Sentences Generator
And
Your saved sentences

No sentences have been saved yet

330 Sentences With "undirected graph"

How to use undirected graph in a sentence? Find typical usage patterns (collocations)/phrases/context for "undirected graph" and check conjugation/comparative form for "undirected graph". Mastering all the usages of "undirected graph" from sentence examples published by news publications.

A tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.
An undirected graph At its simplest, DOT can be used to describe an undirected graph. An undirected graph shows simple relations between objects, such as friendship between people. The graph keyword is used to begin a new graph, and nodes are described within curly braces. A double-hyphen (--) is used to show relations between the nodes.
In other words, if we replace its directed edges with undirected edges, we obtain an undirected graph that is both connected and acyclic. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. In other words, if we replace its directed edges with undirected edges, we obtain an undirected graph that is acyclic. A polytree is an example of an oriented graph.
A polytree (or directed tree or oriented tree or singly connected network) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest.
Mega-merger is a distributed algorithm aimed at solving the election problem in generic connected undirected graph.
In an undirected graph, an unordered pair of vertices is called connected if a path leads from x to y. Otherwise, the unordered pair is called disconnected. A connected graph is an undirected graph in which every unordered pair of vertices in the graph is connected. Otherwise, it is called a disconnected graph.
An undirected graph that is not connected is called disconnected. An undirected graph G is therefore disconnected if there exist two vertices in G such that no path in G has these vertices as endpoints. A graph with just one vertex is connected. An edgeless graph with two or more vertices is disconnected.
A symmetric sparse matrix arises as the adjacency matrix of an undirected graph; it can be stored efficiently as an adjacency list.
In graph theory, a connected dominating set and a maximum leaf spanning tree are two closely related structures defined on an undirected graph.
An incomparability graph is an undirected graph that connects pairs of elements that are not comparable to each other in a partial order.
A connected component of the undirected subgraph of a chain graph is called a chain. A chain graph may be transformed into an undirected graph by constructing its moral graph, an undirected graph formed from the chain graph by adding undirected edges between pairs of vertices that have outgoing edges to the same chain, and then forgetting the orientations of the directed edges.
In the mathematical field of graph theory, the Heawood graph is an undirected graph with 14 vertices and 21 edges, named after Percy John Heawood.
A mathematical problem is wild if it contains the problem of classifying pairs of square matrices up to simultaneous similarity. Examples of wild problems are classifying indecomposable representations of any quiver that is neither a Dynkin quiver (i.e. the underlying undirected graph of the quiver is a (finite) Dynkin diagram) nor a Euclidean quiver (i.e., the underlying undirected graph of the quiver is an affine Dynkin diagram).
In the undirected edge- disjoint paths problem, we are given an undirected graph and two vertices and , and we have to find the maximum number of edge-disjoint s-t paths in . The Menger's theorem states that the maximum number of edge-disjoint s-t paths in an undirected graph is equal to the minimum number of edges in an s-t cut-set.
This is the definition used, e.g., by . Equivalently, it is an undirected graph in which each connected component has no more edges than vertices.This is the definition in .
This proof is inspired by . Let be a simple undirected graph. We proceed by induction on , the number of edges. If the graph is empty, the theorem trivially holds.
Yo-Yo is a distributed algorithm aimed at minimum finding and leader election in generic connected undirected graph. Unlike Mega-Merger it has a trivial termination and cost analysis.
A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. In other words, if we replace its directed edges with undirected edges, we obtain an undirected graph that is acyclic. Some authors restrict the phrase "directed forest" to the case where the edges of each connected component are all directed towards a particular vertex, or all directed away from a particular vertex (see branching).
See . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirected graph is a forest. The various kinds of data structures referred to as trees in computer science have underlying graphs that are trees in graph theory, although such data structures are generally rooted trees.
In graph theory, a folded cube graph is an undirected graph formed from a hypercube graph by adding to it a perfect matching that connects opposite pairs of hypercube vertices.
The corresponding concept for undirected graphs is a forest, an undirected graph without cycles. Choosing an orientation for a forest produces a special kind of directed acyclic graph called a polytree. However, there are many other kinds of directed acyclic graph that are not formed by orienting the edges of an undirected acyclic graph. Moreover, every undirected graph has an acyclic orientation, an assignment of a direction for its edges that makes it into a directed acyclic graph.
A graph is connected if every vertex or edge is reachable from every other vertex or edge. A cycle in an undirected graph is a connected subgraph in which each vertex is incident to exactly two edges, or is a loop.See the linked articles and the references therein for these definitions. The 21 unicyclic graphs with at most six vertices A pseudoforest is an undirected graph in which each connected component contains at most one cycle.
A forest is an undirected graph in which any two vertices are connected by at most one path. Equivalently, a forest is an undirected acyclic graph. Equivalently, a forest is an undirected graph, all of whose connected components are trees; in other words, the graph consists of a disjoint union of trees. As special cases, the order-zero graph (a forest consisting of zero trees), a single tree, and an edgeless graph, are examples of forests.
A polytree (or directed tree or oriented tree or singly connected network) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. In other words, if we replace its directed edges with undirected edges, we obtain an undirected graph that is both connected and acyclic. Some authors restrict the phrase "directed tree" to the case where the edges are all directed towards a particular vertex, or all directed away from a particular vertex (see arborescence).
In the mathematical subfield of graph theory a level structure of an undirected graph is a partition of the vertices into subsets that have the same distance from a given root vertex..
A polytree. In mathematics, and more specifically in graph theory, a polytree. (also called directed tree, oriented tree. or singly connected network.) is a directed acyclic graph whose underlying undirected graph is a tree.
With vertex 0, this graph is disconnected. The rest of the graph is connected. In an undirected graph , two vertices and are called connected if contains a path from to . Otherwise, they are called disconnected.
If is the adjacency matrix of the directed or undirected graph , then the matrix (i.e., the matrix product of copies of ) has an interesting interpretation: the element gives the number of (directed or undirected) walks of length from vertex to vertex . If is the smallest nonnegative integer, such that for some , , the element of is positive, then is the distance between vertex and vertex . This implies, for example, that the number of triangles in an undirected graph is exactly the trace of divided by 6.
In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges, the smallest non-Hamiltonian polyhedral graph. It is named after British astronomer Alexander Stewart Herschel.
Bulatov proved a dichotomy theorem for domains of three elements. Another dichotomy theorem for constraint languages is the Hell- Nesetril theorem, which shows a dichotomy for problems on binary constraints with a single fixed symmetric relation. In terms of the homomorphism problem, every such problem is equivalent to the existence of a homomorphism from a relational structure to a given fixed undirected graph (an undirected graph can be regarded as a relational structure with a single binary symmetric relation). The Hell-Nesetril theorem proves that every such problem is either polynomial-time or NP-complete.
For any connected undirected graph G with maximum degree Δ, the chromatic number of G is at most Δ, unless G is a complete graph or an odd cycle, in which case the chromatic number is Δ + 1\.
In the mathematical field of graph theory, the Schläfli graph, named after Ludwig Schläfli, is a 16-regular undirected graph with 27 vertices and 216 edges. It is a strongly regular graph with parameters srg(27, 16, 10, 8).
PPA (standing for "Polynomial time Parity Argument") is the class of problems whose solution is guaranteed by the handshaking lemma: any undirected graph with an odd degree vertex must have another odd degree vertex. It contains the subclasses PWPP and PPAD.
A comparability graph is an undirected graph formed from a partial order by creating a vertex per element of the order, and an edge connecting any two comparable elements. Thus, a clique in a comparability graph corresponds to a chain, and an independent set in a comparability graph corresponds to an antichain. Any induced subgraph of a comparability graph is itself a comparability graph, formed from the restriction of the partial order to a subset of its elements. An undirected graph is perfect if, in every induced subgraph, the chromatic number equals the size of the largest clique.
A more general version of the theorem applies to list coloring: given any connected undirected graph with maximum degree Δ that is neither a clique nor an odd cycle, and a list of Δ colors for each vertex, it is possible to choose a color for each vertex from its list so that no two adjacent vertices have the same color. In other words, the list chromatic number of a connected undirected graph G never exceeds Δ, unless G is a clique or an odd cycle. This has been proved by . For certain graphs, even fewer than Δ colors may be needed.
In graph theory, a branch of mathematics, the cop number or copnumber of an undirected graph is the minimum number of cops that suffices to ensure a win (i.e., a capture of the robber) in a certain pursuit-evasion game on the graph.
In the mathematical field of graph theory, the triangle graph is a planar undirected graph with 3 vertices and 3 edges, in the form of a triangle. The triangle graph is also known as the cycle graph C_3 and the complete graph K_3.
One of DeLaViña's results in graph theory is related to an inequality showing that every undirected graph has an independent set that is at least as large as its radius; DeLaViña showed that the graphs with no larger independent set always contain a Hamiltonian path.
In graph theory, a clique graph of an undirected graph G is another graph K(G) that represents the structure of cliques in G. Clique graphs were discussed at least as early as 1968, and a characterization of clique graphs was given in 1971.
We define an undirected graph to be a set of vertices and edges such that each edge has two vertices (which may coincide) as endpoints. That is, we allow multiple edges (edges with the same pair of endpoints) and loops (edges whose two endpoints are the same vertex). A subgraph of a graph is the graph formed by any subsets of its vertices and edges such that each edge in the edge subset has both endpoints in the vertex subset. A connected component of an undirected graph is the subgraph consisting of the vertices and edges that can be reached by following edges from a single given starting vertex.
The definition and properties of Eulerian trails, cycles and graphs are valid for multigraphs as well. An Eulerian orientation of an undirected graph G is an assignment of a direction to each edge of G such that, at each vertex v, the indegree of v equals the outdegree of v. Such an orientation exists for any undirected graph in which every vertex has even degree, and may be found by constructing an Euler tour in each connected component of G and then orienting the edges according to the tour.. Every Eulerian orientation of a connected graph is a strong orientation, an orientation that makes the resulting directed graph strongly connected.
A directed graph with three vertices (blue circles) and three edges (black arrows). In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points), together with a set of unordered pairs of these vertices for an undirected graph or a set of ordered pairs for a directed graph. These pairs are known as edges (also called links or lines), and for a directed graph are also known as arrows.
In the mathematical field of graph theory, the Robertson graph or (4,5)-cage, is a 4-regular undirected graph with 19 vertices and 38 edges named after Neil Robertson.Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 237, 1976.
In the mathematical discipline of graph theory, the edge space and vertex space of an undirected graph are vector spaces defined in terms of the edge and vertex sets, respectively. These vector spaces make it possible to use techniques of linear algebra in studying the graph.
In graph theory, a comparability graph is an undirected graph that connects pairs of elements that are comparable to each other in a partial order. Comparability graphs have also been called transitively orientable graphs, partially orderable graphs, containment graphs,, p. 105; , p. 94. and divisor graphs.
The automorphism group of the Folkman graph acts transitively on its edges but not on its vertices. It is the smallest undirected graph that is edge-transitive and regular, but not vertex- transitive.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp.
A squaregraph. In graph theory, a branch of mathematics, a squaregraph is a type of undirected graph that can be drawn in the plane in such a way that every bounded face is a quadrilateral and every vertex with three or fewer neighbors is incident to an unbounded face.
A directed graph is strongly connected if and only if it has an ear decomposition, a partition of the edges into a sequence of directed paths and cycles such that the first subgraph in the sequence is a cycle, and each subsequent subgraph is either a cycle sharing one vertex with previous subgraphs, or a path sharing its two endpoints with previous subgraphs. According to Robbins' theorem, an undirected graph may be oriented in such a way that it becomes strongly connected, if and only if it is 2-edge-connected. One way to prove this result is to find an ear decomposition of the underlying undirected graph and then orient each ear consistently..
A strong orientation of a given bridgeless undirected graph may be found in linear time by performing a depth first search of the graph, orienting all edges in the depth first search tree away from the tree root, and orienting all the remaining edges (which must necessarily connect an ancestor and a descendant in the depth first search tree) from the descendant to the ancestor.See e.g. and . If an undirected graph with bridges is given, together with a list of ordered pairs of vertices that must be connected by directed paths, it is possible in polynomial time to find an orientation of that connects all the given pairs, if such an orientation exists.
For, if the vertex separation number of a topological ordering is at most w, the minimum vertex separation among all orderings can be no larger, so the undirected graph formed by ignoring the orientations of the DAG described above must have pathwith at most w. It is possible to test whether this is the case, using the known fixed-parameter- tractable algorithms for pathwidth, and if so to find a path-decomposition for the undirected graph, in linear time given the assumption that w is a constant. Once a path decomposition has been found, a topological ordering of width w (if one exists) can be found using dynamic programming, again in linear time.
The MaxCliqueDyn algorithm is an algorithm for finding a maximum clique in an undirected graph. It is based on a basic algorithm (MaxClique algorithm) which finds a maximum clique of bounded size. The bound is found using improved coloring algorithm. The MaxCliqueDyn extends MaxClique algorithm to include dynamically varying bounds.
The Paley graph of order 13, an example of a circulant graph. In graph theory, a circulant graph is an undirected graph acted on by a cyclic group of symmetries which takes any vertex to any other vertex. It is sometimes called a cyclic graph, but this term has other meanings.
A connected component is a maximal connected subgraph of an undirected graph. Each vertex belongs to exactly one connected component, as does each edge. A graph is connected if and only if it has exactly one connected component. The strong components are the maximal strongly connected subgraphs of a directed graph.
Roberts' research concerns graph theory and combinatorics, and their applications in modeling problems in the social sciences and biology. Among his contributions to pure mathematics, he is known for introducing the concept of boxicity, the minimum dimension needed to represent a given undirected graph as an intersection graph of axis-parallel boxes..
The biclique partition problem takes as input an arbitrary undirected graph, and asks for a partition of its edges into a minimum number of complete bipartite graphs. It is NP-hard, but fixed-parameter tractable. The best approximation algorithm known for the problem has an approximation ratio of O(n/\log n).
If such a walk exists, the graph is called traversable or semi-eulerian.Jun- ichi Yamaguchi, Introduction of Graph Theory. An Eulerian cycle, Eulerian circuit or Euler tour in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal.
It is also possible to compute a simpler invariant of directed graphs by ignoring the directions of the edges and computing the circuit rank of the underlying undirected graph. This principle forms the basis of the definition of cyclomatic complexity, a software metric for estimating how complicated a piece of computer code is.
In a hypergraph, an edge can join more than two vertices. An undirected graph can be seen as a simplicial complex consisting of 1-simplices (the edges) and 0-simplices (the vertices). As such, complexes are generalizations of graphs since they allow for higher-dimensional simplices. Every graph gives rise to a matroid.
The arboricity of an undirected graph is the minimum number of forests into which its edges can be partitioned. Equivalently it is the minimum number of spanning forests needed to cover all the edges of the graph. The Nash-Williams theorem provides necessary and sufficient conditions for when a graph is k-arboric.
In social network analysis, the co-stardom network represents the collaboration graph of film actors i.e. movie stars. The co-stardom network can be represented by an undirected graph of nodes and links. Nodes correspond to the movie star actors and two nodes are linked if they co-starred (performed) in the same movie.
The windy postman problem is a variant of the route inspection problem in which the input is an undirected graph, but where each edge may have a different cost for traversing it in one direction than for traversing it in the other direction. In contrast to the solutions for directed and undirected graphs, it is NP-complete..
In the mathematical area of graph theory, an undirected graph G is strongly chordal if it is a chordal graph and every cycle of even length (≥ 6) in G has an odd chord, i.e., an edge that connects two vertices that are an odd distance (>1) apart from each other in the cycle., Definition 3.4.1, p. 43.
The polyhedral graph formed as the Schlegel diagram of a regular dodecahedron. Schlegel diagram of truncated icosidodecahedral graph In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected planar graphs.
There are five different metrics that can be used to calculate distinctiveness centrality – namely D1, D2, D3, D4 and D5. They only differ with regard to the weighting factor used. In addition, only D1, D3 and D4 are designed to consider arc weights. Formulas are presented for a (weighted) undirected graph G, made of n nodes and m arcs.
The nine-vertex Paley graph is locally linear. One of its six triangles is highlighted in green. In graph theory, a locally linear graph is an undirected graph in which the neighborhood of every vertex is an induced matching. That is, for every vertex v, every neighbor of v should be adjacent to exactly one other neighbor of v.
A graph with two nontrivial strong splits (top) and its split decomposition (bottom). The three quotient graphs are a star (left), a prime graph (center), and a complete graph (right). In graph theory, a split of an undirected graph is a cut whose cut-set forms a complete bipartite graph. A graph is prime if it has no splits.
What route should I take to minimize the total distance?” Figure 14 shows an undirected graph for this roadmap, the numbers indicating the shortest distances between neighboring capital cities. The problem is to choose a subset of these edges that form a Hamiltonian path of smallest total length. Every Hamiltonian path in this graph must either start or end at Augusta, Maine(ME).
A circle with five chords and the corresponding circle graph. In graph theory, a circle graph is the intersection graph of a set of chords of a circle. That is, it is an undirected graph whose vertices can be associated with chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.
