Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"superpose" Definitions
  1. superpose something to put something on or above something else

29 Sentences With "superpose"

How to use superpose in a sentence? Find typical usage patterns (collocations)/phrases/context for "superpose" and check conjugation/comparative form for "superpose". Mastering all the usages of "superpose" from sentence examples published by news publications.

However, there have been no proposals to effectively superpose the volume envelope on the sound wave by the digital technology.
Interpretations on these terrains differ strongly even with respect to in what order these features superpose other events in the valley.
Superpose them and glue corresponding points on their boundaries. Again one may think of the third dimension as temperature. Likewise, we may inflate the 2-sphere, moving the pair of disks to become the northern and southern hemispheres.
Algorithms based on multidimensional rotations and modified quaternions have been developed to identify topological relationships between protein structures without the need for a predetermined alignment. Such algorithms have successfully identified canonical folds such as the four-helix bundle. The SuperPose method is sufficiently extensible to correct for relative domain rotations and other structural pitfalls.
The interference of two waves. When alt=When two or more waves travel through a medium and superpose then the resultant intensity do not distributed uniformly in the space .At some places , it is maximum while at some other places it is minimum . This non uniform distribution of intensity or energy of light is known as interference .
Electrostatic potential across an electrolyte solution within the superposition approximation. Dashed lines correspond to the contributions from individual plates. When the surfaces are sufficiently far apart, the potential profiles originating from each individual surface will not be much perturbed by the presence of the other surface. This approximation thus suggests that one can simply add (superpose) the potentials profiles originating from each surface as illustrated the figure.
A common approach in linear elasticity is to superpose a number of solutions each of which corresponds to a point load acting over the area of contact. For example, in the case of loading of a half-plane, the Flamant solution is often used as a starting point and then generalized to various shapes of the area of contact. The force and moment balances between the two bodies in contact act as additional constraints to the solution.
The advantage of using the coil shape is that it increases the strength of magnetic field produced by a given current. The magnetic fields generated by the separate turns of wire all pass through the center of the coil and add (superpose) to produce a strong field there. The more turns of wire, the stronger the field produced. Conversely, a changing external magnetic flux induces a voltage in a conductor such as a wire, due to Faraday's law of induction.
They re-interpreted all putative glacial features observed both in the Athabasca Valles and downstream in Cerberus Palus as volcanic in nature, directly challenging the periglacial hypothesis claimed by David Page and co-workers. David Page directly disputed the authors' volcanic interpretations of the pitted mounds and polygonal terrains in a later publication, noting that these features occasionally are found to superpose impact craters. A volcanic interpretation does not permit this later resurfacing. Page criticized the researchers for cherry-picking observations to suit their hypothesis.
The diagram at right shows an optical flat resting on a surface to be tested. Unless the two surfaces are perfectly flat, there will be a small gap between them (shown), which will vary with the contour of the surface. Monochromatic light (red) shines through the glass flat and reflects from both the bottom surface of the optical flat and the top surface of the test piece, and the two reflected rays combine and superpose. However, the ray reflecting off the bottom surface travels a longer path.
In the linear approximation we find: Fnorm=1+(∂F/∂T-ST)ΔT. Due to the linearity of the fluorescence intensity and the thermophoretic depletion, the normalized fluorescence from the unbound molecule Fnorm(A) and the bound complex Fnorm(AT) superpose linearly. By denoting x the fraction of molecules bound to targets, the changing fluorescence signal during the titration of target T is given by: Fnorm=(1-x) Fnorm(A)+x Fnorm(AT). Quantitative binding parameters are obtained by using a serial dilution of the binding substrate.
The individual wavefronts are spherical, but they combine (superpose) in front of the antenna to create a plane wave, a beam of radio waves travelling in a specific direction. The phase shifters delay the radio waves progressively going up the line so each antenna emits its wavefront later than the one below it. This causes the resulting plane wave to be directed at an angle θ to the antenna's axis. By changing the phase shifts the computer can instantly change the angle θ of the beam.
Superposed epoch analysis (SPE or SEA), also called Chree analysis after a paper by Charles Chree C. Chree-Some phenomena of sunspots and of terrestrial magnetism at Kew observatory-July 1913 that employed the technique, is a statistical tool used in data analysis either to detect periodicities within a time sequence or to reveal a correlation (usually in time) between two data sequences (usually two time series).Y.P. Singh, Badruddin-Statistical considerations in superposed epoch analysis and its applications in space research-April 2006 When comparing two time series, the essence of the method is to: (1) define each occurrence of an event in one data sequence (series #1) as a key time; (2) extract subsets of data from the other sequence (series #2) within some time range near each key time; (3) superpose all extracted subsets from series #2 (with key times for all subsets synchronized) by adding them. (To effectively superpose data from series #2 that are recorded at different or even irregular times, data binning is often used.) This approach can be used to detect a signal (i.e., related variations in both series) in the presence of noise (i.e.
