
In a similar study, Xu et al. titrated carboxylate based G4 PAMAM dendrimer (the host) with various amine based drugs (the guests) and monitored the chemical shifts of the dendrimer. In conjunction with the 2D-NOESY NMR techniques, they were able to precisely locate the position of the drugs on the dendrimers and the effect of functionality on the binding affinity of the drugs. They found conclusive evidence to show that the cationic drug molecules attach on the surface of anionic dendrimers by electrostatic interactions, whereas an anionic drug localizes both in the core and the surface of the dendrimers, and that the strength of these interactions are dependent on the pKa values of the molecules.
This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum and hydroxylates medium-chain fatty acids such as laurate and myristate. CYP4A11 is highly expressed in the liver and kidney. CYP4A11 along with CYP4A22, CYP4F2, and CYP4F3 metabolize arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) by an Omega oxidation reaction with the predominant 20-HETE-synthesizing enzymes in humans being CYP4F2 followed by CYP4A11; 20-HETE regulates blood flow, vascularization, blood pressure, and kidney tubule absorption of ions in rodents and possibly humans.
Synemin is an intermediate filament (IF) and, like other IFs, primarily functions to integrate mechanical stress and maintain structural integrity in eukaryotic cells. While it has been observed in a variety of cell types, it has been best studied in the sarcomere of skeletal myocytes. It localizes at the Z-disk and has been shown to bind to α-dystrobrevin, α-actinin, and desmin to act as a mechanical linker in transmitting force laterally throughout the tissue, especially between the contractile myofibrils and extracellular matrix. Synemin contributes to linkage between costameres and the contractile apparatus in skeletal muscle of synemin null animals.. Synemin plays an important regulatory role in the heart and the consequences of its absence are profound.
In contrast to cells with normal repair capability, CSA and CSB deficient cells are unable to preferentially repair cyclobutane pyrimidine dimers induced by the action of ultraviolet (UV) light on the template strand of actively transcribed genes. This deficiency reflects the loss of ability to perform the DNA repair process known as transcription coupled nucleotide excision repair (TC-NER). Within the damaged cell, the CSA protein normally localizes to sites of DNA damage, particularly inter-strand cross-links, double-strand breaks and some monoadducts. CSB protein is also normally recruited to DNA damaged sites, and its recruitment is most rapid and robust as follows: interstrand crosslinks > double-strand breaks > monoadducts > oxidative damage.
In addition to human corpus cavernosum smooth muscle, PDE5 is also found in lower concentrations in other tissues including platelets, vascular and visceral smooth muscle, and skeletal muscle. The inhibition of PDE5 in these tissues by sildenafil may be the basis for the enhanced platelet antiaggregatory activity of nitric oxide observed in vitro, an inhibition of platelet thrombus formation in vivo and peripheral arterial-venous dilatation in vivo. Immunohistology has shown that PDE5 localizes in heart cells at the sarcomere z-disk, but can also be found in diffuse amounts in the cytosol. Increased expression of PDE5 has also been measured in hypertrophic disease and has been linked to oxidative stress, and PDE5 inhibition has shown beneficial effects in the failing heart.
According to literary historian George Călinescu, the work also serves to illustrate Ion Creangă's interest in structuring each of his narratives around a distinctive moral, in this case: "that the gifted man will earn a reputation under any guise". The tale's narrative setting has itself been subject to critical scrutiny. According to literary historian and critic Garabet Ibrăileanu, it is "a projection into the fabulous of the peasant world, captured in its archaic stage, organized in Homeric fashion". The definitive version, which localizes dialectical patterns and bases the interactions between characters on the hierarchies of a village, allows critics to identify the setting as being the writer's native region of Moldavia, and probably even the rural area around Târgu Neamţ.
Due to the simple purification of this enzyme (5-30 fold purification is sufficient to reach homogeneity), its biological and biochemical analysis have been very thoroughly studied. In addition to the study of many isoforms within a given organism, there has been study dedicated to the understanding of HNL localization, the physical structure of the enzyme and its active site, and the mechanisms by which it is able to mediate this important set of reactions. Upon the purification of Black Cherry HNL, research from Wu and Poulton raised antiserum to these specific HNL, which were then applied (with colloidal gold particles in tow) to Black Cherry cotyledon and endosperm. Here it was found that HNL overwhelmingly localizes to the cell walls of these developing plants.