In the mathematical field of graph theory, the Meringer graph is a 5-regular undirected graph with 30 vertices and 75 edges named after Markus Meringer.. It is one of the four (5,5)-cage graphs, the others being the Foster cage, the Robertson–Wegner graph, and the Wong graph. It has chromatic number 3, diameter 3, and is 5-vertex-connected.
Graph of an example equivalence with 7 classes An undirected graph may be associated to any symmetric relation on a set , where the vertices are the elements of , and two vertices and are joined if and only if . Among these graphs are the graphs of equivalence relations; they are characterized as the graphs such that the connected components are cliques.
Seven intervals on the real line and the corresponding seven-vertex interval graph. In graph theory, an interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. It is the intersection graph of the intervals. Interval graphs are chordal graphs and perfect graphs.
In the mathematical field of graph theory, the Brouwer-Haemers graph is a 20-regular undirected graph with 81 vertices and 810 edges. It is a strongly regular graph, a distance-transitive graph, and a Ramanujan graph. Although its construction is folklore, it was named after Andries Brouwer and Willem H. Haemers, who proved its uniqueness as a strongly regular graph.
There are variants of modular decomposition for undirected graphs and directed graphs. For each undirected graph, this decomposition is unique. This notion can be generalized to other structures (for example directed graphs) and is useful to design efficient algorithms for the recognition of some graph classes, for finding transitive orientations of comparability graphs, for optimization problems on graphs, and for graph drawing.
In the mathematical field of graph theory, the diamond graph is a planar undirected graph with 4 vertices and 5 edges.ISGCI: Information System on Graph Classes and their Inclusions "List of Small Graphs". It consists of a complete graph K_4 minus one edge. The diamond graph has radius 1, diameter 2, girth 3, chromatic number 3 and chromatic index 3\.
An edge contraction is an operation which removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices. The order in which a sequence of such contractions and deletions is performed on G does not affect the resulting graph H. Graph minors are often studied in the more general context of matroid minors. In this context, it is common to assume that all graphs are connected, with self-loops and multiple edges allowed (that is, they are multigraphs rather than simple graphs); the contraction of a loop and the deletion of a cut-edge are forbidden operations.
In the mathematical field of graph theory, the ladder graph Ln is a planar undirected graph with 2n vertices and 3n-2 edges. The ladder graph can be obtained as the Cartesian product of two path graphs, one of which has only one edge: Ln,1 = Pn × P2.Hosoya, H. and Harary, F. "On the Matching Properties of Three Fence Graphs." J. Math. Chem.
Graph500 is the first benchmark for data-intensive supercomputing problems. This benchmark generates an edge tuple with two endpoints at first. Then the kernel 1 will constructs an undirected graph, in which weight of edge will not be assigned if only kernel 2 runs afterwards. Users can choose to run BFS in kernel 2 and/or Single-Source-Shortest-Path in kernel 3 on the constructed graph.
Symmetric space-bounded computation. Theoretical Computer Science. pp.161-187. 1982. who were looking for a class in which to place USTCON, the problem asking whether there is a path between two given vertices s,t in an undirected graph. Until this time, it could be placed only in NL, despite seeming not to require nondeterminism (the asymmetric variant STCON was known to be complete for NL).
In the mathematical field of graph theory, the Harries-Wong graph is a 3-regular undirected graph with 70 vertices and 105 edges. The Harries-Wong graph has chromatic number 2, chromatic index 3, radius 6, diameter 6, girth 10 and is Hamiltonian. It is also a 3-vertex-connected and 3-edge-connected non-planar cubic graph. It has book thickness 3 and queue number 2.
In the branch of mathematics called graph theory, the strength of an undirected graph corresponds to the minimum ratio edges removed/components created in a decomposition of the graph in question. It is a method to compute partitions of the set of vertices and detect zones of high concentration of edges, and is analogous to graph toughness which is defined similarly for vertex removal.
One may also consider playing either Geography game on an undirected graph (that is, the edges can be traversed in both directions). Fraenkel, Scheinerman, and Ullman show that undirected vertex geography can be solved in polynomial time, whereas undirected edge geography is PSPACE- complete, even for planar graphs with maximum degree 3. If the graph is bipartite, then Undirected Edge Geography is solvable in polynomial time.
A red–black tree plotted by Graphviz. Undirected graph showing adjacency of the 48 contiguous United States Graphviz (short for Graph Visualization Software) is a package of open-source tools initiated by AT&T; Labs Research for drawing graphs specified in DOT language scripts. It also provides libraries for software applications to use the tools. Graphviz is free software licensed under the Eclipse Public License.
The node definitions are separated from the edge definitions by a line containing the "#" character. Each edge definition is another line of text, starting with the two IDs for the endpoints of the edge separated by a space. If the edge has a label, it appears on the same line after the endpoint IDs. The graph may be interpreted as a directed or undirected graph.
In graph theory, an induced matching or strong matching is a subset of the edges of an undirected graph that do not share any vertices (it is a matching) and includes every edge connecting any two vertices in the subset (it is an induced subgraph). An induced matching can also be described as an independent set in the square of the line graph of the given graph.
In the mathematical area of graph theory, the Mycielskian or Mycielski graph of an undirected graph is a larger graph formed from it by a construction of . The construction preserves the property of being triangle-free but increases the chromatic number; by applying the construction repeatedly to a triangle- free starting graph, Mycielski showed that there exist triangle-free graphs with arbitrarily large chromatic number.
In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges and vertices and by contracting edges. The theory of graph minors began with Wagner's theorem that a graph is planar if and only if its minors include neither the complete graph K5 nor the complete bipartite graph K3,3., p. 77; .
The Goldner–Harary graph, an example of a planar 3-tree. In graph theory, a k-tree is an undirected graph formed by starting with a (k + 1)-vertex complete graph and then repeatedly adding vertices in such a way that each added vertex v has exactly k neighbors U such that, together, the k + 1 vertices formed by v and U form a clique.
A graph with three components. In graph theory, a component, sometimes called a connected component, of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph. For example, the graph shown in the illustration has three components. A vertex with no incident edges is itself a component.
Two non-isomorphic graphs with the same degree sequence (3, 2, 2, 2, 2, 1, 1, 1). The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees;Diestel p.216 for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant so isomorphic graphs have the same degree sequence.
More generally, any edge-weighted undirected graph (not necessarily connected) has a minimum spanning forest, which is a union of the minimum spanning trees for its connected components. There are quite a few use cases for minimum spanning trees. One example would be a telecommunications company trying to lay cable in a new neighborhood. If it is constrained to bury the cable only along certain paths (e.g.
Melencolia I by Albrecht Dürer, the first appearance of Dürer's solid (1514). In the mathematical field of graph theory, the Dürer graph is an undirected graph with 12 vertices and 18 edges. It is named after Albrecht Dürer, whose 1514 engraving Melencolia I includes a depiction of Dürer's solid, a convex polyhedron having the Dürer graph as its skeleton. Dürer's solid is one of only four well-covered simple convex polyhedra.
Cycles of all possible lengths in the graph of an octahedron, showing it to be pancyclic. In the mathematical study of graph theory, a pancyclic graph is a directed graph or undirected graph that contains cycles of all possible lengths from three up to the number of vertices in the graph.. Pancyclic graphs are a generalization of Hamiltonian graphs, graphs which have a cycle of the maximum possible length.
In the mathematical field of graph theory, the Foster cage is a 5-regular undirected graph with 30 vertices and 75 edges.. It is one of the four (5,5)-cage graphs, the others being the Meringer graph, the Robertson–Wegner graph, and the Wong graph. Like the unrelated Foster graph, it is named after R. M. Foster. It has chromatic number 4, diameter 3, and is 5-vertex- connected.
In the mathematical field of graph theory, the Wong graph is a 5-regular undirected graph with 30 vertices and 75 edges.. It is one of the four (5,5)-cage graphs, the others being the Foster cage, the Meringer graph, and the Robertson–Wegner graph. Like the unrelated Harries–Wong graph, it is named after Pak-Ken Wong.Wong, P. K. "Cages--A Survey." J. Graph Th. 6, 1-22, 1982.
In the mathematical field of graph theory, the Harries graph or Harries (3-10)-cage is a 3-regular undirected graph with 70 vertices and 105 edges. The Harries graph has chromatic number 2, chromatic index 3, radius 6, diameter 6, girth 10 and is Hamiltonian. It is also a 3-vertex-connected and 3-edge-connected non-planar cubic graph. It has book thickness 3 and queue number 2.
In graph theoretic terms, the states are Eulerian orientations of an underlying 4-regular undirected graph. The partition function also counts the number of nowhere-zero 3-flows. For two-dimensional models, the lattice is taken to be the square lattice. For more realistic models, one can use a three-dimensional lattice appropriate to the material being considered; for example, the hexagonal ice lattice is used to analyse ice.
4\times 4 Sudoku graph In the mathematics of Sudoku, the Sudoku graph is an undirected graph whose vertices represent the cells of a (blank) Sudoku puzzle and whose edges represent pairs of cells that belong to the same row, column, or block of the puzzle. The problem of solving a Sudoku puzzle can be represented as precoloring extension on this graph. It is an integral Cayley graph.
Using the LLL-algorithm, Frank, and his student, Éva Tardos developed a general method, which could transform some polynomial-time algorithms into strongly polynomial.. He solved the problem of finding the minimum number of edges to be added to a given undirected graph so that in the resulting graph the edge-connectivity between any two vertices u and v is at least a predetermined number f(u,v)..
In the mathematical field of graph theory, the Meredith graph is a 4-regular undirected graph with 70 vertices and 140 edges discovered by Guy H. J. Meredith in 1973. The Meredith graph is 4-vertex-connected and 4-edge- connected, has chromatic number 3, chromatic index 5, radius 7, diameter 8, girth 4 and is non-hamiltonian.Bondy, J. A. and Murty, U. S. R. "Graph Theory". Springer, p.
In graph theory, the perfect graph theorem of states that an undirected graph is perfect if and only if its complement graph is also perfect. This result had been conjectured by , and it is sometimes called the weak perfect graph theorem to distinguish it from the strong perfect graph theoremThis was also conjectured by Berge but only proven much later by . characterizing perfect graphs by their forbidden induced subgraphs.
A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph. In graph theory, an odd cycle transversal of an undirected graph is a set of vertices of the graph that has a nonempty intersection with every odd cycle in the graph. Removing the vertices of an odd cycle transversal from a graph leaves a bipartite graph as the remaining induced subgraph.
In graph theory, Mac Lane's planarity criterion is a characterisation of planar graphs in terms of their cycle spaces, named after Saunders Mac Lane, who published it in 1937. It states that a finite undirected graph is planar if and only if the cycle space of the graph (taken modulo 2) has a cycle basis in which each edge of the graph participates in at most two basis vectors.
In the mathematical field of graph theory, the butterfly graph (also called the bowtie graph and the hourglass graph) is a planar undirected graph with 5 vertices and 6 edges.ISGCI: Information System on Graph Classes and their Inclusions. "List of Small Graphs". It can be constructed by joining 2 copies of the cycle graph C3 with a common vertex and is therefore isomorphic to the friendship graph F2.
Define the degree of saturation of a vertex as the number of different colours in its neighbourhood. Given a simple, undirected graph G compromising vertex set V and edge set E: # Generate a degree ordering of V. # Select a vertex of maximal degree and colour it with the first colour. # Consider a vertex with the highest degree of saturation. Break ties by considering that vertex with the highest degree.
Finding the optimal order in which to eliminate variables is an NP-hard problem. As such there are heuristics one may follow to better optimize performance by order: # Minimum Degree: Eliminate the variable which results in constructing the smallest factor possible. # Minimum Fill: By constructing an undirected graph showing variable relations expressed by all CPTs, eliminate the variable which would result in the least edges to be added post elimination.
In graph theory, a clique cover or partition into cliques of a given undirected graph is a partition of the vertices of the graph into cliques, subsets of vertices within which every two vertices are adjacent. A minimum clique cover is a clique cover that uses as few cliques as possible. The minimum k for which a clique cover exists is called the clique cover number of the given graph.
The graph of an octahedron is complete multipartite () and well-colored. In graph theory, a subfield of mathematics, a well-colored graph is an undirected graph for which greedy coloring uses the same number of colors regardless of the order in which colors are chosen for its vertices. That is, for these graphs, the chromatic number (minimum number of colors) and Grundy number (maximum number of greedily-chosen colors) are equal.
An example of an ear decomposition of a graph containing 3 ears. In graph theory, an ear of an undirected graph G is a path P where the two endpoints of the path may coincide, but where otherwise no repetition of edges or vertices is allowed, so every internal vertex of P has degree two in G. An ear decomposition of an undirected graph G is a partition of its set of edges into a sequence of ears, such that the one or two endpoints of each ear belong to earlier ears in the sequence and such that the internal vertices of each ear do not belong to any earlier ear. Additionally, in most cases the first ear in the sequence must be a cycle. An open ear decomposition or a proper ear decomposition is an ear decomposition in which the two endpoints of each ear after the first are distinct from each other.
Given a channel, a pair of two horizontal lines, a trapezoid between these lines is defined by two points on the top and two points on the bottom line. A graph is a trapezoid graph if there exists a set of trapezoids corresponding to the vertices of the graph such that two vertices are joined by an edge if and only if the corresponding trapezoids intersect. The interval order dimension of a partially ordered set, P=(X, <), is the minimum number d of interval orders P1 … Pd such that P = P1∩…∩Pd. The incomparability graph of a partially ordered set P=(X, <) is the undirected graph G=(X, E) where x is adjacent to y in G if and only if x and y are incomparable in P. An undirected graph is a trapezoid graph if and only if it is the incomparability graph of a partial order having interval order dimension at most 2.
The clique complex of a graph. Cliques of size one are shown as small red disks; cliques of size two are shown as black line segments; cliques of size three are shown as light blue triangles; and cliques of size four are shown as dark blue tetrahedra. Clique complexes, flag complexes, and conformal hypergraphs are closely related mathematical objects in graph theory and geometric topology that each describe the cliques (complete subgraphs) of an undirected graph. The clique complex X(G) of an undirected graph G is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the cliques of G. Any subset of a clique is itself a clique, so this family of sets meets the requirement of an abstract simplicial complex that every subset of a set in the family should also be in the family.
Roughly speaking, a Feynman diagram is called connected if all vertices and propagator lines are linked by a sequence of vertices and propagators of the diagram itself. If one views it as an undirected graph it is connected. The remarkable relevance of such diagrams in QFTs is due to the fact that they are sufficient to determine the quantum partition function . More precisely, connected Feynman diagrams determine :i W[J]\equiv \ln Z[J].
In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two- element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph.
The technique, which culminates in Lemma 7.10 on p.218 of Imrich and Klavžar, consists of applying an algorithm of to list all 4-cycles in the graph G, forming an undirected graph having as its vertices the edges of G and having as its edges the opposite sides of a 4-cycle, and using the connected components of this derived graph to form hypercube coordinates. An equivalent algorithm is , Algorithm H, p. 69.
For an undirected graph, the degree of a vertex is equal to the number of adjacent vertices. A special case is a loop, which adds two to the degree. This can be understood by letting each connection of the loop edge count as its own adjacent vertex. In other words, a vertex with a loop "sees" itself as an adjacent vertex from both ends of the edge thus adding two, not one, to the degree.
In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s can reach a vertex t (and t is reachable from s) if there exists a sequence of adjacent vertices (i.e. a path) which starts with s and ends with t. In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph.
Minimal Bottleneck Spanning Tree In an undirected graph and a function , let be the set of all spanning trees Ti. Let B(Ti) be the maximum weight edge for any spanning tree Ti. We define subset of minimum bottleneck spanning trees S′ such that for every and we have for all i and k. The graph on the right is an example of MBST, the red edges in the graph form a MBST of .
One definition of an oriented graph is that it is a directed graph in which at most one of and may be edges of the graph. That is, it is a directed graph that can be formed as an orientation of an undirected (simple) graph. Some authors use "oriented graph" to mean the same as "directed graph". Some authors use "oriented graph" to mean any orientation of a given undirected graph or multigraph.
The seven graphs in the Petersen family. No matter how these graphs are embedded into three-dimensional space, some two cycles will have nonzero linking number. In two dimensions, only the planar graphs may be embedded into the Euclidean plane without crossings, but in three dimensions, any undirected graph may be embedded into space without crossings. However, a spatial analogue of the planar graphs is provided by the graphs with linkless embeddings and knotless embeddings.
In the symmetric TSP, the distance between two cities is the same in each opposite direction, forming an undirected graph. This symmetry halves the number of possible solutions. In the asymmetric TSP, paths may not exist in both directions or the distances might be different, forming a directed graph. Traffic collisions, one-way streets, and airfares for cities with different departure and arrival fees are examples of how this symmetry could break down.
A log-linear model is graphical if, whenever the model contains all two-factor terms generated by a higher-order interaction, the model also contains the higher-order interaction. As a direct-consequence, graphical models are hierarchical. Moreover, being completely determined by its two-factor terms, a graphical model can be represented by an undirected graph, where the vertices represent the variables and the edges represent the two-factor terms included in the model.
