Sentences Generator
And
Your saved sentences

No sentences have been saved yet

108 Sentences With "specific heat capacity"

How to use specific heat capacity in a sentence? Find typical usage patterns (collocations)/phrases/context for "specific heat capacity" and check conjugation/comparative form for "specific heat capacity". Mastering all the usages of "specific heat capacity" from sentence examples published by news publications.

The amount of energy (ΔE) you get from a hot object depends on three things: its mass (m), its change in temperature (ΔT), and its specific heat capacity (C): What the heck is specific heat capacity?
If you have a gram of water and a gram of styrofoam at the same temperature, the water will have more energy because it has a higher specific heat capacity.
So let's just start with the following data: As you can see, I don't have single values for the temperature and the specific heat capacity, because these vary as you move out from the core to the rocky crust.
When added to vanadium as an alloy, erbium lowers hardness and improves workability. An erbium-nickel alloy Er3Ni has an unusually high specific heat capacity at liquid-helium temperatures and is used in cryocoolers; a mixture of 65% Er3Co and 35% Er0.9Yb0.1Ni by volume improves the specific heat capacity even more.
This is the result of the water's mass and specific heat capacity. On average, there are 192 days above annually.
This equation mispredicts the specific heat capacity of water but few simple alternatives are available for severely nonisentropic processes such as strong shocks.
Pure ethylene glycol has a specific heat capacity about one half that of water. So, while providing freeze protection and an increased boiling point, ethylene glycol lowers the specific heat capacity of water mixtures relative to pure water. A 1:1 mix by mass has a specific heat capacity of about 3140 J/(kg·°C) (0.75 BTU/(lb·°F)), three quarters that of pure water, thus requiring increased flow rates in same- system comparisons with water. The formation of large bubbles in cooling passages of internal combustion engines will severely inhibit heat flow (flux) from the area, so that allowing nucleation (tiny bubbles) to occur is not advisable.
International standards now recommend that "specific heat capacity" always refer to capacity per unit of mass. Therefore, the word "volumetric" should always be used for this quantity.
Its specific heat capacity is , which is roughly one quarter of that for water, but heat transfer is higher over a temperature gradient due to higher thermal conductivity.
Since the bulk density of a solid chemical element is strongly related to its molar mass, there exists a noticeable inverse correlation between a solid's density and its specific heat capacity on a per-mass basis. This is due to a very approximate tendency of atoms of most elements to be about the same size, despite much wider variations in density and atomic weight. These two factors (constancy of atomic volume and constancy of mole-specific heat capacity) result in a good correlation between the volume of any given solid chemical element and its total heat capacity. Another way of stating this, is that the volume-specific heat capacity (volumetric heat capacity) of solid elements is roughly a constant.
Since the bulk density of a solid chemical element is strongly related to its molar mass (usually about 3R per mole, as noted above), there exists noticeable inverse correlation between a solid's density and its specific heat capacity on a per-mass basis. This is due to a very approximate tendency of atoms of most elements to be about the same size, despite much wider variations in density and atomic weight. These two factors (constancy of atomic volume and constancy of mole-specific heat capacity) result in a good correlation between the volume of any given solid chemical element and its total heat capacity. Another way of stating this, is that the volume-specific heat capacity (volumetric heat capacity) of solid elements is roughly a constant.
Neptunium dioxide contributes to the α-decay of 241Am, reducing its usual half-life an untested but appreciable amount. The compound has a low specific heat capacity (900 K, compared with uranium dioxide's specific heat capacity of 1400 K), an abnormality theorized to stem from its 5f electron count. Another unique trait of neptunium dioxide is its "mysterious low-temperature ordered phase". Mentioned above, it references an abnormal level of order for an actinitde dioxide complex at low temperature.
For gases it is necessary to distinguish between volumetric heat capacity at constant volume and volumetric heat capacity at constant pressure, which is always larger due to the pressure-volume work done as a gas expands during heating at constant pressure (thus absorbing heat which is converted to work). The distinctions between constant-volume and constant-pressure heat capacities are also made in various types of specific heat capacity (the latter meaning either mass-specific or mole-specific heat capacity).