This relationship is further supported by the fact that mice lacking NMNAT2, which are normally not viable, are completely rescued by SARM1 deletion, placing NMNAT2 activity upstream of SARM1. Other pro-degeneration signaling pathways, such as the MAP kinase pathway, have been linked to SARM1 activation. MAPK signaling has been shown to promote the loss of NMNAT2, thereby promoting SARM1 activation, although SARM1 activation also triggers the MAP kinase cascade, indicating some form of feedback loop exists. One explanation for the protective effect of the WldS mutation is that the NMNAT1 region, which is normally localized to the soma, substitutes for the labile survival factor NMNAT2 to prevent SARM1 activation when the N-terminal Ube4 region of the WldS protein localizes it to the axon.
Macrophages, highly motile immune cells that engulf cellular debris and pathogens, are propelled by lamellipodia and identify/migrate toward a target via chemotaxis; thus, cortactin must also be activated by receptor kinases that pick up a large variety of chemical signals. Studies have implicated cortactin in both clathrin-mediated endocytosis and clathrin-independent endocytosis. In both kinds of endocytosis, it has long been known that actin localizes to sites of vesicle invagination and is a vital part of the endocytic pathway, but the actual mechanisms by which actin facilitates endocytosis are still unclear. Recently, however, it has been found that dynamin, the protein responsible for breaking the newly formed vesicular bud off the inside of the plasma membrane, can associate with the SH3 domain of cortactin.
Although not everything that is part of folklore can be absolutely verifiable material, at least even the most bizarre of stories can be supported by saying that myth and legend are always based one something true.Tangherlini, "'It Happened Not Too Far from Here...': A Survey of Legend Theory and Characterization" Western Folklore 49.4 (October 1990:371-390) A definition of Legend states that "legends are tales that, because of the tie to a historical event or location, are believable, although not necessarily believed,"Wikipedia Article: Legend and according to Hippolyte Delehaye, legend "has, of necessity, some historical or topographical connection. It refers imaginary events to some real personage, or it localizes romantic stories in some definite spot."Delehaye, Père Hippolyte.
Finally, Cl− can activate at low concentrations (up to 50mM), but at high concentrations, chloride ions will act as competitive inhibitors with respect to phosphoglycolate. The enzyme localizes to the chloroplast, and plant studies, involving C14O2 fixation in the light, identified labeled glycolate outside of the chloroplast, suggesting that the activity of phosphoglycolate phosphatase allows the movement of glycolate out of the chloroplast. When a photorespiratory mutant of the eukaryotic green alga Chlamydomonas reinhardtii was studied, the mutant strain was identified with a conditional lethal growth phenotype that required elevated concentrations of CO2 for growth. The observation of large phosphoglycolate accumulation and the absence of glycolate accumulation ruled out the possible cause of the absence or mutation of the CO2-concentrating mechanism and indicated that phosphoglycolate phosphatase was most likely absent or deficient.
Immediately after Heisenberg discovered his uncertainty principle, Bohr noted that the existence of any sort of wave packet implies uncertainty in the wave frequency and wavelength, since a spread of frequencies is needed to create the packet itself. In quantum mechanics, where all particle momenta are associated with waves, it is the formation of such a wave packet which localizes the wave, and thus the particle, in space. In states where a quantum mechanical particle is bound, it must be localized as a wave packet, and the existence of the packet and its minimum size implies a spread and minimal value in particle wavelength, and thus also momentum and energy. In quantum mechanics, as a particle is localized to a smaller region in space, the associated compressed wave packet requires a larger and larger range of momenta, and thus larger kinetic energy.