In the mathematical field of graph theory, the bull graph is a planar undirected graph with 5 vertices and 5 edges, in the form of a triangle with two disjoint pendant edges. It has chromatic number 3, chromatic index 3, radius 2, diameter 3 and girth 3. It is also a self-complementary graph, a block graph, a split graph, an interval graph, a claw-free graph, a 1-vertex- connected graph and a 1-edge-connected graph.
The monochromatic triangle problem takes as input an n-node undirected graph G(V,E) with node set V and edge set E. The output is a Boolean value, true if the edge set E of G can be partitioned into two disjoint sets E1 and E2, such that both of the two subgraphs G1(V,E1) and G2(V,E2) are triangle-free graphs, and false otherwise. This decision problem is NP-complete.. A1.1: GT6, pg.191.
Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric (s reaches t iff t reaches s). The connected components of an undirected graph can be identified in linear time. The remainder of this article focuses on the more difficult problem of determining pairwise reachability in a directed graph (which, incidentally, need not be symmetric).
A free tree or unrooted tree is a connected undirected graph with no cycles. The vertices with one neighbor are the leaves of the tree, and the remaining vertices are the internal nodes of the tree. The degree of a vertex is its number of neighbors; in a tree with more than one node, the leaves are the vertices of degree one. An unrooted binary tree is a free tree in which all internal nodes have degree exactly three.
The conjecture was disproved by Aanderaa, who exhibited a directed graph property (the property of containing a "sink") which required only O(n) queries to test. A sink, in a directed graph, is a vertex of indegree n-1 and outdegree 0. This property can be tested with less than 3n queries . An undirected graph property which can also be tested with O(n) queries is the property of being a scorpion graph, first described in .
A demo for Union-Find when using Kruskal's algorithm to find minimum spanning tree. Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge between them would result in a cycle. The Union–Find algorithm is used in high-performance implementations of unification.
The circle-based 1.1-skeleton (heavy dark edges) and 0.9-skeleton (light dashed blue edges) of a set of 100 random points in a square. In computational geometry and geometric graph theory, a β-skeleton or beta skeleton is an undirected graph defined from a set of points in the Euclidean plane. Two points p and q are connected by an edge whenever all the angles prq are sharper than a threshold determined from the numerical parameter β.
Using min heap priority queue in Prim's algorithm to find the minimum spanning tree of a connected and undirected graph, one can achieve a good running time. This min heap priority queue uses the min heap data structure which supports operations such as insert, minimum, extract-min, decrease-key. In this implementation, the weight of the edges is used to decide the priority of the vertices. Lower the weight, higher the priority and higher the weight, lower the priority.
A graph with three vertices and three edges. A graph (sometimes called undirected graph for distinguishing from a directed graph, or simple graph for distinguishing from a multigraph)See, for instance, Iyanaga and Kawada, 69 J, p. 234 or Biggs, p. 4. is a pair , where is a set whose elements are called vertices (singular: vertex), and is a set of two-sets (sets with two distinct elements) of vertices, whose elements are called edges (sometimes links or lines).
An Apollonian network The Goldner–Harary graph, a non-Hamiltonian Apollonian network In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar chordal graphs, the uniquely 4-colorable planar graphs, and the graphs of stacked polytopes. They are named after Apollonius of Perga, who studied a related circle-packing construction.
An undirected graph is a mathematical object consisting of a set of vertices and a set of edges that link pairs of vertices. The two vertices associated with each edge are called its endpoints. The graph is finite when its vertices and edges form finite sets, and infinite otherwise. A graph coloring associates each vertex with a color drawn from a set of colors, in such a way that every edge has two different colors at its endpoints.
In graph theory, a friendly-index set is a finite set of integers associated with a given undirected graph and generated by a type of graph labeling called a friendly labeling. A friendly labeling of an -vertex undirected graph is defined to be an assignment of the values 0 and 1 to the vertices of with the property that the number of vertices labeled 0 is as close as possible to the number of vertices labeled 1: they should either be equal (for graphs with an even number of vertices) or differ by one (for graphs with an odd number of vertices). Given a friendly labeling of the vertices of , one may also label the edges: a given edge is labeled with a 0 if its endpoints and have equal labels, and it is labeled with a 1 if its endpoints have different labels. The friendly index of the labeling is the absolute value of the difference between the number of edges labeled 0 and the number of edges labeled 1.
In an undirected graph, a widest path may be found as the path between the two vertices in the maximum spanning tree of the graph, and a minimax path may be found as the path between the two vertices in the minimum spanning tree. In any graph, directed or undirected, there is a straightforward algorithm for finding a widest path once the weight of its minimum-weight edge is known: simply delete all smaller edges and search for any path among the remaining edges using breadth first search or depth first search. Based on this test, there also exists a linear time algorithm for finding a widest path in an undirected graph, that does not use the maximum spanning tree. The main idea of the algorithm is to apply the linear-time path-finding algorithm to the median edge weight in the graph, and then either to delete all smaller edges or contract all larger edges according to whether a path does or does not exist, and recurse in the resulting smaller graph.
If points are in general position, the degree is at most 5. #The NNG (treated as an undirected graph with multiple nearest neighbors allowed) of a set of points in the plane or any higher dimension is a subgraph of the Delaunay triangulation, the Gabriel graph, and the Semi-Yao graph. If the points are in general position or if the single nearest neighbor condition is imposed, the NNG is a forest, a subgraph of the Euclidean minimum spanning tree.
Graph partitioning methods are an effective tools for image segmentation since they model the impact of pixel neighborhoods on a given cluster of pixels or pixel, under the assumption of homogeneity in images. In these methods, the image is modeled as a weighted, undirected graph. Usually a pixel or a group of pixels are associated with nodes and edge weights define the (dis)similarity between the neighborhood pixels. The graph (image) is then partitioned according to a criterion designed to model "good" clusters.
Using a naïve array implementation on a 32-bit computer, an adjacency list for an undirected graph requires about bytes of space, where is the number of edges of the graph. Noting that an undirected simple graph can have at most edges, allowing loops, we can let denote the density of the graph. Then, when , that is the adjacency list representation occupies more space than the adjacency matrix representation when . Thus a graph must be sparse enough to justify an adjacency list representation.
An Eulerian trail,Some people reserve the terms path and cycle to mean non-self- intersecting path and cycle. A (potentially) self-intersecting path is known as a trail or an open walk; and a (potentially) self-intersecting cycle, a circuit or a closed walk. This ambiguity can be avoided by using the terms Eulerian trail and Eulerian circuit when self-intersection is allowed. or Euler walk in an undirected graph is a walk that uses each edge exactly once.
The Frucht graph, a 3-regular graph whose automorphism group realizes the trivial group. Frucht's theorem is a theorem in algebraic graph theory conjectured by Dénes Kőnig in 1936 and proved by Robert Frucht in 1939. It states that every finite group is the group of symmetries of a finite undirected graph. More strongly, for any finite group G there exist infinitely many non-isomorphic simple connected graphs such that the automorphism group of each of them is isomorphic to G.
In mathematics, a minimum bottleneck spanning tree (MBST) in an undirected graph is a spanning tree in which the most expensive edge is as cheap as possible. A bottleneck edge is the highest weighted edge in a spanning tree. A spanning tree is a minimum bottleneck spanning tree if the graph does not contain a spanning tree with a smaller bottleneck edge weight.Everything about Bottleneck Spanning Tree For a directed graph, a similar problem is known as Minimum Bottleneck Spanning Arborescence (MBSA).
In graph theory, a strong orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that makes it into a strongly connected graph. Strong orientations have been applied to the design of one- way road networks. According to Robbins' theorem, the graphs with strong orientations are exactly the bridgeless graphs. Eulerian orientations and well-balanced orientations provide important special cases of strong orientations; in turn, strong orientations may be generalized to totally cyclic orientations of disconnected graphs.
A tree is a connected undirected graph with no cycles. It is a spanning tree of a graph G if it spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree belongs to G). A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.
In graph theory, Schnyder's theorem is a characterization of planar graphs in terms of the order dimension of their incidence posets. It is named after Walter Schnyder, who published its proof in 1989. The incidence poset of an undirected graph with vertex set and edge set is the partially ordered set of height 2 that has as its elements. In this partial order, there is an order relation when is a vertex, is an edge, and is one of the two endpoints of .
Pósa's theorem, in graph theory, is a sufficient condition for the existence of a Hamiltonian cycle based on the degrees of the vertices in an undirected graph. It implies two other degree-based sufficient conditions, Dirac's theorem on Hamiltonian cycles and Ore's theorem. Unlike those conditions, it can be applied to graphs with a small number of low-degree vertices. It is named after Lajos Pósa, a protégé of Paul Erdős born in 1947, who discovered this theorem in 1962.
Another interesting connection concerns orientations of graphs. An orientation of an undirected graph G is any directed graph obtained by choosing one of the two possible orientations for each edge. An example of an orientation of the complete graph Kk is the transitive tournament k with vertices 1,2,…,k and arcs from i to j whenever i < j. A homomorphism between orientations of graphs G and H yields a homomorphism between the undirected graphs G and H, simply by disregarding the orientations.
It is distinct from the order → on equivalence classes of undirected graphs, but contains it as a suborder. This is because every undirected graph can be thought of as a directed graph where every arc (u,v) appears together with its inverse arc (v,u), and this does not change the definition of homomorphism. The order → for directed graphs is again a distributive lattice and a Heyting algebra, with join and meet operations defined as before. However, it is not dense.
A well-covered graph, the intersection graph of the nine diagonals of a hexagon. The three red vertices form one of its 14 equal-sized maximal independent sets, and the six blue vertices form the complementary minimal vertex cover. In graph theory, a well-covered graph is an undirected graph in which every minimal vertex cover has the same size as every other minimal vertex cover. Equivalently, these are the graphs in which every maximal independent set has the same size.
A standard example for a kernelization algorithm is the kernelization of the vertex cover problem by S. Buss.This unpublished observation is acknowledged in a paper of In this problem, the input is an undirected graph G together with a number k. The output is a set of at most k vertices that includes an endpoint of every edge in the graph, if such a set exists, or a failure exception if no such set exists. This problem is NP-hard.
In the mathematical area of graph theory, an undirected graph G is dually chordal if the hypergraph of its maximal cliques is a hypertree. The name comes from the fact that a graph is chordal if and only if the hypergraph of its maximal cliques is the dual of a hypertree. Originally, these graphs were defined by maximum neighborhood orderings and have a variety of different characterizations.; ; ; ; Unlike for chordal graphs, the property of being dually chordal is not hereditary, i.e.
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible.
Any undirected graph may be made into a DAG by choosing a total order for its vertices and directing every edge from the earlier endpoint in the order to the later endpoint. The resulting orientation of the edges is called an acyclic orientation. Different total orders may lead to the same acyclic orientation, so an -vertex graph can have fewer than acyclic orientations. The number of acyclic orientations is equal to , where is the chromatic polynomial of the given graph.. condensation of the blue directed graph.
In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space (according to a specified probability distribution) and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r. Random geometric graphs resemble real human social networks in a number of ways. For instance, they spontaneously demonstrate community structure - clusters of nodes with high modularity.
In graph theory, a branch of mathematics, a linear forest is a kind of forest formed from the disjoint union of path graphs. It is an undirected graph with no cycles in which every vertex has degree at most two. Linear forests are the same thing as claw-free forests. They are the graphs whose Colin de Verdière graph invariant is at most 1.. The linear arboricity of a graph is the minimum number of linear forests into which the graph can be partitioned.
A clique, C, in an undirected graph is a subset of the vertices, , such that every two distinct vertices are adjacent. This is equivalent to the condition that the induced subgraph of G induced by C is a complete graph. In some cases, the term clique may also refer to the subgraph directly. A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique.
A cycle double cover of the Petersen graph, corresponding to its embedding on the projective plane as a hemi-dodecahedron. In graph-theoretic mathematics, a cycle double cover is a collection of cycles in an undirected graph that together include each edge of the graph exactly twice. For instance, for any polyhedral graph, the faces of a convex polyhedron that represents the graph provide a double cover of the graph: each edge belongs to exactly two faces. It is an unsolved problem, posed by George Szekeres.
In the mathematical field of graph theory, the Goldner–Harary graph is a simple undirected graph with 11 vertices and 27 edges. It is named after A. Goldner and Frank Harary, who proved in 1975 that it was the smallest non- Hamiltonian maximal planar graph.. See also the same journal 6(2):33 (1975) and 8:104-106 (1977). Reference from listing of Harary's publications... The same graph had already been given as an example of a non-Hamiltonian simplicial polyhedron by Branko Grünbaum in 1967.
The Folkman graph, the smallest semi-symmetric graph. In the mathematical field of graph theory, a semi-symmetric graph is an undirected graph that is edge-transitive and regular, but not vertex-transitive. In other words, a graph is semi-symmetric if each vertex has the same number of incident edges, and there is a symmetry taking any of the graph's edges to any other of its edges, but there is some pair of vertices such that no symmetry maps the first into the second.
For a Hamiltonian decomposition to exist in an undirected graph, the graph must be connected and regular of even degree. A directed graph with such a decomposition must be strongly connected and all vertices must have the same in-degree and out-degree as each other, but this degree does not need to be even. The medial graph of the Herschel graph is a 4-regular planar graph with no Hamiltonian decomposition. The shaded regions correspond to the vertices of the underlying Herschel graph.
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring. Although the graph is generally credited to Petersen, it had in fact first appeared 12 years earlier, in a paper by .
A Ptolemaic graph The gem graph or 3-fan is not Ptolemaic. A block graph, a special case of a Ptolemaic graph Three operations by which any distance- hereditary graph can be constructed. For Ptolemaic graphs, the neighbors of false twins are restricted to form a clique, preventing the construction of the 4-cycle shown here. In graph theory, a Ptolemaic graph is an undirected graph whose shortest path distances obey Ptolemy's inequality, which in turn was named after the Greek astronomer and mathematician Ptolemy.
In graph theory, the (a, b)-decomposition of an undirected graph is a partition of its edges into a + 1 sets, each one of them inducing a forest, except one which induces a graph with maximum degree b. If this graph is also a forest, then we call this a F(a, b)-decomposition. A graph with arboricity a is (a, 0)-decomposable. Every (a, 0)-decomposition or (a, 1)-decomposition is a F(a, 0)-decomposition or a F(a, 1)-decomposition respectively.
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. The triangle-free graphs with the most edges for their vertices are balanced complete bipartite graphs. Many triangle-free graphs are not bipartite, for example any cycle graph Cn for odd n > 3\.
A directed graph is called weakly connected if replacing all of its directed edges with undirected edges produces a connected (undirected) graph. It is unilaterally connected or unilateral (also called semiconnected) if it contains a directed path from to or a directed path from to for every pair of vertices .Chapter 11: Digraphs: Principle of duality for digraphs: Definition It is strongly connected, or simply strong, if it contains a directed path from to and a directed path from to for every pair of vertices .
In his 1736 paper on the Seven Bridges of Königsberg, widely considered to be the birth of graph theory, Leonhard Euler proved that, for a finite undirected graph to have a closed walk that visits each edge exactly once, it is necessary and sufficient that it be connected except for isolated vertices (that is, all edges are contained in one component) and have even degree at each vertex. The corresponding characterization for the existence of a closed walk visiting each edge exactly once in a directed graph is that the graph be strongly connected and have equal numbers of incoming and outgoing edges at each vertex. In either case, the resulting walk is known as an Euler cycle or Euler tour. If a finite undirected graph has even degree at each of its vertices, regardless of whether it is connected, then it is possible to find a set of simple cycles that together cover each edge exactly once: this is Veblen's theorem.. When a connected graph does not meet the conditions of Euler's theorem, a closed walk of minimum length covering each edge at least once can nevertheless be found in polynomial time by solving the route inspection problem.
A planar graph is an undirected graph that can be embedded into the Euclidean plane without any crossings. A planar graph is called polyhedral if and only if it is 3-vertex-connected, that is, if there do not exist two vertices the removal of which would disconnect the rest of the graph. A graph is bipartite if its vertices can be colored with two different colors such that each edge has one endpoint of each color. A graph is cubic (or 3-regular) if each vertex is the endpoint of exactly three edges.
Versions of these definitions are also used for directed graphs. Like an undirected graph, a directed graph consists of vertices and edges, but each edge is directed from one of its endpoints to the other endpoint. A directed pseudoforest is a directed graph in which each vertex has at most one outgoing edge; that is, it has outdegree at most one. A directed 1-forest - most commonly called a functional graph (see below), sometimes maximal directed pseudoforest - is a directed graph in which each vertex has outdegree exactly one.
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. uses a reversed terminology, in which he called bond matroids "graphic" and cycle matroids "co-graphic", but this has not been followed by later authors. A matroid that is both graphic and co-graphic is called a planar matroid; these are exactly the graphic matroids formed from planar graphs.
The white vertex sets are maximal nonblockers In graph theory, a nonblocker is a subset of vertices in an undirected graph, all of which are adjacent to vertices outside of the subset. Equivalently, a nonblocker is the complement of a dominating set. The computational problem of finding the largest nonblocker in a graph was formulated by , who observed that it belongs to MaxSNP. Although computing a dominating set is not fixed-parameter tractable under standard assumptions, the complementary problem of finding a nonblocker of a given size is fixed-parameter tractable.