In physics, interference is a phenomenon in which two waves superpose to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves. The resulting images or graphs are called interferograms.
The following discussion assumes that the dominant contribution to the coherence length is the emission spectrum. In Figure 4, you can see the spectral density function for a Gaussian spectrum, which is, for example, a good approximation for a light emitting diode (LED). The corresponding intensity modulation is shown to be substantial only in the neighborhood of position z0 where the reference and object beams have the same length and superpose coherently. The z-range of the positioning stage in which the envelope of intensity modulation is higher than 1/e of the maximum value determines the correlogram width.
A 3-sphere can be constructed topologically by "gluing" together the boundaries of a pair of 3-balls. The boundary of a 3-ball is a 2-sphere, and these two 2-spheres are to be identified. That is, imagine a pair of 3-balls of the same size, then superpose them so that their 2-spherical boundaries match, and let matching pairs of points on the pair of 2-spheres be identically equivalent to each other. In analogy with the case of the 2-sphere (see below), the gluing surface is called an equatorial sphere.
It is a chiral pattern, meaning that it is impossible to superpose it on top of its mirror image using only translations and rotations. A uniform tiling is a tiling in which each tile is a regular polygon and in which every vertex can be mapped to every other vertex by a symmetry of the tiling. Usually, uniform tilings additionally are required to have tiles that meet edge-to-edge, but if this requirement is relaxed then there are eight additional uniform tilings. Four are formed from infinite strips of squares or equilateral triangles, and three are formed from equilateral triangles and regular hexagons.
The presence of these modern secondaries was initially thought to have skewed the very modern age dates based on crater counts on the Athabasca Valles floor. Zunil Crater is located due east of the Athabasca Valles network, extending along the southeastern trend beyond the Cerberus Fossae fissures. Secondaries from nearby Corinto crater, another very young large rayed crater in Zunil's neighborhood, are also suspected to superpose the Athabasca Valles valley floor, but the morphologies of these secondaries are uncertain and their alignment with the rays of Corinto might be coincidental. The Athabasca Valles are named for the Athabasca River, which runs through Jasper National Park in the Canadian province of Alberta.
Since sine waves propagate without changing form in distributed linear systems, they are often used to analyze wave propagation. Sine waves traveling in two directions in space can be represented as :u(t, x) = A \sin(kx - \omega t + \varphi) When two waves having the same amplitude and frequency, and traveling in opposite directions, superpose each other, then a standing wave pattern is created. Note that, on a plucked string, the interfering waves are the waves reflected from the fixed end points of the string. Therefore, standing waves occur only at certain frequencies, which are referred to as resonant frequencies and are composed of a fundamental frequency and its higher harmonics.
The morphology and structural relations of the scarps suggest that most result from thrust or reverse faults. However, an extrusive origin has been suggested by Dzurisin (1978) for a scarp more than 200 km long that extends from about lat 70° S. to the map border between long 45° and 52°; he based this interpretation on albedo differences between the two sides of the scarp and on partial burial of craters transected by it. Age relations among structural features are not readily apparent. In the Bach region, the youngest craters cut by a scarp are of c4 age; the oldest crater to superpose a scarp is a c3.
A parabolic dish is an example of this type of antenna. A second technique is to use multiple antennas which are fed from the same transmitter or receiver; this is called an array antenna, or antenna array. If the currents are fed to the antennas with the proper phase, due to the phenomenon of interference the spherical waves from the individual antennas combine (superpose) in front of the array to create plane waves, a beam of radio waves traveling in a specific direction. In directions in which the waves from the individual antennas arrive in phase, the waves add together (constructive interference) to enhance the power radiated.
There exist, in addition, polar motions with smaller periods of the order of decades. Finally, a secular polar drift of about 0.10 m per year in the direction of 80° west has been observed which is due to mass redistribution within the Earth's interior by continental drift, and/or slow motions within mantle and core which gives rise to changes of the moment of inertia. The annual variation was discovered by Karl Friedrich Küstner in 1885 by exact measurements of the variation of the latitude of stars, while S.C. Chandler found the free nutation in 1891. Both periods superpose, giving rise to a beat frequency with a period of about 5 to 8 years (see Figure 1).