Much has been learned about histone H1 from studies on purified chromatin fibers. Ionic extraction of linker histones from native or reconstituted chromatin promotes its unfolding under hypotonic conditions from fibers of 30 nm width to beads-on-a-string nucleosome arrays. It is uncertain whether H1 promotes a solenoid-like chromatin fiber, in which exposed linker DNA is shortened, or whether it merely promotes a change in the angle of adjacent nucleosomes, without affecting linker length However, linker histones have been demonstrated to drive the compaction of chromatin fibres that had been reconstituted in vitro using synthetic DNA arrays of the strong '601' nucleosome positioning element. Nuclease digestion and DNA footprinting experiments suggest that the globular domain of histone H1 localizes near the nucleosome dyad, where it protects approximately 15-30 base pairs of additional DNA.
CYP2J2 localizes to the endoplasmic reticulum and is thought to be a prominent enzyme responsible for metabolizing endogenous polyunsaturated fatty acids to signaling molecules. It metabolizes arachidonic acid to the following eicosatrienoic acid epoxides (termed EETs): 5,6-epoxy-8Z,11Z,14Z-EET, 8,9-epoxy-8Z,11Z,14Z-EET, 11,12-epoxy-5Z,8Z,14Z-EET, and 14,15-epoxy-5Z,8Z,11Z-EET. CYP2J2 also metabolizes linoleic acid to 9,10-epoxy octadecaenoic acids (also termed vernolic acid, linoleic acid 9:10-oxide, or leukotoxin) and 12,13-epoxy-octadecaenoic (also termed coronaric acid, linoleic acid 12,13-oxide, or isoleukotoxin); docosahexaenoic acid to various epoxydocosapentaenoic acids (also termed EDPs); and eicosapentaenoic acid to various epoxyeicosatetraenoic acids (also termed EEQs). CYP2J2, along with CYP219, CYP2C8, CYP2C9, and possibly CYP2S1 are the main producers of EETs and, very likely EEQs, EDPs, and the epoxides of linoleic acid.
Nepenthes erucoides co-localizes with N. mindanaoensis (with which it hybridizes) and N. bellii (in zones of dense, protective vegetation). Nepenthes truncata occurs within the extent of the elfin forest below the 800 meter elevation band, N. merrilliana occurring regionally at elevations below 600 meters. The caterpillar-like emerging growths of this Nepenthes account for the species name erucoides The specific epithet erucoides, formed from the Latin eruca (caterpillar) and Greek -oides (resembling), refers to the densely hairy developing leaves, but particularly the tendrils, which are said to resemble the "exuberantly hairy caterpillars of certain erebid macromoths from the subfamily Arctiinae, such as those of the genus Arctia". The description describes this species as having perhaps the densest indumentum of any Nepenthes in its emerging foliage, but notes that this hair is rapidly dropped as the leaves develop.
Cell polarity factors positioned at the cell tips provide spatial cues to limit Cdr2 distribution to the cell middle. In fission yeast Schizosaccharomyces pombe (S. Pombe), cells divide at a defined, reproducible size during mitosis because of the regulated activity of Cdk1. The cell polarity protein kinase Pom1, a member of the dual- specificity tyrosine-phosphorylation regulated kinase (DYRK) family of kinases, localizes to cell ends. In Pom1 knockout cells, Cdr2 was no longer restricted to the cell middle, but was seen diffusely through half of the cell. From this data it becomes apparent that Pom1 provides inhibitory signals that confine Cdr2 to the middle of the cell. It has been further shown that Pom1-dependent signals lead to the phosphorylation of Cdr2. Pom1 knockout cells were also shown to divide at a smaller size than wild-type, which indicates a premature entry into mitosis.
MAD1 localizes to unattached kinetochores while binding strongly to MAD2. The localization of MAD2 and BubR1 to the kinetochore may also be dependent on the Aurora B kinase. Cells lacking Aurora B fail to arrest in metaphase even when chromosomes lack microtubule attachment. Unattached kinetochores first bind to a MAD1-C-MAD2-p31comet complex and releases the p31comet through unknown mechanisms. The resulting MAD-C-MAD2 complex recruits the open conformer of Mad2 (O-Mad2) to the kinetochores. This O-Mad2 changes its conformation to closed Mad2 (C-Mad2) and binds Mad1. This Mad1/C-Mad2 complex is responsible for the recruitment of more O-Mad2 to the kinetochores, which changes its conformation to C-Mad2 and binds Cdc20 in an auto-amplification reaction. Since MAD1 and CDC20 both contain a similar MAD2-binding motif, the empty O-MAD2 conformation changes to C-MAD2 while binding to CDC20.