In graph theory, a branch of mathematics, a chordal completion of a given undirected graph is a chordal graph, on the same vertex set, that has as a subgraph. A minimal chordal completion is a chordal completion such that any graph formed by removing an edge would no longer be a chordal completion. A minimum chordal completion is a chordal completion with as few edges as possible. A different type of chordal completion, one that minimizes the size of the maximum clique in the resulting chordal graph, can be used to define the treewidth of .
It is undecidable whether a given first-order sentence can be realized by a finite undirected graph. writes that this undecidability result is well known, and attributes it to on the undecidability of first order satisfiability for more general classes of finite structures. There exist first-order sentences that are modeled by infinite graphs but not by any finite graph. For instance, the property of having exactly one vertex of degree one, with all other vertices having degree exactly two, can be expressed by a first order sentence.
The constraint composite graph is a node-weighted undirected graph associated with a given combinatorial optimization problem posed as a weighted constraint satisfaction problem. Developed and introduced by Satish Kumar Thittamaranahalli (T. K. Satish Kumar), the idea of the constraint composite graph is a big step towards unifying different approaches for exploiting "structure" in weighted constraint satisfaction problems.Kumar, T. K. S. (2008), "A Framework for Hybrid Tractability Results in Boolean Weighted Constraint Satisfaction Problems", Proceedings of the Fourteenth International Conference on Principles and Practice of Constraint Programming (CP).
The all-ones matrix arises in the mathematical field of combinatorics, particularly involving the application of algebraic methods to graph theory. For example, if A is the adjacency matrix of a n-vertex undirected graph G, and J is the all-ones matrix of the same dimension, then G is a regular graph if and only if AJ = JA.. As a second example, the matrix appears in some linear-algebraic proofs of Cayley's formula, which gives the number of spanning trees of a complete graph, using the matrix tree theorem.
The eight 6-vertex asymmetric graphs The Frucht graph, one of the five smallest asymmetric cubic graphs. In graph theory, a branch of mathematics, an undirected graph is called an asymmetric graph if it has no nontrivial symmetries. Formally, an automorphism of a graph is a permutation p of its vertices with the property that any two vertices u and v are adjacent if and only if p(u) and p(v) are adjacent. The identity mapping of a graph onto itself is always an automorphism, and is called the trivial automorphism of the graph.
A demo for Prim's algorithm based on Euclidean distance. In computer science, Prim's (also known as Jarník's) algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.
Branch decomposition of a grid graph, showing an e-separation. The separation, the decomposition, and the graph all have width three. In graph theory, a branch-decomposition of an undirected graph G is a hierarchical clustering of the edges of G, represented by an unrooted binary tree T with the edges of G as its leaves. Removing any edge from T partitions the edges of G into two subgraphs, and the width of the decomposition is the maximum number of shared vertices of any pair of subgraphs formed in this way.
In graph theory, an arborescence is a directed graph in which, for a vertex u called the root and any other vertex v, there is exactly one directed path from u to v. An arborescence is thus the directed-graph form of a rooted tree, understood here as an undirected graph. Equivalently, an arborescence is a directed, rooted tree in which all edges point away from the root; a number of other equivalent characterizations exist. Every arborescence is a directed acyclic graph (DAG), but not every DAG is an arborescence.
While the parameter k in the examples above is chosen as the size of the desired solution, this is not necessary. It is also possible to choose a structural complexity measure of the input as the parameter value, leading to so-called structural parameterizations. This approach is fruitful for instances whose solution size is large, but for which some other complexity measure is bounded. For example, the feedback vertex number of an undirected graph G is defined as the minimum cardinality of a set of vertices whose removal makes G acyclic.
Frequently trees are assumed to have only one root. Note that trees in set theory are often defined to grow downward making the root the greatest node. Trees with a single root may be viewed as rooted trees in the sense of graph theory in one of two ways: either as a tree (graph theory) or as a trivially perfect graph. In the first case, the graph is the undirected Hasse Diagram of the partially ordered set, and in the second case, the graph is simply the underlying (undirected) graph of the partially ordered set.
An oriented graph is a finite directed graph obtained from a simple undirected graph by assigning an orientation to each edge. Equivalently, it is a directed graph that has no self-loops, no parallel edges, and no two-edge cycles. The first neighborhood of a vertex v (also called its open neighborhood) consists of all vertices at distance one from v, and the second neighborhood of v consists of all vertices at distance two from v. These two neighborhoods form disjoint sets, neither of which contains v itself.
By Menger's theorem, for any two vertices and in a connected graph , the numbers and can be determined efficiently using the max-flow min-cut algorithm. The connectivity and edge-connectivity of can then be computed as the minimum values of and , respectively. In computational complexity theory, SL is the class of problems log-space reducible to the problem of determining whether two vertices in a graph are connected, which was proved to be equal to L by Omer Reingold in 2004. Hence, undirected graph connectivity may be solved in space.
The number of vertices must be doubled because each undirected edge corresponds to two directed arcs and thus the degree of a vertex in the directed graph is twice the degree in the undirected graph. :Rahman-Kaykobad (2005). A simple graph with n vertices has a Hamiltonian path if, for every non-adjacent vertex pairs the sum of their degrees and their shortest path length is greater than n. The above theorem can only recognize the existence of a Hamiltonian path in a graph and not a Hamiltonian Cycle.
Many of these generalized notions of cliques can also be found by constructing an undirected graph whose edges represent related pairs of actors from the social network, and then applying an algorithm for the clique problem to this graph. Since the work of Harary and Ross, many others have devised algorithms for various versions of the clique problem. In the 1970s, researchers began studying these algorithms from the point of view of worst-case analysis. See, for instance, , an early work on the worst-case complexity of the maximum clique problem.
An example of a Markov random field. Each edge represents dependency. In this example: A depends on B and D. B depends on A and D. D depends on A, B, and E. E depends on D and C. C depends on E. In the domain of physics and probability, a Markov random field (often abbreviated as MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to be a Markov random field if it satisfies Markov properties.
A 1-forest (a maximal pseudoforest), formed by three 1-trees In graph theory, a pseudoforest is an undirected graphThe kind of undirected graph considered here is often called a multigraph or pseudograph, to distinguish it from a simple graph. in which every connected component has at most one cycle. That is, it is a system of vertices and edges connecting pairs of vertices, such that no two cycles of consecutive edges share any vertex with each other, nor can any two cycles be connected to each other by a path of consecutive edges. A pseudotree is a connected pseudoforest.
Illuminating the skeleton of a convex polyhedron from a light source close to one of its faces causes its shadows to form a planar Schlegel diagram. An undirected graph is a system of vertices and edges, each edge connecting two of the vertices. From any polyhedron one can form a graph, by letting the vertices of the graph correspond to the vertices of the polyhedron and by connecting any two graph vertices by an edge whenever the corresponding two polyhedron vertices are the endpoints of an edge of the polyhedron. This graph is known as the skeleton of the polyhedron.
In graph theory, a branch of mathematics and computer science, the Chinese postman problem, postman tour or route inspection problem is to find a shortest closed path or circuit that visits every edge of a (connected) undirected graph. When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. It can be solved in polynomial time.
In the mathematics of structural rigidity, a rigidity matroid is a matroid that describes the number of degrees of freedom of an undirected graph with rigid edges of fixed lengths, embedded into Euclidean space. In a rigidity matroid for a graph with n vertices in d-dimensional space, a set of edges that defines a subgraph with k degrees of freedom has matroid rank dn − k. A set of edges is independent if and only if, for every edge in the set, removing the edge would increase the number of degrees of freedom of the remaining subgraph....
A GraphML file consists of an XML file containing a `graph` element, within which is an unordered sequence of `node` and `edge` elements. Each `node` element should have a distinct `id` attribute, and each `edge` element has `source` and `target` attributes that identify the endpoints of an edge by having the same value as the `id` attributes of those endpoints. Here is what a simple undirected graph with two nodes and one edge between them looks like: Additional features of the GraphML language allow its users to specify whether edges are directed or undirected, and to associate additional data with vertices or edges.
In graph theory, the cycle rank of a directed graph is a digraph connectivity measure proposed first by Eggan and Büchi . Intuitively, this concept measures how close a digraph is to a directed acyclic graph (DAG), in the sense that a DAG has cycle rank zero, while a complete digraph of order n with a self-loop at each vertex has cycle rank n. The cycle rank of a directed graph is closely related to the tree-depth of an undirected graph and to the star height of a regular language. It has also found use in sparse matrix computations (see ) and logic .
In the mathematical field of graph theory, the Robertson–Wegner graph is a 5-regular undirected graph with 30 vertices and 75 edges named after Neil Robertson and G. Wegner.Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 238, 1976.Wong, P. K. "A note on a paper of G. Wegner", Journal of Combinatorial Theory, Series B, 22:3, June 1977, pgs 302-303, doi:10.1016/0095-8956(77)90081-8 It is one of the four (5,5)-cage graphs, the others being the Foster cage, the Meringer graph, and the Wong graph.
A 2-degenerate graph: each vertex has at most two neighbors to its left, so the rightmost vertex of any subgraph has degree at most two. Its 2-core, the subgraph remaining after repeatedly deleting vertices of degree less than two, is shaded. In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.
In graph theory, a moral graph is used to find the equivalent undirected form of a directed acyclic graph. It is a key step of the junction tree algorithm, used in belief propagation on graphical models. The moralized counterpart of a directed acyclic graph is formed by adding edges between all pairs of non- adjacent nodes that have a common child, and then making all edges in the graph undirected. Equivalently, a moral graph of a directed acyclic graph is an undirected graph in which each node of the original is now connected to its Markov blanket.
The square of a graph In graph theory, a branch of mathematics, the kth power Gk of an undirected graph G is another graph that has the same set of vertices, but in which two vertices are adjacent when their distance in G is at most k. Powers of graphs are referred to using terminology similar to that of exponentiation of numbers: G2 is called the square of G, G3 is called the cube of G, etc.. Graph powers should be distinguished from the products of a graph with itself, which (unlike powers) generally have many more vertices than the original graph.
Every 4-regular undirected graph has an even number of Hamiltonian decompositions. More strongly, for every two edges e and f of a 4-regular graph, the number of Hamiltonian decompositions in which e and f belong to the same cycle is even. If a 2k-regular graph has a Hamiltonian decomposition, it has at least a triple factorial number of decompositions, :(3k-2)\cdot(3k-5)\cdots 7\cdot 4 \cdot 1. For instance, 4-regular graphs that have a Hamiltonian decomposition have at least four of them; 6-regular graphs that have a Hamiltonian decomposition have at least 28, etc.
The main idea of the proof is to observe that the Cayley graph of G, with the addition of colors and orientations on its edges to distinguish the generators of G from each other, has the desired automorphism group. Therefore, if each of these edges is replaced by an appropriate subgraph, such that each replacement subgraph is itself asymmetric and two replacements are isomorphic if and only if they replace edges of the same color, then the undirected graph created by performing these replacements will also have G as its symmetry group., discussion following Theorem 4.1.
The Levi graphs of projective configurations lead to many important symmetric graphs and cages. The visibility graph of a closed polygon connects each pair of vertices by an edge whenever the line segment connecting the vertices lies entirely in the polygon. It is not known how to test efficiently whether an undirected graph can be represented as a visibility graph. A partial cube is a graph for which the vertices can be associated with the vertices of a hypercube, in such a way that distance in the graph equals Hamming distance between the corresponding hypercube vertices.
An undirected graph colored based on the betweenness centrality of each vertex from least (red) to greatest (blue). In graph theory, betweenness centrality is a measure of centrality in a graph based on shortest paths. For every pair of vertices in a connected graph, there exists at least one shortest path between the vertices such that either the number of edges that the path passes through (for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness centrality for each vertex is the number of these shortest paths that pass through the vertex.
It was invented by David Karger and first published in 1993. The idea of the algorithm is based on the concept of contraction of an edge (u, v) in an undirected graph G = (V, E). Informally speaking, the contraction of an edge merges the nodes u and v into one, reducing the total number of nodes of the graph by one. All other edges connecting either u or v are "reattached" to the merged node, effectively producing a multigraph. Karger's basic algorithm iteratively contracts randomly chosen edges until only two nodes remain; those nodes represent a cut in the original graph.
The relative neighborhood graph of 100 random points in a unit square. In computational geometry, the relative neighborhood graph (RNG) is an undirected graph defined on a set of points in the Euclidean plane by connecting two points p and q by an edge whenever there does not exist a third point r that is closer to both p and q than they are to each other. This graph was proposed by Godfried Toussaint in 1980 as a way of defining a structure from a set of points that would match human perceptions of the shape of the set...
The Petersen graph The Petersen graph is an undirected graph with ten vertices and fifteen edges, commonly drawn as a pentagram within a pentagon, with corresponding vertices attached to each other. It has many unusual mathematical properties, and has frequently been used as a counterexample to conjectures in graph theory. The book uses these properties as an excuse to cover several advanced topics in graph theory where this graph plays an important role. It is heavily illustrated, and includes both open problems on the topics it discusses and detailed references to the literature on these problems.
In graph theory, a Pfaffian orientation of an undirected graph G is an orientation (an assignment of a direction to each edge of the graph) in which every even central cycle is oddly oriented. In this definition, a cycle C is even if it contains an even number of edges. C is central if the subgraph of G formed by removing all the vertices of C has a perfect matching; central cycles are also sometimes called alternating circuits. And C is oddly oriented if each of the two orientations of C is consistent with an odd number of edges in the orientation.
The Towers of Hanoi puzzle involves moving disks of different sizes between three pegs, maintaining the property that no disk is ever placed on top of a smaller disk. The states of an n-disk puzzle, and the allowable moves from one state to another, form an undirected graph, the Hanoi graph, that can be represented geometrically as the intersection graph of the set of triangles remaining after the nth step in the construction of the Sierpinski triangle. Thus, in the limit as n goes to infinity, this sequence of graphs can be interpreted as a discrete analogue of the Sierpinski triangle..
Gaussian prime numbers whose minimax path length is 2 or more. A variant of the minimax path problem has also been considered for sets of points in the Euclidean plane. As in the undirected graph problem, this Euclidean minimax path problem can be solved efficiently by finding a Euclidean minimum spanning tree: every path in the tree is a minimax path. However, the problem becomes more complicated when a path is desired that not only minimizes the hop length but also, among paths with the same hop length, minimizes or approximately minimizes the total length of the path.
If a classification task is to separate pictures of cats and dogs then a model of this kind will only be able to decide whether a picture is of a cat or a dog. This is decided according to the most similar example from the training data (see supervised learning). A generative model on the other hand will be able to produce a new picture of a either class. Typical discriminative models include logistic regression (LR), support vector machines (SVM), conditional random fields (CRFs) (specified over an undirected graph), decision trees, neural networks, and many others.
In this graph, triangle 1-2-5 is convex, but path 2-3-4 is not, because it does not include one of the two shortest paths from 2 to 4. In metric graph theory, a convex subgraph of an undirected graph G is a subgraph that includes every shortest path in G between two of its vertices. Thus, it is analogous to the definition of a convex set in geometry, a set that contains the line segment between every pair of its points. Convex subgraphs play an important role in the theory of partial cubes and median graphs.
In graph theory, a haven is a certain type of function on sets of vertices in an undirected graph. If a haven exists, it can be used by an evader to win a pursuit-evasion game on the graph, by consulting the function at each step of the game to determine a safe set of vertices to move into. Havens were first introduced by as a tool for characterizing the treewidth of graphs. Their other applications include proving the existence of small separators on minor- closed families of graphs, and characterizing the ends and clique minors of infinite graphs...
In computational geometry, a number of algorithms are known for computing the convex hull for a finite set of points and for other geometric objects. Computing the convex hull means constructing an unambiguous, efficient representation of the required convex shape. Output representations that have been considered for convex hulls of point sets include a list of linear inequalities describing the facets of the hull, an undirected graph of facets and their adjacencies, or the full face lattice of the hull. In two dimensions, it may suffice more simply to list the points that are vertices, in their cyclic order around the hull.
A nearest neighbor graph of 100 points in the Euclidean plane. The nearest neighbor graph (NNG) for a set of n objects P in a metric space (e.g., for a set of points in the plane with Euclidean distance) is a directed graph with P being its vertex set and with a directed edge from p to q whenever q is a nearest neighbor of p (i.e., the distance from p to q is no larger than from p to any other object from P). In many discussions the directions of the edges are ignored and the NNG is defined as an ordinary (undirected) graph.
The Rado graph was first constructed by in two ways, with vertices either the hereditarily finite sets or the natural numbers. (Strictly speaking Ackermann described a directed graph, and the Rado graph is the corresponding undirected graph given by forgetting the directions on the edges.) constructed the Rado graph as the random graph on a countable number of points. They proved that it has infinitely many automorphisms, and their argument also shows that it is unique though they did not mention this explicitly. rediscovered the Rado graph as a universal graph, and gave an explicit construction of it with vertex set the natural numbers.
