Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"vortical" Definitions
  1. of, relating to, or resembling a vortex : SWIRLING

15 Sentences With "vortical"

How to use vortical in a sentence? Find typical usage patterns (collocations)/phrases/context for "vortical" and check conjugation/comparative form for "vortical". Mastering all the usages of "vortical" from sentence examples published by news publications.

A demented and seductive vortical tension was building in the community.
As Mach numbers increase, the entropy change across the shock also increases, which results in a strong entropy gradient and highly vortical flow that mixes with the boundary layer.
Acoustic disturbances tend to excite two-dimensional instabilities such as Tollmien–Schlichting waves (T-S waves), while vortical disturbances tend to lead to the growth of three-dimensional phenomena such as the crossflow instability.Saric W. S., Reed H. L., Kerschen E. J. 2002. "Boundary-layer receptivity to freestream disturbances". Annu. Rev. Fluid Mech. 34:291–319.
It cannot be emphasized strongly enough that the current state of the laboratory art concerns the interaction of a rigid body (mostly and most importantly for a circular cylinder) whose degrees of freedom have been reduced from six to often one (i.e., transverse motion) with a three-dimensional separated flow, dominated by large-scale vortical structures.
An added benefit was that they also improved roll stability in the transonic region.Peake, D. and Tobak M. "Three-Dimensional Interactions and Vortical Flows with Emphasis on High-Speed Vehicles", AGARD AG-252, 1980. The canard flaps were deployed in conjunction with the landing gear to provide even more lift for takeoff and landing.Gunston and Spick 1983, pp. 22–23.
In 1968, Ash graduated from Tulane University in New Orleans with a PhD in Mechanical and Aerospace Engineering, and in 1963, he graduated from Kansas State University with a Bachelor of Science in Mechanical Engineering. Ash's father-in-law was Lewis Webb Jr., who served as the first president of Old Dominion University. His research interests include vortical flows, non-equilibrium phenomena, space systems, and Mars resources.
These vortical structures impose a downward deflection of the airflow (downwash) over the crests of tubercles. This downward deflection delays stall on the airfoil. On the contrary, in the troughs of these structures, there is a net upward deflection of airflow (upwash). Localized upwash is associated with higher angles of attack, which relates to increased lift, as the flow separation occurs in the troughs and stays there.
High concentration of surfactants (surface- active substances) produced by phytoplanktons can result higher Marangoni stress in converging regions in LC. Numerical simulation suggest that such Marangoni stress due to surfactant can increase the size of vortical structures, vertical velocity and remixing of water and biological/chemical components in the local region compared to that without surfactant. Finally, more theoretical and experimental investigations are needed to confirm the significance of LC.
The coherent vortex simulation approach decomposes the turbulent flow field into a coherent part, consisting of organized vortical motion, and the incoherent part, which is the random background flow. This decomposition is done using wavelet filtering. The approach has much in common with LES, since it uses decomposition and resolves only the filtered portion, but different in that it does not use a linear, low-pass filter. Instead, the filtering operation is based on wavelets, and the filter can be adapted as the flow field evolves.
This team takes full advantage of high-fidelity simulations and experimental works for very cost-effective developments. Several hybrid rockets have been successfully launched so far, reaching altitudes of 10–20 km. Their plans include attempting 100–200 km altitude launch to test nanosatellites, and developing orbital launch capabilities for nanosatellites in the long run. A sub-scale N2O/PE dual-vortical-flow (DVF) hybrid engine hot-fire test in 2014 has delivered an averaged sea-level Isp of 280 sec, which indicates that the system has reached around 97% combustion efficiency.
The initial stage of the natural transition process is known as the Receptivity phase and consists of the transformation of environmental disturbances – both acoustic (sound) and vortical (turbulence) – into small perturbations within the boundary layer. The mechanisms by which these disturbances arise are varied and include freestream sound and/or turbulence interacting with surface curvature, shape discontinuities and surface roughness. These initial conditions are small, often unmeasurable perturbations to the basic state flow. From here, the growth (or decay) of these disturbances depends on the nature of the disturbance and the nature of the basic state.
The interactions between swimming fish and vortical structures involve a broad range of relevant length and tine scales. Recent discussions emphasised the role of secondary flow motion, considerations of fish dimensions in relation to the spectrum of turbulence scales, and the beneficial role of turbulent structures provided that fish are able to exploit them. The current literature on culvert fish passage focused mostly on fast-swimming fish species, but a few studies argued for better guidelines for small-bodied fish including juveniles. Finally, a solid understanding of turbulence typology is a basic requirement to any successful hydraulic structure design conducive of upstream fish passage.
At the dynamic level, the fact that vortex lines are transported by any flow governed by the classical Euler equations implies conservation of any vortical structure within the flow. Such structures are characterised at least in part by the helicity of certain sub-regions of the flow field, a topological invariant of the equations. Helicity plays a central role in dynamo theory, the theory of spontaneous generation of magnetic fields in stars and planets (Moffatt 1978, Parker 1979, Krause & Rädler 1980). It is known that, with few exceptions, any statistically homogeneous turbulent flow having nonzero mean helicity in a sufficiently large expanse of conducting fluid will generate a large-scale magnetic field through dynamo action.
A good example of nonlinear electromagnetics is in high energy dense plasmas, where vortical phenomena occur which seemingly violate the second law of thermodynamics by increasing the energy gradient within the electromagnetic field and violate Maxwell's laws by creating ion currents which capture and concentrate their own and surrounding magnetic fields. In particular Lorentz force law, which elaborates Maxwell's equations is violated by these force free vortices. These apparent violations are due to the fact that the traditional conservation laws in classical and quantum electrodynamics (QED) only display linear U(1) symmetry (in particular, by the extended Noether theorem, conservation laws such as the laws of thermodynamics need not always apply to dissipative systems, which are expressed in gauges of higher symmetry). The second law of thermodynamics states that in a closed linear system entropy flow can only be positive (or exactly zero at the end of a cycle).
To enforce no-slip boundary conditions on immersed surfaces, first, the surface is represented implicitly by a smooth “level set” function, “f”, defined at each grid point. This is the (signed) distance from each grid point to the nearest point on the surface of an object – positive outside, negative inside. Then, at each time step during the solution, velocities in the interior are set to zero. In a computation using VC, this results in a thin vortical region along the surface, which is smooth in the tangential direction, with no “staircase” effects. The important point is that no special logic is required in the “cut” cells, unlike many conventional schemes: only the same VC equations are applied, as in the rest of the grid, but with a different form for F. Also, unlike many conventional immersed surface schemes, which are inviscid because of cell size constraints, there is effectively a no-slip boundary condition, which results in a boundary layer with well-defined total vorticity and which, because of VC, remains thin, even after separation.

No results under this filter, show 15 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.