Specific heat capacity at constant pressure also increases with temperature, from 4.187 kJ/kg at 25 °C to 8.138 kJ/kg at 350 °C. A significant effect on the behaviour of water at high temperatures is decreased dielectric constant (relative permittivity).
Sulfur hexafluoride is used for cooling and insulating of some high-voltage power systems (circuit breakers, switches, some transformers, etc.). Steam can be used where high specific heat capacity is required in gaseous form and the corrosive properties of hot water are accounted for.
Oil heaters consist of metal columns with cavities inside which a heat transfer oil flows freely around the heater. A heating element at the base of the heater heats up the oil, which then flows around the cavities of the heater by convection. The oil has a relatively high specific heat capacity and high boiling point. The high specific heat capacity allows the oil to effectively transfer thermal energy from the heating element, while the oil's high boiling point allows it to remain in the liquid phase for the purpose of heating, so that the heater does not have to be a high pressure vessel.
When two bodies of different temperatures meet, the hotter body will cool off, and the cooler body will heat up, until they are separated or until they meet at a temperature in between. What that temperature is, and how quickly it is reached, depends on the thermodynamic properties of the two bodies. The important properties are temperature, density, specific heat capacity, and thermal conductivity. The square root of the product of thermal conductivity, density, and specific heat capacity is called thermal effusivity, and tells how much heat energy the body absorbs or releases in a certain amount of time per unit area when its surface is at a certain temperature.
Multiple allotropic forms have been identified for lithium at high pressures. Lithium has a mass specific heat capacity of 3.58 kilojoules per kilogram-kelvin, the highest of all solids.SPECIFIC HEAT OF SOLIDS. bradley.edu Because of this, lithium metal is often used in coolants for heat transfer applications.
Thermal properties of solids include thermal conductivity, which is the property of a material that indicates its ability to conduct heat. Solids also have a specific heat capacity, which is the capacity of a material to store energy in the form of heat (or thermal lattice vibrations).
In informal chemistry contexts, the molar heat capacity may be called just "heat capacity" or "specific heat". However, international standards now recommend that "specific heat capacity" always refer to capacity per unit of mass, to avoid possible confusion. Therefore, the word "molar", not "specific", should always be used for this quantity.
It has a very high specific heat capacity (4.184 kJ/kg/K ) and that is why it is used in central heating systems in the United Kingdom and Europe. These factors have to be borne in mind when formulating waterborne resins and other water based systems such as adhesives and coatings.
Mellon, M.T.; Fugason, R.l.; Putzig, N.E. (2008). The thermal Inertia of the Surface of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, Bell, J. Ed.; Cambridge University Press: Cambridge, UK, p. 406. The thermal inertia of a material is directly related to its thermal conductivity, density, and specific heat capacity.
The specific heat capacity of water is much higher at 4.2, so the storage density of the posited PCM ranges between 50 and 12.5 times that of water. Example Organic Bio-based PCM in a poly/foil encapsulation for durability in building applications, where it works to reduce HVAC energy consumption and increase occupant comfort.
Molecular solids have many thermal properties: specific heat capacity, thermal expansion, and thermal conductance to name a few. These thermal properties are determined by the intra- and intermolecular vibrations of the atoms and molecules of the molecular solid. While transitions of an electron do contribute to thermal properties, their contribution is negligible compared to the vibrational contribution.
The heat generated dissipates into the sample on both sides of the sensor, at a rate depending on the thermal transport properties of the material. By recording temperature vs. time response in the sensor, the thermal conductivity, thermal diffusivity and specific heat capacity of the material can be calculated. For highly conducting materials, very large samples are needed (some litres of volume).
Air is a common form of a coolant. Air cooling uses either convective airflow (passive cooling), or a forced circulation using fans. Hydrogen is used as a high-performance gaseous coolant. Its thermal conductivity is higher than all other gases, it has high specific heat capacity, low density and therefore low viscosity, which is an advantage for rotary machines susceptible to windage losses.
Triple based propellants are used for this because of the nitrogen in the nitroguanidine. Before the use of triple based propellants, the usual method of flash reduction was to add inorganic salts like potassium chloride so their specific heat capacity might reduce the temperature of combustion gasses and their finely divided particulate smoke might block visible wavelengths of radiant energy of combustion.