In a complete undirected graph G = (V, E), if we sort the edges in nondecreasing order of the distances: d(e1) ≤ d(e2) ≤ … ≤ d(em) and let Gi = (V, Ei), where Ei = {e1, e2, …, ei}. The k-center problem is equivalent to finding the smallest index i such that Gi has a dominating set of size at most k. Although Dominating Set is NP-complete, the k-center problem remains NP- hard. This is clear, since the optimality of a given feasible solution for the k-center problem can be determined through the Dominating Set reduction only if we know in first place the size of the optimal solution (i.e.
In computational complexity theory, SL (Symmetric Logspace or Sym-L) is the complexity class of problems log-space reducible to USTCON (undirected s-t connectivity), which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.
In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph. (It is not to be confused with a universally quantified vertex in the logic of graphs.) A graph that contains a universal vertex may be called a cone. In this context, the universal vertex may also be called the apex of the cone.. However, this terminology conflicts with the terminology of apex graphs, in which an apex is a vertex whose removal leaves a planar subgraph.
A directed graph (blue and black) and its condensation (yellow). The strongly connected components (subsets of blue vertices within each yellow vertex) form the blocks of a partition giving rise to the quotient. The condensation of a directed graph is the quotient graph where the strongly connected components form the blocks of the partition. This construction can be used to derive a directed acyclic graph from any directed graph.. The result of one or more edge contractions in an undirected graph G is a quotient of G, in which the blocks are the connected components of the subgraph of G formed by the contracted edges.
Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals, the Steiner tree problem in graphs requires a tree of minimum weight that contains all terminals (but may include additional vertices). Further well-known variants are the Euclidean Steiner tree problem and the rectilinear minimum Steiner tree problem. The Steiner tree problem in graphs can be seen as a generalization of two other famous combinatorial optimization problems: the (non-negative) shortest path problem and the minimum spanning tree problem. If a Steiner tree problem in graphs contains exactly two terminals, it reduces to finding the shortest path.
The classic sequential algorithm for computing biconnected components in a connected undirected graph is due to John Hopcroft and Robert Tarjan (1973). It runs in linear time, and is based on depth-first search. This algorithm is also outlined as Problem 22-2 of Introduction to Algorithms (both 2nd and 3rd editions). The idea is to run a depth-first search while maintaining the following information: # the depth of each vertex in the depth-first-search tree (once it gets visited), and # for each vertex v, the lowest depth of neighbors of all descendants of v (including v itself) in the depth-first-search tree, called the lowpoint.
In graph theory, the tree-depth of a connected undirected graph G is a numerical invariant of G, the minimum height of a Trémaux tree for a supergraph of G. This invariant and its close relatives have gone under many different names in the literature, including vertex ranking number, ordered chromatic number, and minimum elimination tree height; it is also closely related to the cycle rank of directed graphs and the star height of regular languages.; ; , p. 116. Intuitively, where the treewidth graph width parameter measures how far a graph is from being a tree, this parameter measures how far a graph is from being a star.
Kawasaki's theorem, applied to each of the vertices of an arbitrary crease pattern, determines whether the crease pattern is locally flat-foldable, meaning that the part of the crease pattern near the vertex can be flat-folded. However, there exist crease patterns that are locally flat-foldable but that have no global flat folding that works for the whole crease pattern at once. conjectured that global flat-foldability could be tested by checking Kawasaki's theorem at each vertex of a crease pattern, and then also testing bipartiteness of an undirected graph associated with the crease pattern. However, this conjecture was disproven by , who showed that Hull's conditions are not sufficient.
A 9-vertex graph in which every edge belongs to a unique triangle and every non-edge is the diagonal of a unique quadrilateral. The 99-graph problem asks for a 99-vertex graph with the same property. In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle.
An optimal greedy coloring (left) and Grundy coloring (right) of a crown graph. The numbers indicate the order in which the greedy algorithm colors the vertices. In graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939.. As cited by .
A perfect graph is an undirected graph with the property that, in every one of its induced subgraphs, the size of the largest clique equals the minimum number of colors in a coloring of the subgraph. Perfect graphs include many important graphs classes including bipartite graphs, chordal graphs, and comparability graphs. The complement of a graph has an edge between two vertices if and only if the original graph does not have an edge between the same two vertices. Thus, a clique in the original graph becomes an independent set in the complement and a coloring of the original graph becomes a clique cover of the complement.
In topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three- dimensional analogue of the planar graphs.. Complementarily, an intrinsically linked graph is a graph that does not have a linkless embedding. Flat embeddings are automatically linkless, but not vice versa.
The existence of a cycle in directed and undirected graphs can be determined by whether depth-first search (DFS) finds an edge that points to an ancestor of the current vertex (it contains a back edge).All the back edges which DFS skips over are part of cycles. In an undirected graph, the edge to the parent of a node should not be counted as a back edge, but finding any other already visited vertex will indicate a back edge. In the case of undirected graphs, only O(n) time is required to find a cycle in an n-vertex graph, since at most n − 1 edges can be tree edges.
In graph theory, Vizing's theorem states that every simple undirected graph may be edge colored using a number of colors that is at most one larger than the maximum degree of the graph. At least colors are always necessary, so the undirected graphs may be partitioned into two classes: "class one" graphs for which colors suffice, and "class two" graphs for which colors are necessary. A more generalized version of Vizing's theorem states that every undirected multigraph without loops can be colored with at most colors, where is the multiplicity of the multigraph. The theorem is named for Vadim G. Vizing who published it in 1964.
Let be a family of sets (allowing sets in to be repeated); then the intersection graph of is an undirected graph that has a vertex for each member of and an edge between each two members that have a nonempty intersection. Every graph can be represented as an intersection graph in this way.. The intersection number of the graph is the smallest number such that there exists a representation of this type for which the union of has elements. The problem of finding an intersection representation of a graph with a given number of elements is known as the intersection graph basis problem., Problem GT59.
A cut of an undirected graph is a partition of the vertices into two nonempty subsets, the sides of the cut. The subset of edges that have one endpoint in each side is called a cut-set. When a cut-set forms a complete bipartite graph, its cut is called a split. Thus, a split can be described as a partition of the vertices of the graph into two subsets and , such that every neighbor of in is adjacent to every neighbor of in .. A cut or split is trivial when one of its two sides has only one vertex in it; every trivial cut is a split.
A bramble of order four in a 3×3 grid graph, consisting of six mutually touching connected subgraphs In graph theory, a bramble for an undirected graph G is a family of connected subgraphs of G that all touch each other: for every pair of disjoint subgraphs, there must exist an edge in G that has one endpoint in each subgraph. The order of a bramble is the smallest size of a hitting set, a set of vertices of G that has a nonempty intersection with each of the subgraphs. Brambles may be used to characterize the treewidth of G.. In this reference, brambles are called "screens" and their order is called "thickness".
Partition of the graph of a rhombic dodecahedron into two linear forests, showing that its linear arboricity is two In graph theory, a branch of mathematics, the linear arboricity of an undirected graph is the smallest number of linear forests its edges can be partitioned into. Here, a linear forest is an acyclic graph with maximum degree two; that is, it is a disjoint union of path graphs. Linear arboricity is a variant of arboricity, the minimum number of forests into which the edges can be partitioned. The linear arboricity of any graph of maximum degree \Delta is known to be at least \lceil\Delta/2\rceil and is conjectured to be at most \lceil(\Delta+1)/2\rceil.
An indifference graph, formed from a set of points on the real line by connecting pairs of points whose distance is at most one In graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other.. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals (intervals none of which contains any other one). Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs.
A framework is an undirected graph, embedded into d-dimensional Euclidean space by providing a d-tuple of Cartesian coordinates for each vertex of the graph. From a framework with n vertices and m edges, one can define a matrix with m rows and nd columns, an expanded version of the incidence matrix of the graph called the rigidity matrix. In this matrix, the entry in row e and column (v,i) is zero if v is not an endpoint of edge e. If, on the other hand, edge e has vertices u and v as endpoints, then the value of the entry is the difference between the ith coordinates of v and u.
In any vector space, and more generally in any matroid, a minimum weight basis may be found by a greedy algorithm that considers potential basis elements one at a time, in sorted order by their weights, and that includes an element in the basis when it is linearly independent of the previously chosen basis elements. Testing for linear independence can be done by Gaussian elimination. However, an undirected graph may have an exponentially large set of simple cycles, so it would be computationally infeasible to generate and test all such cycles. provided the first polynomial time algorithm for finding a minimum weight basis, in graphs for which every edge weight is positive.
In 2005 Omer Reingold introduced an algorithm that solves the undirected st-connectivity problem, the problem of testing whether there is a path between two given vertices in an undirected graph, using only logarithmic space. The algorithm relies heavily on the zigzag product. Roughly speaking, in order to solve the undirected s-t connectivity problem in logarithmic space, the input graph is transformed, using a combination of powering and the zigzag product, into a constant-degree regular graph with a logarithmic diameter. The power product increases the expansion (hence reduces the diameter) at the price of increasing the degree, and the zigzag product is used to reduce the degree while preserving the expansion.
The usual formulation of the cycle double cover conjecture asks whether every bridgeless undirected graph has a collection of cycles such that each edge of the graph is contained in exactly two of the cycles. The requirement that the graph be bridgeless is an obvious necessary condition for such a set of cycles to exist, because a bridge cannot belong to any cycle. A collection of cycles satisfying the condition of the cycle double cover conjecture is called a cycle double cover. Some graphs such as cycle graphs and bridgeless cactus graphs can only be covered by using the same cycle more than once, so this sort of duplication is allowed in a cycle double cover.
Steiner trees have been extensively studied in the context of weighted graphs. The prototype is, arguably, the Steiner tree problem in graphs. Let G = (V, E) be an undirected graph with non-negative edge weights c and let S ⊆ V be a subset of vertices, called terminals. A Steiner tree is a tree in G that spans S. There are two versions of the problem: in the optimization problem associated with Steiner trees, the task is to find a minimum-weight Steiner tree; in the decision problem the edge weights are integers and the task is to determine whether a Steiner tree exists whose total weight does not exceed a predefined natural number k.
An undirected graph G is Hamiltonian if it contains a cycle that touches each of its vertices exactly once. It is 2-vertex-connected if it does not have an articulation vertex, a vertex whose deletion would leave the remaining graph disconnected. Not every 2-vertex- connected graph is Hamiltonian; counterexamples include the Petersen graph and the complete bipartite graph K2,3. The square of G is a graph G2 that has the same vertex set as G, and in which two vertices are adjacent if and only if they have distance at most two in G. Fleischner's theorem states that the square of a finite 2-vertex-connected graph with at least three vertices must always be Hamiltonian.
In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges (one in each direction). Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete graphs, with their vertices placed on the points of a regular polygon, appeared already in the 13th century, in the work of Ramon Llull.. Such a drawing is sometimes referred to as a mystic rose..
In graph theory, a branch of mathematics, the Moser spindle (also called the Mosers' spindle or Moser graph) is an undirected graph, named after mathematicians Leo Moser and his brother William,. with seven vertices and eleven edges. It is a unit distance graph requiring four colors in any graph coloring, and its existence can be used to prove that the chromatic number of the plane is at least four.. The Moser spindle has also been called the Hajós graph after György Hajós, as it can be viewed as an instance of the Hajós construction.. However, the name "Hajós graph" has also been applied to a different graph, in the form of a triangle inscribed within a hexagon..
A spanning tree (blue heavy edges) of a grid graph In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G, with a minimum possible number of edges. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (but see spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).
In this graph, the red triangle formed by vertices 1, 2, and 5 is a peripheral cycle: the four remaining edges form a single bridge. However, pentagon 1–2–3–4–5 is not peripheral, as the two remaining edges form two separate bridges. In graph theory, a peripheral cycle (or peripheral circuit) in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles (or, as they were initially called, peripheral polygons, because Tutte called cycles "polygons") were first studied by , and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs..
The Bondy–Chvátal theorem states that a graph is Hamiltonian if and only if its closure is Hamiltonian; since the complete graph is Hamiltonian, Ore's theorem is an immediate consequence. found a version of Ore's theorem that applies to directed graphs. Suppose a digraph G has the property that, for every two vertices u and v, either there is an edge from u to v or the outdegree of u plus the indegree of v equals or exceeds the number of vertices in G. Then, according to Woodall's theorem, G contains a directed Hamiltonian cycle. Ore's theorem may be obtained from Woodall by replacing every edge in a given undirected graph by a pair of directed edges.
Another equivalent formulation of the union-closed sets conjecture uses graph theory. In an undirected graph, an independent set is a set of vertices no two of which are adjacent to each other; an independent set is maximal if it is not a subset of a larger independent set. In any graph, the "heavy" vertices that appear in more than half of the maximal independent sets must themselves form an independent set, so there always exists at least one non- heavy vertex, a vertex that appears in at most half of the maximal independent sets. The graph formulation of the union-closed sets conjecture states that every finite non-empty graph contains two adjacent non-heavy vertices.
An unrooted binary tree is a connected undirected graph with no cycles in which each non-leaf node has exactly three neighbors. A branch-decomposition may be represented by an unrooted binary tree T, together with a bijection between the leaves of T and the edges of the given graph G = (V,E). If e is any edge of the tree T, then removing e from T partitions it into two subtrees T1 and T2. This partition of T into subtrees induces a partition of the edges associated with the leaves of T into two subgraphs G1 and G2 of G. This partition of G into two subgraphs is called an e-separation.
Pavol Hell and Jaroslav Nešetřil proved that, for undirected graphs, no other case is tractable: : Hell–Nešetřil theorem (1990): The H-coloring problem is in P when H is bipartite and NP-complete otherwise. This is also known as the dichotomy theorem for (undirected) graph homomorphisms, since it divides H-coloring problems into NP-complete or P problems, with no intermediate cases. For directed graphs, the situation is more complicated and in fact equivalent to the much more general question of characterizing the complexity of constraint satisfaction problems. It turns out that H-coloring problems for directed graphs are just as general and as diverse as CSPs with any other kinds of constraints.
An outerplanar graph is an undirected graph that can be drawn in the plane without crossings in such a way that all of the vertices belong to the unbounded face of the drawing. That is, no vertex is totally surrounded by edges. Alternatively, a graph G is outerplanar if the graph formed from G by adding a new vertex, with edges connecting it to all the other vertices, is a planar graph.. A maximal outerplanar graph is an outerplanar graph that cannot have any additional edges added to it while preserving outerplanarity. Every maximal outerplanar graph with n vertices has exactly 2n − 3 edges, and every bounded face of a maximal outerplanar graph is a triangle.
We usually consider algorithms in L, the class of problems requiring O(log n) additional space, to be in-place. This class is more in line with the practical definition, as it allows numbers of size n as pointers or indices. This expanded definition still excludes quicksort, however, because of its recursive calls. Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for each node).
In computational complexity theory, a planted clique or hidden clique in an undirected graph is a clique formed from another graph by selecting a subset of vertices and adding edges between each pair of vertices in the subset. The planted clique problem is the algorithmic problem of distinguishing random graphs from graphs that have a planted clique. This is a variation of the clique problem; it may be solved in quasi-polynomial time but is conjectured not to be solvable in polynomial time for intermediate values of the clique size. The conjecture that no polynomial time solution exists is called the planted clique conjecture; it has been used as a computational hardness assumption.
A penny graph with 11 vertices and 19 edges that requires four colors in any graph coloring A four-coloring of the graph above. In geometric graph theory, a penny graph is a contact graph of unit circles. That is, it is an undirected graph whose vertices can be represented by unit circles, with no two of these circles crossing each other, and with two adjacent vertices if and only if they are represented by tangent circles.. See especially p. 176. More simply, they are the graphs formed by arranging pennies in a non-overlapping way on a flat surface, making a vertex for each penny, and making an edge for each two pennies that touch.
In the weighted 2-satisfiability problem (W2SAT), the input is an n-variable 2SAT instance and an integer , and the problem is to decide whether there exists a satisfying assignment in which at most of the variables are true. The W2SAT problem includes as a special case the vertex cover problem, of finding a set of vertices that together touch all the edges of a given undirected graph. For any given instance of the vertex cover problem, one can construct an equivalent W2SAT problem with a variable for each vertex of a graph. Each edge of the graph may be represented by a 2SAT clause that can be satisfied only by including either or among the true variables of the solution.
In constructing matchings in undirected graphs, it is important to find alternating paths, paths of vertices that start and end at unmatched vertices, in which the edges at odd positions in the path are not part of a given partial matching and in which the edges at even positions in the path are part of the matching. By removing the matched edges of such a path from a matching, and adding the unmatched edges, one can increase the size of the matching. Similarly, cycles that alternate between matched and unmatched edges are of importance in weighted matching problems. As showed, an alternating path or cycle in an undirected graph may be modeled as a regular path or cycle in a skew-symmetric directed graph.
A graph with n nodes can contain at most n-1 bridges, since adding additional edges must create a cycle. The graphs with exactly n-1 bridges are exactly the trees, and the graphs in which every edge is a bridge are exactly the forests. In every undirected graph, there is an equivalence relation on the vertices according to which two vertices are related to each other whenever there are two edge-disjoint paths connecting them. (Every vertex is related to itself via two length-zero paths, which are identical but nevertheless edge-disjoint.) The equivalence classes of this relation are called 2-edge-connected components, and the bridges of the graph are exactly the edges whose endpoints belong to different components.