AMOT, AMOTL1 and AMOTL2 play critical roles in the Hippo signaling pathway by regulating the subcellular localization of the co-activators YAP (Yes- associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif), and activating LATS2 through a novel conserved domain. The activity of YAP and TAZ can be restricted through their interaction with AMOT and AMOTL1, and such interaction depends on the WW domain of TAZ and the Proline- Proline-x–Tyrosine motif at the N-terminus of AMOT. In position-dependent Hippo signaling, where the outer and inner cells are polar and nonpolar respectively, AMOT and AMOTL2 are essential for Hippo pathway activation and appropriate cell fate specification. In the nonpolar inner cells, AMOT localizes to adherens junctions (AJs), and Ser-176 at the N-terminal domain is phosphorylated by LATS downstream of GPCR signaling, which inhibits actin binding activity and stabilizes the AMOT-LATS interaction to activate the Hippo pathway.
Farm plot at what was formerly City Slicker Farms Urban agriculture in West Oakland involves the implementation of Urban agriculture in Oakland. Urban agriculture is defined by the United Nations Development Programme as "the growing, processing, and distribution of food and other products through intensive plant cultivation and animal husbandry in and around cities.” A more extensive interpretation, which considers multiple aspects of the practice is described by The Council for Agriculture, Science and Technology as "a complex system encompassing a spectrum of interests, from a traditional core of activities associated with the production, processing, marketing, distribution, and consumption, to a multiplicity of other benefits and services that are less widely acknowledged and documented. These include recreation and leisure; economic vitality and business entrepreneurship, individual health and well-being; community health and well-being; landscape beautification; and environmental restoration and remediation.” Urban agriculture localizes production and distribution of food, often with the larger goal of tackling food insecurity in a way that is environmentally and socially sustainable.
Before the cloning and characterization of Sulf1 and Sulf2, HS composition was thought to be unchanging after localization to the cell surface. However, this changed when the quail orthologue of Sulf1, QSulf1, was identified in a screen for Sonic hedgehog (Shh) response genes activated during somite formation in quail embryos. Sequence alignment analysis indicates QSsulf1 is homologous with lysosomal N-acetyl glucosamine sulfatases (G6-sulfatases) that catalyze the hydrolysis of 6-O sulfates from N-acetyl glucosamines of heparan sulfate during the degradation of HSPGs. In contrast to lysosomal active sulfatases, QSulf1 localizes exclusively to the cell surface by interacting hydrophilically with a non-heparan sulfate outer membrane component, and is enzymatically active at a neutral pH. By mutating the catalytically active cysteines to alanine, thereby blocking N-formylglycine formation, they found QSulf1 was responsible for Wingless (Wnt) release from HS chains to activate the Frizzled receptor; this was the first evidence that an extracellular sulf was capable of modifying HS and therefore cell signaling.
It has been noted that the N-terminal hydrophobic domain has the potential to be folded into an alpha helix spanning the inner mitochondrial membrane with a C-terminal hydrophilic domain interacting with globular subunits of Complex I. The highly conserved two-domain structure suggests that this feature is critical for the protein function and that the hydrophobic domain acts as an anchor for the NADH dehydrogenase (ubiquinone) complex at the inner mitochondrial membrane. NDUFA5 is one of about 31 hydrophobic subunits that form the transmembrane region of Complex I. The protein localizes to the inner mitochondrial membrane as part of the 7 component-containing, water-soluble iron-sulfur protein (IP) fraction of complex I, although its specific role is unknown. It is assumed to undergo post-translational removal of the initiator methionine and N-acetylation of the next amino acid. The predicted secondary structure is primarily alpha helix, but the carboxy-terminal half of the protein has high potential to adopt a coiled-coil form.