Vespel is commonly used as a thermal conductivity reference material for testing thermal insulators, because of high reproducibility and consistency of its thermophysical properties. For example, it can withstand repeated heating up to 300 °C without altering its thermal and mechanical properties. Extensive tables of measured thermal diffusivity, specific heat capacity, and derived density, all as functions of temperature, have been published.
Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions,Sivuhin D.V. General physics course. V.2. Thermodynamics and molecular physics. 2005 as both specific entropy and specific volume do not change in second-order phase transitions.
V2500 nozzle guide vane Cooling of components can be achieved by air or liquid cooling. Liquid cooling seems to be more attractive because of high specific heat capacity and chances of evaporative cooling but there can be leakage, corrosion, choking and other problems. which works against this method. On the other hand, air cooling allows the discharged air into main flow without any problem.
Petit and François Arago were brothers- in-law because they married two sisters. In 1814, the two men collaborated on a paper together. Petit first collaborated with Pierre Louis Dulong for the competition of the Académie des sciences about refrigeration (1815). Petit is now probably best known for the surprising Dulong–Petit law concerning the specific heat capacity of metals, which both men formulated together in 1819.
If the piston motion is sufficiently slow, the gas pressure at each instant will have practically the same value (psys = 1 atm) throughout. For a thermally perfect diatomic gas, the molar specific heat capacity at constant pressure (cp) is 7/2R or 29.1006 J mol−1 deg−1. The molar heat capacity at constant volume (cv) is 5/2R or 20.7862 J mol−1 deg−1.
The usage of water as a working-medium dramatically increases the potential for thermal energy capture, and electrical generation, due to its specific heat capacity. While the design may have its problems (see next section) and the stated efficiency claims has yet to be demonstrated, it would be an error to extrapolate performance from one to the other simply because of similarities in the name.
Because of differences in the specific heat capacity of land and water, continents heat up faster than seas. Consequently, the air above coastal lands heats up faster than the air above seas. These create areas of low air pressure above coastal lands compared with pressure over the seas, causing winds to flow from the seas onto the neighboring lands. This is known as sea breeze.
The manner in which phonons interact within a solid determines a variety of its properties, including its thermal conductivity. In electrically insulating solids, phonon-based heat conduction is usually inefficientDiamond is a notable exception. Highly quantized modes of phonon vibration occur in its rigid crystal lattice. Therefore, not only does diamond have exceptionally poor specific heat capacity, it also has exceptionally high thermal conductivity.
Thermal insulation provides a region of insulation in which thermal conduction is reduced or thermal radiation is reflected rather than absorbed by the lower-temperature body. The insulating capability of a material is measured as the inverse of thermal conductivity (k). Low thermal conductivity is equivalent to high insulating capability (Resistance value). In thermal engineering, other important properties of insulating materials are product density (ρ) and specific heat capacity (c).
Because copper has a higher melting point, and greater specific heat capacity and hardness, copper-jacketed bullets allow greater muzzle velocities. .303 inch (7.7 mm) centrefire, FMJ rimmed ammunition European advances in aerodynamics led to the pointed spitzer bullet. By the beginning of the twentieth century, most world armies had begun to transition to spitzer bullets. These bullets flew for greater distances more accurately and carried more energy with them.
Water is inexpensive, non-toxic, and available over most of the earth's surface. Liquid cooling offers higher thermal conductivity than air cooling. Water has unusually high specific heat capacity among commonly available liquids at room temperature and atmospheric pressure allowing efficient heat transfer over distance with low rates of mass transfer. Cooling water may be recycled through a recirculating system or used in a single pass once-through cooling (OTC) system.
Of common substances, only that of ammonia is higher. This property confers resistance to melting on the ice of glaciers and drift ice. Before and since the advent of mechanical refrigeration, ice was and still is in common use for retarding food spoilage. The specific heat capacity of ice at −10 °C is 2.03 J/(g·K) and the heat capacity of steam at 100 °C is 2.08 J/(g·K).