First steps toward determining the computational complexity were undertaken in proving that the problem is in larger complexity classes, which contain the class P. By using normal surfaces to describe the Seifert surfaces of a given knot, showed that the unknotting problem is in the complexity class NP. claimed the weaker result that unknotting is in AM ∩ co- AM; however, later they retracted this claim.Mentioned as a "personal communication" in reference [15] of . In 2011, Greg Kuperberg proved that (assuming the generalized Riemann hypothesis) the unknotting problem is in co- NP, and in 2016, Marc Lackenby provided an unconditional proof of co-NP membership. The unknotting problem has the same computational complexity as testing whether an embedding of an undirected graph in Euclidean space is linkless.
The symmetric difference of two cycles is an Eulerian subgraph In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles. A fundamental cycle basis may be formed from any spanning tree or spanning forest of the given graph, by selecting the cycles formed by the combination of a path in the tree and a single edge outside the tree. Alternatively, if the edges of the graph have positive weights, the minimum weight cycle basis may be constructed in polynomial time.
In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non- adjacent vertices. It is also called the Seidel matrix or--its original name-- the (−1,1,0)-adjacency matrix. It can be interpreted as the result of subtracting the adjacency matrix of G from the adjacency matrix of the complement of G. The multiset of eigenvalues of this matrix is called the Seidel spectrum. The Seidel matrix was introduced by J. H. van Lint and J. J. Seidel in 1966 and extensively exploited by Seidel and coauthors.
Mac Lane's planarity criterion, named after Saunders Mac Lane, characterizes planar graphs in terms of their cycle spaces and cycle bases. It states that a finite undirected graph is planar if and only if the graph has a cycle basis in which each edge of the graph participates in at most two basis cycles. In a planar graph, a cycle basis formed by the set of bounded faces of an embedding necessarily has this property: each edge participates only in the basis cycles for the two faces it separates. Conversely, if a cycle basis has at most two cycles per edge, then its cycles can be used as the set of bounded faces of a planar embedding of its graph..
In graph theory, a cop-win graph is an undirected graph on which the pursuer (cop) can always win a pursuit-evasion game in which he chases a robber, the players alternately moving along an edge of a graph or staying put, until the cop lands on the robber's vertex.. Finite cop-win graphs are also called dismantlable graphs or constructible graphs, because they can be dismantled by repeatedly removing a dominated vertex (one whose closed neighborhood is a subset of another vertex's neighborhood) or constructed by repeatedly adding such a vertex. The cop-win graphs can be recognized in polynomial time by a greedy algorithm that constructs a dismantling order. They include the chordal graphs, and the graphs that contain a universal vertex.
The median of three vertices in a median graph In graph theory, a division of mathematics, a median graph is an undirected graph in which every three vertices a, b, and c have a unique median: a vertex m(a,b,c) that belongs to shortest paths between each pair of a, b, and c. The concept of median graphs has long been studied, for instance by or (more explicitly) by , but the first paper to call them "median graphs" appears to be . As Chung, Graham, and Saks write, "median graphs arise naturally in the study of ordered sets and discrete distributive lattices, and have an extensive literature".. In phylogenetics, the Buneman graph representing all maximum parsimony evolutionary trees is a median graph.; ; .
In graph theory, a Trémaux tree of an undirected graph G is a spanning tree of G, rooted at one of its vertices, with the property that every two adjacent vertices in G are related to each other as an ancestor and descendant in the tree. All depth-first search trees and all Hamiltonian paths are Trémaux trees. Trémaux trees are named after Charles Pierre Trémaux, a 19th-century French author who used a form of depth-first search as a strategy for solving mazes... They have also been called normal spanning trees, especially in the context of infinite graphs. In finite graphs, although depth-first search itself is inherently sequential, Trémaux trees can be constructed by a randomized parallel algorithm in the complexity class RNC.
Every finite connected undirected graph has at least one Trémaux tree. One can construct such a tree by performing a depth-first search and connecting each vertex (other than the starting vertex of the search) to the earlier vertex from which it was discovered. The tree constructed in this way is known as a depth-first search tree. If uv is an arbitrary edge in the graph, and u is the earlier of the two vertices to be reached by the search, then v must belong to the subtree descending from u in the depth-first search tree, because the search will necessarily discover v while it is exploring this subtree, either from one of the other vertices in the subtree or, failing that, from u directly.
The proof goes as follows: First, the polygon is triangulated (without adding extra vertices). The vertices of the resulting triangulation graph may be 3-colored.To prove 3-colorability of polygon triangulations, we observe that the weak dual graph to the triangulation (the undirected graph having one vertex per triangle and one edge per pair of adjacent triangles) is a tree, since any cycle in the dual graph would form the boundary of a hole in the polygon, contrary to the assumption that it has no holes. Whenever there is more than one triangle, the dual graph (like any tree) must have a vertex with only one neighbor, corresponding to a triangle that is adjacent to other triangles along only one of its sides.
In graph theory, the treewidth of an undirected graph is a number associated with the graph. Treewidth may be defined in several equivalent ways: the size of the largest vertex set in a tree decomposition of the graph, the size of the largest clique in a chordal completion of the graph, the maximum order of a haven describing a strategy for a pursuit-evasion game on the graph, or the maximum order of a bramble, a collection of connected subgraphs that all touch each other. Treewidth is commonly used as a parameter in the parameterized complexity analysis of graph algorithms. The graphs with treewidth at most k are also called partial k-trees; many other well-studied graph families also have bounded treewidth.
In computational complexity theory, PPA is a complexity class, standing for "Polynomial Parity Argument" (on a graph). Introduced by Christos Papadimitriou in 1994 (page 528), PPA is a subclass of TFNP. It is a class of search problems that can be shown to be total by an application of the handshaking lemma: any undirected graph that has a vertex whose degree is an odd number must have some other vertex whose degree is an odd number. This observation means that if we are given a graph and an odd-degree vertex, and we are asked to find some other odd-degree vertex, then we are searching for something that is guaranteed to exist (so, we have a total search problem).
An example showing how the FKT algorithm finds a Pfaffian orientation. # Compute a planar embedding of G. # Compute a spanning tree T1 of the input graph G. # Give an arbitrary orientation to each edge in G that is also in T1. # Use the planar embedding to create an (undirected) graph T2 with the same vertex set as the dual graph of G. # Create an edge in T2 between two vertices if their corresponding faces in G share an edge in G that is not in T1. (Note that T2 is a tree.) # For each leaf v in T2 (that is not also the root): ## Let e be the lone edge of G in the face corresponding to v that does not yet have an orientation.
For the purposes of defining the crossing number, a drawing of an undirected graph is a mapping from the vertices of the graph to disjoint points in the plane, and from the edges of the graph to curves connecting their two endpoints. No vertex should be mapped onto an edge that it is not an endpoint of, and whenever two edges have curves that intersect (other than at a shared endpoint) their intersections should form a finite set of proper crossings, where the two curves are transverse. A crossing is counted separately for each of these crossing points, for each pair of edges that cross. The crossing number of a graph is then the minimum, over all such drawings, of the number of crossings in a drawing.
The existence of well-balanced orientations, together with Menger's theorem, immediately implies Robbins' theorem: by Menger's theorem, a 2-edge-connected graph has at least two edge- disjoint paths between every pair of vertices, from which it follows that any well-balanced orientation must be strongly connected. More generally this result implies that every -edge-connected undirected graph can be oriented to form a -edge-connected directed graph. A totally cyclic orientation of a graph is an orientation in which each edge belongs to a directed cycle. For connected graphs, this is the same thing as a strong orientation, but totally cyclic orientations may also be defined for disconnected graphs, and are the orientations in which each connected component of becomes strongly connected.
In graph theory, a branch of mathematics, a crown graph on 2n vertices is an undirected graph with two sets of vertices {u1, u2, ..., un} and {v1, v2, ..., vn} and with an edge from ui to vj whenever i ≠ j. The crown graph can be viewed as a complete bipartite graph from which the edges of a perfect matching have been removed, as the bipartite double cover of a complete graph, as the tensor product Kn × K2, as the complement of the Cartesian direct product of Kn and K2, or as a bipartite Kneser graph Hn,1 representing the 1-item and (n − 1)-item subsets of an n-item set, with an edge between two subsets whenever one is contained in the other.
Let G = ((VG, EG), c) be an undirected graph with c(u,v) being the capacity of the edge (u,v) respectively. : Denote the minimum capacity of an s-t cut by λst for each s, t ∈ VG. : Let T = (VT,ET) be a tree with VT = VG, denote the set of edges in an s-t path by Pst for each s,t ∈ VT. Then T is said to be a Gomory–Hu tree of G if : λst = mine∈Pst c(Se, Te) for all s, t ∈ VG, where # Se and Te are the two connected components of T∖{e} in the sense that (Se, Te) form a s-t cut in G, and # c(Se, Te) is the capacity of the cut in G.
The matroid partitioning problem is a problem arising in the mathematical study of matroids and in the design and analysis of algorithms, in which the goal is to partition the elements of a matroid into as few independent sets as possible. An example is the problem of computing the arboricity of an undirected graph, the minimum number of forests needed to cover all of its edges. Matroid partitioning may be solved in polynomial time, given an independence oracle for the matroid. It may be generalized to show that a matroid sum is itself a matroid, to provide an algorithm for computing ranks and independent sets in matroid sums, and to compute the largest common independent set in the intersection of two given matroids..
In graph theory, a tolerance graph is an undirected graph in which every vertex can be represented by a closed interval and a real number called its tolerance, in such a way that two vertices are adjacent in the graph whenever their intervals overlap in a length that is at least the minimum of their two tolerances. This class of graphs was introduced in 1982 by Martin Charles Golumbic and Clyde Monma, who used them to model scheduling problems in which the tasks to be modeled can share resources for limited amounts of time. Every interval graph is a tolerance graph. The complement graph of every tolerance graph is a perfectly orderable graph, from which it follows that the tolerance graphs themselves are perfect graphs.
The pathwidth of an arbitrary undirected graph G may be defined as the smallest number w such that there exists an interval graph H containing G as a subgraph, with the largest clique in H having w + 1 vertices. For trees (viewed as undirected graphs by forgetting their orientation and root) the pathwidth differs from the Strahler number, but is closely related to it: in a tree with pathwidth w and Strahler number s, these two numbers are related by the inequalities, using a definition of the "dimension" of a tree that is one less than the Strahler number. :w ≤ s ≤ 2w + 2. The ability to handle graphs with cycles and not just trees gives pathwidth extra versatility compared to the Strahler number.
In network theory, the Wiener connector is a means of maximizing efficiency in connecting specified "query vertices" in a network. Given a connected, undirected graph and a set of query vertices in a graph, the minimum Wiener connector is an induced subgraph that connects the query vertices and minimizes the sum of shortest path distances among all pairs of vertices in the subgraph. In combinatorial optimization, the minimum Wiener connector problem is the problem of finding the minimum Wiener connector. It can be thought of as a version of the classic Steiner tree problem (one of Karp's 21 NP-complete problems), where instead of minimizing the size of the tree, the objective is to minimize the distances in the subgraph.
Both checking whether a 2-coloring is valid and checking whether a given odd-length sequence of vertices is a cycle may be performed more simply than testing bipartiteness. Analogously, it is possible to test whether a given directed graph is acyclic by a certifying algorithm that outputs either a topological order or a directed cycle. It is possible to test whether an undirected graph is a chordal graph by a certifying algorithm that outputs either an elimination ordering (an ordering of all vertices such that, for every vertex, the neighbors that are later in the ordering form a clique) or a chordless cycle. And it is possible to test whether a graph is planar by a certifying algorithm that outputs either a planar embedding or a Kuratowski subgraph.
A median graph is an undirected graph in which for every three vertices x, y, and z there is a unique vertex \langle x,y,z \rangle that belongs to shortest paths between any two of x, y, and z. If this is the case, then the operation \langle x,y,z \rangle defines a median algebra having the vertices of the graph as its elements. Conversely, in any median algebra, one may define an interval [x, z] to be the set of elements y such that \langle x,y,z \rangle = y. One may define a graph from a median algebra by creating a vertex for each algebra element and an edge for each pair (x, z) such that the interval [x, z] contains no other elements.
Mantel's theorem states that any n-vertex undirected graph with at least n2/4 edges, and no multiple edges or self-loops, either contains a triangle or it is the complete bipartite graph Kn/2,n/2. This theorem can be strengthened: any undirected Hamiltonian graph with at least n2/4 edges is either pancyclic or Kn/2,n/2. There exist n-vertex Hamiltonian directed graphs with n(n + 1)/2 − 3 edges that are not pancyclic, but every Hamiltonian directed graph with at least n(n + 1)/2 − 1 edges is pancyclic. Additionally, every n-vertex strongly connected directed graph in which each vertex has degree at least n (counting incoming and outgoing edges together) is either pancyclic or it is a complete bipartite directed graph..
The face cycles of these embeddings generate a proper subset of all Eulerian subgraphs. The homology group H_2(S,\Z_2) of the given surface S characterizes the Eulerian subgraphs that cannot be represented as the boundary of a set of faces. Mac Lane's planarity criterion uses this idea to characterize the planar graphs in terms of the cycle bases: a finite undirected graph is planar if and only if it has a sparse cycle basis or 2-basis, a basis in which each edge of the graph participates in at most two basis cycles. In a planar graph, the cycle basis formed by the set of bounded faces is necessarily sparse, and conversely, a sparse cycle basis of any graph necessarily forms the set of bounded faces of a planar embedding of its graph..
The identity element of an abelian sandpile model A chip-firing game, in its most basic form, is a process on an undirected graph, with each vertex of the graph containing some number of chips. At each step, a vertex with more chips than incident edges is selected, and one of its chips is sent to each of its neighbors. If a single vertex is designated as a "black hole", meaning that chips sent to it vanish, then the result of the process is the same no matter what order the other vertices are selected. The stable states of this process are the ones in which no vertex has enough chips to be selected; two stable states can be added by combining their chips and then stabilizing the result.
The Hammersley–Clifford theorem is a result in probability theory, mathematical statistics and statistical mechanics that gives necessary and sufficient conditions under which a strictly positive probability distribution (of events in a probability space) can be represented as events generated by a Markov network (also known as a Markov random field). It is the fundamental theorem of random fields. It states that a probability distribution that has a strictly positive mass or density satisfies one of the Markov properties with respect to an undirected graph G if and only if it is a Gibbs random field, that is, its density can be factorized over the cliques (or complete subgraphs) of the graph. The relationship between Markov and Gibbs random fields was initiated by Roland Dobrushin and Frank Spitzer in the context of statistical mechanics.
Then, a Hamiltonian path exists if and only if there is a set of n − 1 elements in the intersection of three matroids on the edge set of the graph: two partition matroids ensuring that the in-degree and out-degree of the selected edge set are both at most one, and the graphic matroid of the undirected graph formed by forgetting the edge orientations in G, ensuring that the selected edge set has no cycles . Another computational problem on matroids, the matroid parity problem, was formulated by as a common generalization of matroid intersection and non-bipartite graph matching. However, although it can be solved in polynomial time for linear matroids, it is NP-hard for other matroids, and requires exponential time in the matroid oracle model .
The input to the algorithm is an undirected graph with vertex set , edge set , and (optionally) numerical weights on the edges in . The goal of the algorithm is to partition into two disjoint subsets and of equal (or nearly equal) size, in a way that minimizes the sum of the weights of the subset of edges that cross from to . If the graph is unweighted, then instead the goal is to minimize the number of crossing edges; this is equivalent to assigning weight one to each edge. The algorithm maintains and improves a partition, in each pass using a greedy algorithm to pair up vertices of with vertices of , so that moving the paired vertices from one side of the partition to the other will improve the partition.
The independence complex of a graph is a mathematical object describing the independent sets of the graph. Formally, the independence complex of an undirected graph G, denoted by I(G), is an abstract simplicial complex (that is, a family of finite sets closed under the operation of taking subsets), formed by the sets of vertices in the independent sets of G. Any subset of an independent set is itself an independent set, so I(G) indeed meets the requirement of an abstract simplicial complex that every subset of a set in the family should also be in the family. Every independent set in a graph is a clique in its complement graph, and vice versa. Therefore, the independence complex of a graph equals the clique complex of its complement graph, and vice versa.
The shortest-path graph with t=2 In mathematics and geographic information science, a shortest-path graph is an undirected graph defined from a set of points in the Euclidean plane. The shortest-path graph is proposed with the idea of inferring edges between a point set such that the shortest path taken over the inferred edges will roughly align with the shortest path taken over the imprecise region represented by the point set. The edge set of the shortest-path graph varies based on a single parameter t ≥ 1. When the weight of an edge is defined as its Euclidean length raised to the power of the parameter t ≥ 1, the edge is present in the shortest-path graph if and only if it is the least weight path between its endpoints.
A graph that requires four colors in any coloring, and four connected subgraphs that, when contracted, form a complete graph, illustrating the case k = 4 of Hadwiger's conjecture In graph theory, the Hadwiger conjecture states that if G is loopless and has no K_t minor then its chromatic number satisfies \chi(G) < t. It is known to be true for 1 \leq t \leq 6. The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field. In more detail, if all proper colorings of an undirected graph G use k or more colors, then one can find k disjoint connected subgraphs of G such that each subgraph is connected by an edge to each other subgraph.