The individual antennas (called elements) are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together (interfering constructively) to enhance the power radiated in desired directions, and cancelling (interfering destructively) to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.
In Sanger sequencing, this will cause ITS sequence reads of different lengths to superpose each other, potentially rendering the resulting chromatograph unreadable. Furthermore, because of the non-coding nature of the ITS region that can lead to a substantial amount of indels, it is impossible to consistently align ITS sequences from highly divergent species for further bigger-scale phylogenetic analyses. The degree of intragenomic sequence heterogeneity can be investigated in more detail through molecular cloning of the initially PCR-amplified ITS sequences, followed by sequencing of the clones. This procedure of initial PCR amplification, followed by cloning of the amplicons and finally sequencing of the cloned PCR products is the most common approach of obtaining ITS sequences for DNA metabarcoding of environmental samples, in which a multitude of different fungal species can be present simultaneously.
The minimum information produced from a successful structural alignment is a set of residues that are considered equivalent between the structures. This set of equivalences is then typically used to superpose the three-dimensional coordinates for each input structure. (Note that one input element may be fixed as a reference and therefore its superposed coordinates do not change.) The fitted structures can be used to calculate mutual RMSD values, as well as other more sophisticated measures of structural similarity such as the global distance test (GDT, the metric used in CASP). The structural alignment also implies a corresponding one-dimensional sequence alignment from which a sequence identity, or the percentage of residues that are identical between the input structures, can be calculated as a measure of how closely the two sequences are related.
The original formulation of Counterfactual Quantum Computation stated that a set m of measurement outcomes is a counterfactual outcome if (1) there is only one history associated to m and that history contains only "off" (non-running) states, and (2) there is only a single possible computational output associated to m. A refined definition of counterfactual computation expressed in procedures and conditions is: (i) Identify and label all histories (quantum paths), with as many labels as needed, which lead to the same set m of measurement outcomes, and (ii) coherently superpose all possible histories. (iii) After cancelling the terms (if any) whose complex amplitudes together add to zero, the set m of measurement outcomes is a counterfactual outcome if (iv) there are no terms left with the computer-running label in their history labels, and (v) there is only a single possible computer output associated to m.
In 2006, Ross A. Beyer (NASA's Ames Research Center) submitted an abstract to the 37th Lunar and Planetary Sciences Conference reporting on his work characterizing in detail the aeolian morphologies present across the surface of Ganges Mensa. Beyer also investigated a crater off the eastern edge of the mesa which appears to demonstrate evidence of burial and later exhumation. The unveiled portions of that crater superpose a toe of the mesa, adding significant evidence to the hypothesis that Ganges Mensa was once a much more extensive landform that has since been greatly weathered. Beyer also submitted an abstract to the American Geophysical Union meeting that year to report on the relationship of light- toned mound deposits in Ganges Chasma to the basal unit of Ganges Mensa, using OMEGA spectral data to note similarities in kieserite signatures between the sulfate-bearing mesa layers and those mounds.
According to Heylighen, the effect is to superpose the contributions of many different human and computer agents into a collective map that may link the cognitive and physical resources relatively efficiently. The resulting information system could react relatively rapidly and adaptively to requests for guidance or changes in the situation. In Heylighen's view, the system could frequently be fed with new information from its myriad human users and computer agents, which it would take into account to offer the human users a list of the best possible approaches to achieve tasks. Heylighen believes near-optimization could be achieved both at the level of the individual who makes the request, and at the level of society which attempts to minimize the conflicts between the desires of its different members and to aim at long term, global progress while as much as possible protecting individual liberty and privacy.
A common type of boundary value problem is (to put it abstractly) finding a function y that satisfies some equation :F(y)=0 with some boundary specification :G(y)=z For example, in Laplace's equation with Dirichlet boundary conditions, F would be the Laplacian operator in a region R, G would be an operator that restricts y to the boundary of R, and z would be the function that y is required to equal on the boundary of R. In the case that F and G are both linear operators, then the superposition principle says that a superposition of solutions to the first equation is another solution to the first equation: :F(y_1)=F(y_2)=\cdots=0\ \Rightarrow\ F(y_1+y_2+\cdots)=0 while the boundary values superpose: :G(y_1)+G(y_2) = G(y_1+y_2) Using these facts, if a list can be compiled of solutions to the first equation, then these solutions can be carefully put into a superposition such that it will satisfy the second equation. This is one common method of approaching boundary value problems.

No results under this filter, show 29 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.