These properties include its relatively high melting and boiling point temperatures: more energy is required to break the hydrogen bonds between water molecules. In contrast, hydrogen sulfide (), has much weaker hydrogen bonding due to sulfur's lower electronegativity. is a gas at room temperature, in spite of hydrogen sulfide having nearly twice the molar mass of water. The extra bonding between water molecules also gives liquid water a large specific heat capacity.
Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K. The Dulong–Petit law, a thermodynamic law proposed in 1819 by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states the classical expression for the molar specific heat capacity of certain chemical elements. Experimentally the two scientists had found that the heat capacity per weight (the mass-specific heat capacity) for a number of elements was close to a constant value, after it had been multiplied by a number representing the presumed relative atomic weight of the element. These atomic weights had shortly before been suggested by John Dalton and modified by Jacob Berzelius. In modern terms, Dulong and Petit found that the heat capacity of a mole of many solid elements is about 3R, where R is the modern constant called the universal gas constant.
The heat of vaporization greatly exceeds the specific heat capacity. Using water as an example, the energy needed to evaporate one gram of water is 540 times the amount of energy needed to raise the temperature of that same one gram of water by 1 °C. Almost all of that energy is rapidly transferred to the "cold" end when the fluid condenses there, making a very effective heat transfer system with no moving parts.
A correction to Newton's law concerning convection for larger temperature differentials by including an exponent, was made in 1817 by Dulong and Petit. (These men are better-known for their formulation of the Dulong–Petit law concerning the molar specific heat capacity of a crystal.) Another situation which also does not obey Newton's law, is radiative heat transfer, being better described by Stefan- Boltzmann law as varying with the 4th power of absolute temperature.
The cobalt-based material develops a pseudo tetrahedral structure that allows for two-dimensional lithium ion diffusion. The cobalt-based cathodes are ideal due to their high theoretical specific heat capacity, high volumetric capacity, low self-discharge, high discharge voltage, and good cycling performance. Limitations include the high cost of the material, and low thermal stability. The manganese-based materials adopt a cubic crystal lattice system, which allows for three-dimensional lithium ion diffusion.
The most obvious, and common, solution to this problem was to run the entire cooling system under pressure. This maintained the specific heat capacity at a constant value, while the outside air temperature continued to drop. Such systems thus improved cooling capability as they climbed. For most uses, this solved the problem of cooling high-performance piston engines, and almost all liquid-cooled aircraft engines of the World War II period used this solution.
The Secchi disk is commonly used to test for eutrophication. For a detailed look at these processes, see lentic ecosystems. A lake moderates the surrounding region's temperature and climate because water has a very high specific heat capacity (4,186 J·kg−1·K−1). In the daytime a lake can cool the land beside it with local winds, resulting in a sea breeze; in the night it can warm it with a land breeze.
Both gas and liquid lubricants can transfer heat. However, liquid lubricants are much more effective on account of their high specific heat capacity. Typically the liquid lubricant is constantly circulated to and from a cooler part of the system, although lubricants may be used to warm as well as to cool when a regulated temperature is required. This circulating flow also determines the amount of heat that is carried away in any given unit of time.
Within the human comfort range between 20–30 °C, some PCMs are very effective, storing over 200 kJ/kg of latent heat, as against a specific heat capacity of around one kJ/kg.°C (that is per degree Celsius) for masonry. The storage density can therefore be 200 times greater or more than masonry per kg if an exact temperature is required. If a temperature variance of, say, 4°C can be allowed, the density is 50 times greater.
Some offer noise levels as low as NR25 or NC25 The output from an FCU can be established by looking at the temperature of the air entering the unit and the temperature of the air leaving the unit, coupled with the volume of air being moved through the unit. This is a simplistic statement, and there is further reading on sensible heat ratios and the specific heat capacity of air, both of which have an effect on thermal performance.
Oil has a high specific heat capacity, so it takes this computer approximately twelve hours of operation to reach its peak temperature of eighty degrees Celsius. A radiator and pump can be attached to lower the temperature significantly. After more than a year of reported use, the only minor problem indicated was from oil wicking into peripherals and making a mess. While Puget does not sell mineral oil computers, they provide a construction tutorial on their website.