An Apollonian network, the graph of a stacked polyhedron The undirected graph formed by the vertices and edges of a stacked polytope in d dimensions is a (d + 1)-tree. More precisely, the graphs of stacked polytopes are exactly the (d + 1)-trees in which every d-vertex clique (complete subgraph) is contained in at most two (d + 1)-vertex cliques.. See in particular p. 420. For instance, the graphs of three-dimensional stacked polyhedra are exactly the Apollonian networks, the graphs formed from a triangle by repeatedly subdividing a triangular face of the graph into three smaller triangles. One reason for the significance of stacked polytopes is that, among all d-dimensional simplicial polytopes with a given number of vertices, the stacked polytopes have the fewest possible higher-dimensional faces.
Mirsky was inspired by Dilworth's theorem, stating that, for every partially ordered set, the maximum size of an antichain equals the minimum number of chains in a partition of the set into chains. For sets of order dimension two, the two theorems coincide (a chain in the majorization ordering of points in general position in the plane is an antichain in the set of points formed by a 90° rotation from the original set, and vice versa) but for more general partial orders the two theorems differ, and (as Mirsky observes) Dilworth's theorem is more difficult to prove. Mirsky's theorem and Dilworth's theorem are also related to each other through the theory of perfect graphs. An undirected graph is perfect if, in every induced subgraph, the chromatic number equals the size of the largest clique.
In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G). The name line graph comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate, the representative graph, and the ϑ-obrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71.
Any undirected graph G may be represented as an intersection graph: for each vertex vi of G, form a set Si consisting of the edges incident to vi; then two such sets have a nonempty intersection if and only if the corresponding vertices share an edge. provide a construction that is more efficient (which is to say requires a smaller total number of elements in all of the sets Si combined) in which the total number of set elements is at most n2/4 where n is the number of vertices in the graph. They credit the observation that all graphs are intersection graphs to , but say to see also . The intersection number of a graph is the minimum total number of elements in any intersection representation of the graph.
Channel routing example Channel routing is the problem of routing of a set of nets N which have fixed terminals on two opposite sides of a rectangle ("channel"). In this context, the horizontal constraint graph is the undirected graph with vertex set N and two nets are connected by an edge if and only if horizontal segments of the routing must overlap. In the given example, only nets 5 and 6 do not have a horizontal constraint between them. The vertical constraint graph is the directed graph with vertex set N and two nets are connected by an edge if and only if there are two pins from different nets on the same vertical line and the edge is directed from the net with pin on the upper edge of the channel.
An Eulerian graph G (a connected graph in which every vertex has even degree) necessarily has an Euler tour, a closed walk passing through each edge of G exactly once. This tour corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian. Line graphs may have other Hamiltonian cycles that do not correspond to Euler tours, and in particular the line graph L(G) of every Hamiltonian graph G is itself Hamiltonian, regardless of whether the graph G is Eulerian.. A tournament (with more than two vertices) is Hamiltonian if and only if it is strongly connected. The number of different Hamiltonian cycles in a complete undirected graph on n vertices is and in a complete directed graph on n vertices is .
A graph G and the corresponding simplex graph κ(G). The blue-colored node in κ(G) corresponds to the zero-vertex clique in G (the empty set), and the magenta node corresponds to the 3-vertex clique. In graph theory, a branch of mathematics, the simplex graph κ(G) of an undirected graph G is itself a graph, with one node for each clique (a set of mutually adjacent vertices) in G. Two nodes of κ(G) are linked by an edge whenever the corresponding two cliques differ in the presence or absence of a single vertex. The empty set is included as one of the cliques of G that are used to form the clique graph, as is every set of one vertex and every set of two adjacent vertices.
If G is an undirected graph, and X is a set of vertices, then an X-flap is a nonempty connected component of the subgraph of G formed by deleting X. A haven of order k in G is a function β that assigns an X-flap β(X) to every set X of fewer than k vertices. This function must also satisfy additional constraints which are given differently by different authors. The number k is called the order of the haven.. In the original definition of Seymour and Thomas,. a haven is required to satisfy the property that every two flaps β(X) and β(Y) must touch each other: either they share a common vertex or there exists an edge with one endpoint in each flap.
Thus, the 1-forests are exactly the pseudoforests in which every component is a 1-tree. :The spanning pseudoforests of an undirected graph G are the pseudoforest subgraphs of G that have all the vertices of G. Such a pseudoforest need not have any edges, since for example the subgraph that has all the vertices of G and no edges is a pseudoforest (whose components are trees consisting of a single vertex). :The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A maximal pseudoforest of G is always a spanning pseudoforest, but not conversely. If G has no connected components that are trees, then its maximal pseudoforests are 1-forests, but if G does have a tree component, its maximal pseudoforests are not 1-forests.
The original application of chordal completion described in Computers and Intractability involves Gaussian elimination for sparse matrices. During the process of Gaussian elimination, one wishes to minimize fill-in, coefficients of the matrix that were initially zero but later become nonzero, because the need to calculate the values of these coefficients slows down the algorithm. The pattern of nonzeros in a sparse symmetric matrix can be described by an undirected graph (having the matrix as its adjacency matrix); the pattern of nonzeros in the filled-in matrix is always a chordal graph, any minimal chordal completion corresponds to a fill-in pattern in this way. If a chordal completion of a graph is given, a sequence of steps in which to perform Gaussian elimination to achieve this fill-in pattern can be found by computing an elimination ordering of the resulting chordal graph.
In theoretical computer science, the Aanderaa–Karp–Rosenberg conjecture (also known as the Aanderaa–Rosenberg conjecture or the evasiveness conjecture) is a group of related conjectures about the number of questions of the form "Is there an edge between vertex u and vertex v?" that have to be answered to determine whether or not an undirected graph has a particular property such as planarity or bipartiteness. They are named after Stål Aanderaa, Richard M. Karp, and Arnold L. Rosenberg. According to the conjecture, for a wide class of properties, no algorithm can guarantee that it will be able to skip any questions: any algorithm for determining whether the graph has the property, no matter how clever, might need to examine every pair of vertices before it can give its answer. A property satisfying this conjecture is called evasive.
The family of all cut sets of an undirected graph is known as the cut space of the graph. It forms a vector space over the two- element finite field of arithmetic modulo two, with the symmetric difference of two cut sets as the vector addition operation, and is the orthogonal complement of the cycle space... If the edges of the graph are given positive weights, the minimum weight basis of the cut space can be described by a tree on the same vertex set as the graph, called the Gomory–Hu tree.. Each edge of this tree is associated with a bond in the original graph, and the minimum cut between two nodes s and t is the minimum weight bond among the ones associated with the path from s to t in the tree.
Insertions succeed in expected constant time, even considering the possibility of having to rebuild the table, as long as the number of keys is kept below half of the capacity of the hash table, i.e., the load factor is below 50%. One method of proving this uses the theory of random graphs: one may form an undirected graph called the "cuckoo graph" that has a vertex for each hash table location, and an edge for each hashed value, with the endpoints of the edge being the two possible locations of the value. Then, the greedy insertion algorithm for adding a set of values to a cuckoo hash table succeeds if and only if the cuckoo graph for this set of values is a pseudoforest, a graph with at most one cycle in each of its connected components.
The degeneracy of an undirected graph is the smallest number such that every non-empty subgraph of has at least one vertex of degree at most . If one repeatedly removes a minimum-degree vertex from until no vertices are left, then the largest of the degrees of the vertices at the time of their removal will be exactly , and this method of repeated removal can be used to compute the degeneracy of any graph in linear time. Greedy coloring the vertices in the reverse of this removal ordering will automatically produce a coloring with at most colors, and for some graphs (such as complete graphs and odd-length cycle graphs) this number of colors is optimal. For colorings with colors, it may not be possible to move from one coloring to another by changing the color of one vertex at a time.
The incidence poset of any undirected graph G has the vertices and edges of G as its elements; in this poset, x ≤ y if either x = y or x is a vertex, y is an edge, and x is an endpoint of y. Certain kinds of graphs may be characterized by the order dimensions of their incidence posets: a graph is a path graph if and only if the order dimension of its incidence poset is at most two, and according to Schnyder's theorem it is a planar graph if and only if the order dimension of its incidence poset is at most three . For a complete graph on n vertices, the order dimension of the incidence poset is \Theta(\log\log n) . It follows that all simple n-vertex graphs have incidence posets with order dimension O(\log\log n).
A hydrogen-depleted molecular graph or hydrogen-suppressed molecular graph is the molecular graph with hydrogen vertices deleted. Molecular graphs can distinguish between structural isomers, compounds which have the same molecular formula but non-isomorphic graphs - such as isopentane and neopentane. On the other hand, the molecular graph normally does not contain any information about the three-dimensional arrangement of the bonds, and therefore cannot distinguish between geometric isomers (such as cis and trans 2-butene) or other stereoisomers (such as D- and L-glyceraldehyde). In some important cases (topological index calculation etc.) the following classical definition is sufficient: molecular graph is connected undirected graph one-to-one corresponded to structural formula of chemical compound so that vertices of the graph correspond to atoms of the molecule and edges of the graph correspond to chemical bonds between these atoms.
In graph theory, the bipartite double cover of an undirected graph G is a bipartite covering graph of G, with twice as many vertices as G. It can be constructed as the tensor product of graphs, G × K2. It is also called the Kronecker double cover, canonical double cover or simply the bipartite double of G. It should not be confused with a cycle double cover of a graph, a family of cycles that includes each edge twice. In a connected graph that is not bipartite, only one double cover is bipartite, but when the graph is bipartite or disconnected there may be more than one. For this reason, Tomaž Pisanski has argued that the name "bipartite double cover" should be deprecated in favor of the "canonical double cover" or "Kronecker cover" names, which are unambiguous.
200px In computational geometry, the Yao graph, named after Andrew Yao, is a kind of geometric spanner, a weighted undirected graph connecting a set of geometric points with the property that, for every pair of points in the graph, their shortest path has a length that is within a constant factor of their Euclidean distance. The basic idea underlying the two-dimensional Yao graph is to surround each of the given points by equally spaced rays, partitioning the plane into sectors with equal angles, and to connect each point to its nearest neighbor in each of these sectors. Associated with a Yao graph is an integer parameter which is the number of rays and sectors described above; larger values of produce closer approximations to the Euclidean distance. The stretch factor is at most 1/(\cos \theta - \sin \theta), where \theta is the angle of the sectors.
This graph has circuit rank because it can be made into a tree by removing two edges, for instance the edges 1–2 and 2–3, but removing any one edge leaves a cycle in the graph. In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph (the size of a cycle basis). Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank is easily computed using the formula :r = m - n + c, where is the number of edges in the given graph, is the number of vertices, and is the number of connected components. .
Any partial order may be represented (usually in more than one way) by a directed acyclic graph in which there is a path from x to y whenever x and y are elements of the partial order with . The graphs that represent series-parallel partial orders in this way have been called vertex series parallel graphs, and their transitive reductions (the graphs of the covering relations of the partial order) are called minimal vertex series parallel graphs. Directed trees and (two- terminal) series parallel graphs are examples of minimal vertex series parallel graphs; therefore, series parallel partial orders may be used to represent reachability relations in directed trees and series parallel graphs. The comparability graph of a partial order is the undirected graph with a vertex for each element and an undirected edge for each pair of distinct elements x, y with either or .
Several combinatorial structures listed by may be shown to be even in number by relating them to the odd vertices in an appropriate "exchange graph". For instance, as C. A. B. Smith proved, in any cubic graph G there must be an even number of Hamiltonian cycles through any fixed edge uv; used a proof based on the handshaking lemma to extend this result to graphs G in which all vertices have odd degree. Thomason defines an exchange graph H, the vertices of which are in one-to-one correspondence with the Hamiltonian paths beginning at u and continuing through v. Two such paths p1 and p2 are connected by an edge in H if one may obtain p2 by adding a new edge to the end of p1 and removing another edge from the middle of p1; this is a symmetric relation, so H is an undirected graph.
An abstract polytope is a partially ordered set P (whose elements are called faces) with properties modeling those of the inclusions of faces of convex polytopes. The rank (or dimension) of an abstract polytope is determined by the length of the maximal ordered chains of its faces, and an abstract polytope of rank n is called an abstract n-polytope. For abstract polytopes of rank 2, this means that the elements of the partially ordered set are sets of vertices with either zero vertices (the empty set), one vertex, two vertices (an edge), or the entire vertex set, ordered by inclusion of sets, that each vertex belongs to exactly two edges, and that the undirected graph formed by the vertices and edges is connected. An abstract polytope is called an abstract apeirotope if it has infinitely many elements, and an abstract 2-apeirotope is called an abstract apeirogon.
If G is an undirected graph, then the degeneracy of G is the minimum number p such that every subgraph of G contains a vertex of degree p or smaller. A graph with degeneracy p is called p-degenerate. Equivalently, a p-degenerate graph is a graph that can be reduced to the empty graph by repeatedly removing a vertex of degree p or smaller. It follows from Ramsey's theorem that for any graph G there exists a least integer r(G), the Ramsey number of G, such that any complete graph on at least r(G) vertices whose edges are coloured red or blue contains a monochromatic copy of G. For instance, the Ramsey number of a triangle is 6: no matter how the edges of a complete graph on six vertices are colored red or blue, there is always either a red triangle or a blue triangle.
Havens model a certain class of strategies for an evader in a pursuit-evasion game in which fewer than k pursuers attempt to capture a single evader, the pursuers and evader are both restricted to the vertices of a given undirected graph, and the positions of the pursuers and evader are known to both players. At each move of the game, a new pursuer may be added to an arbitrary vertex of the graph (as long as fewer than k pursuers are placed on the graph at any time) or one of the already- added pursuers may be removed from the graph. However, before a new pursuer is added, the evader is first informed of its new location and may move along the edges of the graph to any unoccupied vertex. While moving, the evader may not pass through any vertex that is already occupied by any of the pursuers.
In mathematics, a random minimum spanning tree may be formed by assigning random weights from some distribution to the edges of an undirected graph, and then constructing the minimum spanning tree of the graph. When the given graph is a complete graph on vertices, and the edge weights have a continuous distribution function whose derivative at zero is , then the expected weight of its random minimum spanning trees is bounded by a constant, rather than growing as a function of . More precisely, this constant tends in the limit (as goes to infinity) to , where is the Riemann zeta function and is Apéry's constant. For instance, for edge weights that are uniformly distributed on the unit interval, the derivative is , and the limit is just .. In contrast to uniformly random spanning trees of complete graphs, for which the typical diameter is proportional to the square root of the number of vertices, random minimum spanning trees of complete graphs have typical diameter proportional to the cube root.
A map graph (top), the cocktail party graph K2,2,2,2, defined by corner adjacency of eight regions in the plane (lower left), or as the half-square of a planar bipartite graph (lower right, the graph of the rhombic dodecahedron) In graph theory, a branch of mathematics, a map graph is an undirected graph formed as the intersection graph of finitely many simply connected and internally disjoint regions of the Euclidean plane. The map graphs include the planar graphs, but are more general. Any number of regions can meet at a common corner (as in the Four Corners of the United States, where four states meet), and when they do the map graph will contain a clique connecting the corresponding vertices, unlike planar graphs in which the largest cliques have only four vertices.. Another example of a map graph is the king's graph, a map graph of the squares of the chessboard connecting pairs of squares between which the chess king can move.
A skew-symmetric graph may equivalently be defined as the double covering graph of a polar graph (introduced by , , called a switch graph by ), which is an undirected graph in which the edges incident to each vertex are partitioned into two subsets. Each vertex of the polar graph corresponds to two vertices of the skew-symmetric graph, and each edge of the polar graph corresponds to two edges of the skew-symmetric graph. This equivalence is the one used by to model problems of matching in terms of skew-symmetric graphs; in that application, the two subsets of edges at each vertex are the unmatched edges and the matched edges. Zelinka (following F. Zitek) and Cook visualize the vertices of a polar graph as points where multiple tracks of a train track come together: if a train enters a switch via a track that comes in from one direction, it must exit via a track in the other direction.
The Rado graph may also be formed by a construction resembling that for Paley graphs, taking as the vertices of a graph all the prime numbers that are congruent to 1 modulo 4, and connecting two vertices by an edge whenever one of the two numbers is a quadratic residue modulo the other. By quadratic reciprocity and the restriction of the vertices to primes congruent to 1 mod 4, this is a symmetric relation, so it defines an undirected graph, which turns out to be isomorphic to the Rado graph. Another construction of the Rado graph shows that it is an infinite circulant graph, with the integers as its vertices and with an edge between each two integers whose distance (the absolute value of their difference) belongs to a particular set S. To construct the Rado graph in this way, S may be chosen randomly, or by choosing the indicator function of S to be the concatenation of all finite binary sequences., Section 1.2.