This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum. In rodents, the homologous protein has been shown to metabolize certain carcinogens although its specific function(s) in humans has not been clearly determined. In in vitro studies, the human enzyme has been found to metabolize all-trans- retinoic acid to 4-hydroxy-retinoic acid and 5, 6-epoxy-retinoic acid and therefore may play a role in processing retinoic acid in tissues where it is highly expressed such as the skin. CYP2S1 is significantly overexpressed and, perhaps directly related to this, its gene is significantly hypometylated (see gene methylation in the skin of Han Chinese patients with psoriasis suggesting that it plays a role in the development of this disease.
MMP-27 was discovered and cloned in 1998 by Yang and Kurkinen. Initially compared to the so-called Chicken MMP (CMMP), MMP-27 actually shows very little sequence homology with this protease. Sequence homology predicts that the human MMP-27 gene encodes the canonical domains shared by most MMPs (annotation based on Uniprot entry Q9H306): (i) a signal peptide (residues 1-17), (ii) a propeptide (18-98) containing the cysteine switch motif (89-96), (iii) a catalytic domain (99-263) containing the typical HEXXHXXGXXH motif of the metzincins (M10 and M12 families of the MEROPS[2] database), (iv) a proline-rich hinge region (264-278) and (v) a hemopexin-like domain (279-465) folded as a four-bladed β-propeller through disulfide bond formation between the two flanking Cys residues (Cys279 and Cys465). MMP-27 could be classified in the stromelysin group of MMPs, since MMP-27 shows 51,6% homology with stromelysin-2 (MMP-10) and localizes in the cluster of MMPs located on chromosome 11.
Cilia are found on most eukaryotic cells and on most cells in the human body, and defects in a cell's ability to form or maintain its cilia can cause diseases known as ciliopathies, that may include symptoms such as cystic kidney disease, blindness, and obesity. Through her research using the single- celled ciliated green alga Chlamydomonas reinhardtii as a model organism, Quarmby identified members of the NIMA-related family of serine/threonine kinases that function in deflagellation as well as in the assembly and maintenance of cilia. Her group went on to show that NEK8 localizes to cilia, and that mutations in NEK8 interfere with its ciliary localization and cause a severe juvenile cystic kidney disease known as nephronophthisis, underscoring the important link between cilia and cystic kidney disease. Quarmby's work has been funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes for Health Research (CIHR), and the Kidney Foundation of Canada (KFoC).
The maintenance of heterochromatin regions by RITS complexes has been described as a self-reinforcing feedback loop, in which RITS complexes stably bind the methylated histones of a heterochromatin region using the Chp1 protein and induce co-transcriptional degradation of any nascent messenger RNA (mRNA) transcripts, which are then used as RNA-dependent RNA polymerase substrates to replenish the complement of siRNA molecules to form more RITS complexes. The RITS complex localizes to heterochromatic regions through the base pairing of the nascent heterochromatic transcripts as well as through the Chp chromodomain which recognizes methylated histones found in heterochromatin. Once incorporated into the heterochromatin, the RITS complex is also known to play a role in the recruitment of other RNAi complexes as well as other chromatin modifying enzymes to specific genomic regions. Heterochromatin formation, but possibly not maintenance, is dependent on the ribonuclease protein dicer, which is used to generate the initial complement of siRNAs.
The newest version of pragmatism included in American Philosophy: An Encyclopedia,American Philosophy: An Encyclopedia, eds. John Lachs and Robert Talisse (New York: Routledge, 2007). Stuhr's genealogical pragmatism, a break from most traditional philosophy, draws on the work of 19th and 20th century American and European thinkers—particularly John Dewey's account of philosophy's “genetic method” and Foucault's genealogy—to develop a multiperspectival, fallible, always uncertain and unfinished, and irreducibly normative philosophy that is both critical and reconstructive in intent and effect. Stuhr argues that this philosophy is both instrumental—a criticism of the present on behalf of possibilities inherent in the present—and genealogical—a history of the present on behalf of future possibilities that are not inherent or imagined in the present. Stuhr stresses that this pragmatism does not even attempt to solve the problems of traditional philosophies: “Instead, studying both their ends and the means by which they have cloaked these ends in their self-proclaimed problems, methods, and systems, it localizes and abandons these philosophies.”Stuhr, Genealogical Pragmatism, pp. ix-x.