An undirected graph may be viewed as a simplicial complex with its vertices as zero-dimensional simplices and the edges as one-dimensional simplices.. The chain complex of this topological space consists of its edge space and vertex space (the Boolean algebra of sets of vertices), connected by a boundary operator that maps any spanning subgraph (an element of the edge space) to its set of odd-degree vertices (an element of the vertex space). The homology group :H_1(G,\Z_2) consists of the elements of the edge space that map to the zero element of the vertex space; these are exactly the Eulerian subgraphs. Its group operation is the symmetric difference operation on Eulerian subgraphs. Replacing \Z_2 in this construction by an arbitrary ring allows the definition of cycle spaces to be extended to cycle spaces with coefficients in the given ring, that form modules over the ring.. In particular, the integral cycle space is the space :H_1(G,\Z).
One can define a binary relation on the edges of an arbitrary undirected graph, according to which two edges e and f are related if and only if either e = f or the graph contains a simple cycle through both e and f. Every edge is related to itself, and an edge e is related to another edge f if and only if f is related in the same way to e. Less obviously, this is a transitive relation: if there exists a simple cycle containing edges e and f, and another simple cycle containing edges f and g, then one can combine these two cycles to find a simple cycle through e and g. Therefore, this is an equivalence relation, and it can be used to partition the edges into equivalence classes, subsets of edges with the property that two edges are related to each other if and only if they belong to the same equivalence class.
For a finite set of labeled items, every pair of weak orderings may be connected to each other by a sequence of moves that add or remove one dichotomy at a time to or from this set of dichotomies. Moreover, the undirected graph that has the weak orderings as its vertices, and these moves as its edges, forms a partial cube.. Geometrically, the total orderings of a given finite set may be represented as the vertices of a permutohedron, and the dichotomies on this same set as the facets of the permutohedron. In this geometric representation, the weak orderings on the set correspond to the faces of all different dimensions of the permutohedron (including the permutohedron itself, but not the empty set, as a face). The codimension of a face gives the number of equivalence classes in the corresponding weak ordering.. In this geometric representation the partial cube of moves on weak orderings is the graph describing the covering relation of the face lattice of the permutohedron.
Animated example of a depth-first search For the following graph: alt=An undirected graph with edges AB, BD, BF, FE, AC, CG, AE a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G. The edges traversed in this search form a Trémaux tree, a structure with important applications in graph theory. Performing the same search without remembering previously visited nodes results in visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B, D, F, E cycle and never reaching C or G. Iterative deepening is one technique to avoid this infinite loop and would reach all nodes.
In the mathematical field of graph theory, the Chvátal graph is an undirected graph with 12 vertices and 24 edges, discovered by . It is triangle-free: its girth (the length of its shortest cycle) is four. It is 4-regular: each vertex has exactly four neighbors. And its chromatic number is 4: it can be colored using four colors, but not using only three. It is, as Chvátal observes, the smallest possible 4-chromatic 4-regular triangle-free graph; the only smaller 4-chromatic triangle-free graph is the Grötzsch graph, which has 11 vertices but has maximum degree 5 and is not regular. This graph is not vertex- transitive: the automorphisms group has one orbit on vertices of size 8, and one of size 4. By Brooks’ theorem, every k-regular graph (except for odd cycles and cliques) has chromatic number at most k. It was also known since that, for every k and l there exist k-chromatic graphs with girth l.
A graph with four connected subgraphs that, when contracted, form a complete graph. It has no five-vertex complete minor by Wagner's theorem, so its Hadwiger number is exactly four. In graph theory, the Hadwiger number of an undirected graph G is the size of the largest complete graph that can be obtained by contracting edges of G. Equivalently, the Hadwiger number h(G) is the largest number k for which the complete graph Kk is a minor of G, a smaller graph obtained from G by edge contractions and vertex and edge deletions. The Hadwiger number is also known as the contraction clique number of G or the homomorphism degree of G. It is named after Hugo Hadwiger, who introduced it in 1943 in conjunction with the Hadwiger conjecture, which states that the Hadwiger number is always at least as large as the chromatic number of G. The graphs that have Hadwiger number at most four have been characterized by .
The clique complex can also be viewed as a topological space in which each clique of k vertices is represented by a simplex of dimension k − 1\. The 1-skeleton of X(G) (also known as the underlying graph of the complex) is an undirected graph with a vertex for every 1-element set in the family and an edge for every 2-element set in the family; it is isomorphic to G.. Clique complexes are also known as Whitney complexes, after Hassler Whitney. A Whitney triangulation or clean triangulation of a two-dimensional manifold is an embedding of a graph G onto the manifold in such a way that every face is a triangle and every triangle is a face. If a graph G has a Whitney triangulation, it must form a cell complex that is isomorphic to the Whitney complex of G. In this case, the complex (viewed as a topological space) is homeomorphic to the underlying manifold.
To create a skew-symmetric graph from an undirected graph G with a specified matching M, view G as a switch graph in which the edges at each vertex are partitioned into matched and unmatched edges; an alternating path in G is then a regular path in this switch graph and an alternating cycle in G is a regular cycle in the switch graph. generalized alternating path algorithms to show that the existence of a regular path between any two vertices of a skew-symmetric graph may be tested in linear time. Given additionally a non-negative length function on the edges of the graph that assigns the same length to any edge e and to σ(e), the shortest regular path connecting a given pair of nodes in a skew-symmetric graph with m edges and n vertices may be tested in time O(m log n). If the length function is allowed to have negative lengths, the existence of a negative regular cycle may be tested in polynomial time.
A bucket queue can be used to maintain the vertices of an undirected graph, prioritized by their degrees, and repeatedly find and remove the vertex of minimum degree. This greedy algorithm can be used to calculate the degeneracy of a given graph. It takes linear time, with or without the optimization that maintains a lower bound on the minimum priority, because each vertex is found in time proportional to its degree and the sum of all vertex degrees is linear in the number of edges of the graph.. In Dijkstra's algorithm for shortest paths in positively-weighted directed graphs, a bucket queue can be used to obtain a time bound of , where is the number of vertices, is the number of edges, is the diameter of the network, and is the maximum (integer) link cost.. This variant of Dijkstra's algorithm is also known as Dial's algorithm, after Robert B. Dial, who published it in 1969. In this algorithm, the priorities will only span a range of width , so the modular optimization can be used to reduce the space to .
In computer science, the Bron–Kerbosch algorithm is an enumeration algorithm for finding maximal cliques in an undirected graph. That is, it lists all subsets of vertices with the two properties that each pair of vertices in one of the listed subsets is connected by an edge, and no listed subset can have any additional vertices added to it while preserving its complete connectivity. The Bron–Kerbosch algorithm was designed by Dutch scientists Coenraad Bron and Joep Kerbosch, who published its description in 1973. Although other algorithms for solving the clique problem have running times that are, in theory, better on inputs that have few maximal independent sets, the Bron–Kerbosch algorithm and subsequent improvements to it are frequently reported as being more efficient in practice than the alternatives.. It is well-known and widely used in application areas of graph algorithms such as computational chemistry.. A contemporaneous algorithm of , although presented in different terms, can be viewed as being the same as the Bron–Kerbosch algorithm, as it generates the same recursive search tree..
Each cycle in the minimum weight cycle basis has a set of edges that are dual to the edges of one of the cuts in the Gomory–Hu tree. When cycle weights may be tied, the minimum-weight cycle basis may not be unique, but in this case it is still true that the Gomory–Hu tree of the dual graph corresponds to one of the minimum weight cycle bases of the graph.. In directed planar graphs, simple directed cycles are dual to directed cuts (partitions of the vertices into two subsets such that all edges go in one direction, from one subset to the other). Strongly oriented planar graphs (graphs whose underlying undirected graph is connected, and in which every edge belongs to a cycle) are dual to directed acyclic graphs in which no edge belongs to a cycle. To put this another way, the strong orientations of a connected planar graph (assignments of directions to the edges of the graph that result in a strongly connected graph) are dual to acyclic orientations (assignments of directions that produce a directed acyclic graph)..
In this more general context, the convex hull of a set S is the intersection of the family members that contain S, and the Radon number of a space is the smallest r such that any r points have two subsets whose convex hulls intersect. Similarly, one can define the Helly number h and the Carathéodory number c by analogy to their definitions for convex sets in Euclidean spaces, and it can be shown that these numbers satisfy the inequalities h < r ≤ ch + 1.. In an arbitrary undirected graph, one may define a convex set to be a set of vertices that includes every induced path connecting a pair of vertices in the set. With this definition, every set of ω + 1 vertices in the graph can be partitioned into two subsets whose convex hulls intersect, and ω + 1 is the minimum number for which this is possible, where ω is the clique number of the given graph.. For related results involving shortest paths instead of induced paths see and .
The paths through the intersection taken by traffic to get from an incoming lane to an outgoing lane may be represented as the edges of an undirected graph. For instance, this graph might have an edge from an incoming to an outgoing lane of traffic that both belong to the same segment of road, representing a U-turn from that segment back to that segment, only if U-turns are allowed at the junction. For a given subset of these edges, the subset represents a collection of paths that can all be traversed without interference from each other if and only if the subset does not include any pair of edges that would cross if the two edges were placed in a single page of a book embedding. Thus, a book embedding of this graph describes a partition of the paths into non-interfering subsets, and the book thickness of this graph (with its fixed embedding on the spine) gives the minimum number of distinct phases needed for a signalling schedule that includes all possible traffic paths through the junction..
Removing any two vertices (yellow) cannot disconnect a three-dimensional polyhedron: one can choose a third vertex (green), and a nontrivial linear function whose zero set (blue) passes through these three vertices, allowing connections from the chosen vertex to the minimum and maximum of the function, and from any other vertex to the minimum or maximum. In polyhedral combinatorics, a branch of mathematics, Balinski's theorem is a statement about the graph-theoretic structure of three-dimensional polyhedra and higher- dimensional polytopes. It states that, if one forms an undirected graph from the vertices and edges of a convex d-dimensional polyhedron or polytope (its skeleton), then the resulting graph is at least d-vertex-connected: the removal of any d − 1 vertices leaves a connected subgraph. For instance, for a three-dimensional polyhedron, even if two of its vertices (together with their incident edges) are removed, for any pair of vertices there will still exist a path of vertices and edges connecting the pair.. Balinski's theorem is named after mathematician Michel Balinski, who published its proof in 1961,.
As an example, the connectivity of an undirected graph can be expressed in MSO1 as the statement that, for every partition of the vertices into two nonempty subsets, there exists an edge from one subset to the other. A partition of the vertices can be described by the subset S of vertices on one side of the partition, and each such subset should either describe a trivial partition (one in which one or the other side is empty) or be crossed by an edge. That is, a graph is connected when it models the MSO1 formula :\forall S\Bigl( \forall x(x\in S) \vee \forall y\bigl(\lnot(y\in S)\bigr) \vee \exists x\exists y\bigl(x\in S\wedge \lnot(y\in S) \wedge x\sim y\bigr) \Bigr). However, connectivity cannot be expressed in first-order graph logic, nor can it be expressed in existential MSO1 (the fragment of MSO1 in which all set quantifiers are existential and occur at the beginning of the sentence) nor even existential MSO2.
A compatibility graph of partial words Two partial words are said to be compatible when they have the same length and when every position that is a non-wildcard in both of them has the same character in both. If one forms an undirected graph with a vertex for each partial word in a collection of partial words, and an edge for each compatible pair, then the cliques of this graph come from sets of partial words that all match at least one common string. This graph-theoretical interpretation of compatibility of partial words plays a key role in the proof of hardness of approximation of the clique problem, in which a collection of partial words representing successful runs of a probabilistically checkable proof verifier has a large clique if and only if there exists a valid proof of an underlying NP-complete problem. The faces (subcubes) of an n-dimensional hypercube can be described by partial words of length n over a binary alphabet, whose symbols are the Cartesian coordinates of the hypercube vertices (e.g.
Given a connected, undirected graph G, a shortest-path tree rooted at vertex v is a spanning tree T of G, such that the path distance from root v to any other vertex u in T is the shortest path distance from v to u in G. In connected graphs where shortest paths are well-defined (i.e. where there are no negative-length cycles), we may construct a shortest-path tree using the following algorithm: # Compute dist(u), the shortest-path distance from root v to vertex u in G using Dijkstra's algorithm or Bellman–Ford algorithm. # For all non-root vertices u, we can assign to u a parent vertex pu such that pu is connected to u, and that dist(pu) + edge_dist(pu,u) = dist(u). In case multiple choices for pu exist, choose pu for which there exists a shortest path from v to pu with as few edges as possible; this tie-breaking rule is needed to prevent loops when there exist zero-length cycles.
A graph that has the complete graph K4 as a 1-shallow minor. Each of the four vertex subsets indicated by the dashed rectangles induces a connected subgraph with radius one, and there exists an edge between every pair of subsets. One way of defining a minor of an undirected graph G is by specifying a subgraph H of G, and a collection of disjoint subsets Si of the vertices of G, each of which forms a connected induced subgraph Hi of H. The minor has a vertex vi for each subset Si, and an edge vivj whenever there exists an edge from Si to Sj that belongs to H. In this formulation, a d-shallow minor (alternatively called a shallow minor of depth d) is a minor that can be defined in such a way that each of the subgraphs Hi has radius at most d, meaning that it contains a central vertex ci that is within distance d of all the other vertices of Hi. Note that this distance is measured by hop count in Hi, and because of that it may be larger than the distance in G., Section 4.2 "Shallow Minors", pp. 62–65.
A gene co-expression network constructed from a microarray dataset containing gene expression profiles of 7221 genes for 18 gastric cancer patients A gene co-expression network (GCN) is an undirected graph, where each node corresponds to a gene, and a pair of nodes is connected with an edge if there is a significant co-expression relationship between them. Having gene expression profiles of a number of genes for several samples or experimental conditions, a gene co-expression network can be constructed by looking for pairs of genes which show a similar expression pattern across samples, since the transcript levels of two co-expressed genes rise and fall together across samples. Gene co-expression networks are of biological interest since co- expressed genes are controlled by the same transcriptional regulatory program, functionally related, or members of the same pathway or protein complex. The direction and type of co-expression relationships are not determined in gene co-expression networks; whereas in a gene regulatory network (GRN) a directed edge connects two genes, representing a biochemical process such as a reaction, transformation, interaction, activation or inhibition.
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex In mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph consists of a set of vertices and a set of arcs (ordered pairs of vertices). In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another. From the point of view of graph theory, vertices are treated as featureless and indivisible objects, although they may have additional structure depending on the application from which the graph arises; for instance, a semantic network is a graph in which the vertices represent concepts or classes of objects. The two vertices forming an edge are said to be the endpoints of this edge, and the edge is said to be incident to the vertices.
They weight the edges of a grid graph by a numeric estimate of how visually apparent a seam across that edge would be, and find a bottleneck shortest path for these weights. Using this path as the seam, rather than a more conventional shortest path, causes their system to find a seam that is difficult to discern at all of its points, rather than allowing it to trade off greater visibility in one part of the image for lesser visibility elsewhere. A solution to the minimax path problem between the two opposite corners of a grid graph can be used to find the weak Fréchet distance between two polygonal chains. Here, each grid graph vertex represents a pair of line segments, one from each chain, and the weight of an edge represents the Fréchet distance needed to pass from one pair of segments to another.. If all edge weights of an undirected graph are positive, then the minimax distances between pairs of points (the maximum edge weights of minimax paths) form an ultrametric; conversely every finite ultrametric space comes from minimax distances in this way.
Because each entry in the adjacency matrix requires only one bit, it can be represented in a very compact way, occupying only 2/8 bytes to represent a directed graph, or (by using a packed triangular format and only storing the lower triangular part of the matrix) approximately 2/16 bytes to represent an undirected graph. Although slightly more succinct representations are possible, this method gets close to the information- theoretic lower bound for the minimum number of bits needed to represent all -vertex graphs.. For storing graphs in text files, fewer bits per byte can be used to ensure that all bytes are text characters, for instance by using a Base64 representation.. Besides avoiding wasted space, this compactness encourages locality of reference. However, for a large sparse graph, adjacency lists require less storage space, because they do not waste any space to represent edges that are not present. An alternative form of adjacency matrix (which, however, requires a larger amount of space) replaces the numbers in each element of the matrix with pointers to edge objects (when edges are present) or null pointers (when there is no edge).
Optimal (span-5) radio coloring of a 6-cycle In graph theory, a branch of mathematics, a radio coloring of an undirected graph is a form of graph coloring in which one assigns positive integer labels to the graphs such that the labels of adjacent vertices differ by at least two, and the labels of vertices at distance two from each other differ by at least one. Radio coloring was first studied by , under a different name, -labeling.. It was called radio coloring by Frank Harary because it models the problem of channel assignment in radio broadcasting, while avoiding electromagnetic interference between radio stations that are near each other both in the graph and in their assigned channel frequencies. The span of a radio coloring is its maximum label, and the radio coloring number of a graph is the smallest possible span of a radio coloring.. See in particular Section 3, "Radio coloring". For instance, the graph consisting of two vertices with a single edge has radio coloring number 3: it has a radio coloring with one vertex labeled 1 and the other labeled 3, but it is not possible for a radio coloring of this graph to use only the labels 1 and 2.

No results under this filter, show 330 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.