Pom1 is a polarity protein kinase in fission yeast, Schizosaccharomyces pombe (S. pombe), that localizes to cell ends and regulates cell division. As the cell lengthens, the level of Pom1 in the middle declines, which triggers mitosis.Bahler, J., and Pringle, J.R. “Pom1p, a fission yeast protein kinase that provides positional information for both polarized growth and cytokinesis.” Genes and Development 12, 1356-1370 (1998). The gene pom1 codes for a protein 1087 amino acids long with the protein kinase domain likely located at the carboxyl terminus. Pom1 regulates a signaling pathway that includes Cdk1 and ultimately regulates mitotic entry.Moseley, J.B., Mayeux, A., Paoletti, A. and Nurse, P. “A spatial gradient coordinates cell size and mitotic entry in fission yeast.” Nature 459, 857-861 (2009). Cells with mutant pom1 form a septa and growth zone, but show a host of abnormalities including misplaced or misoriented septa, bi-polar growth replaced with random growth at one end, or the mislocalization of the growth axis leading to abnormal branching.Bahler, J., and Nurse, P. “Fission yeast Pom1p kinase activity is cell cycle regulated and essential for cellular symmetry during growth and division.” The EMBO Journal 20, 1064-1073 (2001).
In other tissues and animal species, numerous hepoxilins form but the hepoxilin synthase activity responsible for their formation is variable. (Hepoxilin A3 [8R/S-hydroxy-11,12-epoxy-5Z,9E,14Z-eicosatrienoic acid] and hepoxilin B3 [10R/S-hydroxy-11,12-epxoy-5Z,8Z,14Z-eicosatrienoic acid] refer to a mixture of Diastereomers and⁄or Enantiomers derived from arachidonic acid.) Cultured RINm5F rat Insulinoma cells convert 12(S)-HpETE to hepoxilin A3 in a reaction that is completely dependent on, and co-localizes with, the cells' leukocyte type 12-LOX; furthermore, recombinant rat and porcine leukocyte type 12-LOX as well as human platelet type 12-LOX metabolize 12(S)-HpETE to hepoxylin A3. However, transfection of HEK293 human embryonic kidney cells with each of the 6 rat lipoxygenases, including rat eLOX3, found that hepoxilin B3 production required eLOX3; furthermore, the development of inflammation-induced tactile pain hypersensitivity (hyperesthesia; tactile Allodynia) in rats required eLOX3-dependent production of hepoxilin B3 by spinal tissue. Thus, the production of hepoxilins from 12(S)-HpETE may result from the intrinsic activity of platelet or leukocyte type 12-LOX's, require eLOX3, or even result from 12(S)-HpETE spontaneous (and perhaps artefactual) decomposition during isolation.
CYP1A2 is a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. CYP1A2 localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. Other xenobiotic substrates for this enzyme include caffeine, aflatoxin B1, and paracetamol (acetaminophen). The transcript from this gene contains four Alu sequences flanked by direct repeats in the 3' untranslated region. CYP1A2 also metabolizes polyunsaturated fatty acids into signaling molecules that have physiological as well as pathological activities. It has monoxygenase activity for certain of these fatty acids in that it metabolizes arachidonic acid to 19-hydroxyeicosatetraenoic acid (19-HETE) (see 20-Hydroxyeicosatetraenoic acid) but also has epoxygenase activity in that it metabolizes docosahexaenoic acid to epoxides, primarily 19R,20S-epoxyeicosapentaenoic acid and 19S,20R-epoxyeicosapentaenoic acid isomers (termed 19,20-EDP) and similarly metabolizes eicosapentaenoic acid to epoxides, primarily 17R,18S-eicosatetraenic acid and 17S,18R-eicosatetraenic acid isomers (termed 17,18-EEQ).

No results under this filter, show 578 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.