The Triassic was generally dry, a trend that began in the late Carboniferous, and highly seasonal, especially in the interior of Pangaea. Low sea levels may have also exacerbated temperature extremes. With its high specific heat capacity, water acts as a temperature- stabilizing heat reservoir, and land areas near large bodies of water-- especially oceans--experience less variation in temperature. Because much of Pangaea's land was distant from its shores, temperatures fluctuated greatly, and the interior probably included expansive deserts.
Water cooling is a method of heat removal from components and industrial equipment. Water may be a more efficient heat transfer fluid where air cooling is ineffective. In most occupied climates water offers the thermal conductivity advantages of a liquid with unusually high specific heat capacity and the option of evaporative cooling. Low cost often allows rejection as waste after a single use, but recycling coolant loops may be pressurized to eliminate evaporative loss and offer greater portability and improved cleanliness.
Pierre Louis Dulong FRS FRSE (; ; 12 February 1785 - 19 July 1838) was a French physicist and chemist. He is remembered today largely for the law of Dulong and Petit, although he was much-lauded by his contemporaries for his studies into the elasticity of steam, conduction of heat, and specific heats of gases. He worked most extensively on the specific heat capacity and the expansion and refractive indices of gases. He collaborated several times with fellow scientist Alexis Petit, the co-creator of the Dulong–Petit law.
Drawing of some of Adair Crawford's equipment Adair Crawford FRS FRSE (174829 July 1795holmesacourt.org), a chemist and physician, was a pioneer in the development of calorimetric methods for measuring the specific heat capacity of substances and the heat of chemical reactions. In his influential 1779 book "Experiments and Observations on Animal Heat", Crawford presented new experiments proving that respiratory gas exchange in animals is a combustion (two years after Antoine Lavoisier's influential "On combustion in general"). Crawford also was involved in the discovery of the element strontium.
The atom-molar heat capacity of a polyatomic gas approaches that of a solid as the number n of atoms per molecule increases. As in the case f gases, some of the vibration modes will be "frozen out" at low temperatures, especially in solids with light and tightly bound atoms, causing the atom-molar heat capacity to be less than this theoretical limit. Indeed, the atom-molar (or specific) heat capacity of a solid substance tends toward zero, as the temperature approaches absolute zero.
The molar volume of solid elements is very roughly constant, and (even more reliably) so also is the molar heat capacity for most solid substances. These two factors determine the volumetric heat capacity, which as a bulk property may be striking in consistency. For example, the element uranium is a metal that has a density almost 36 times that of the metal lithium, but uranium's specific heat capacity on a volumetric basis (i.e. per given volume of metal) is only 18% larger than lithium's.
Radiator caps for pressurized automotive cooling systems. Of the two valves, one prevents the creation of a vacuum, the other limits the pressure. It is generally a limitation of most cooling systems that the cooling fluid not be allowed to boil, as the need to handle gas in the flow greatly complicates design. For a water cooled system, this means that the maximum amount of heat transfer is limited by the specific heat capacity of water and the difference in temperature between ambient and 100°C.
The cloud has a temperature of about , about the same temperature as the surface of the Sun. However, its specific heat capacity is very low because it is not very dense, with . This is less dense than the average for the interstellar medium in the Milky Way (), though six times denser than the gas in the hot, low-density Local Bubble () which surrounds the local cloud. In comparison, Earth's atmosphere at the edge of space has around 1.2 molecules per cubic centimeter, dropping to around 50 million (5.0) at .
In 1819, the French physicists Pierre Louis Dulong and Alexis Thérèse Petit discovered that the specific heat capacities of solid elements at room temperature were inversely proportional to the atomic weight of the element. Their law was used for many years as a technique for measuring atomic weights. However, subsequent studies by James Dewar and Heinrich Friedrich Weber showed that this Dulong–Petit law holds only at high temperatures; at lower temperatures, or for exceptionally hard solids such as diamond, the specific heat capacity was lower. Read at l'Académie des Sciences on 11 January 1841.
Cooling tower and water discharge of a nuclear power plant Water cooling is a method of heat removal from components and industrial equipment. Water may be a more efficient heat transfer fluid where air cooling is ineffective. In most occupied climates water offers the thermal conductivity advantages of a liquid with unusually high specific heat capacity and the option of evaporative cooling. Low cost often allows rejection as waste after a single use, but recycling coolant loops may be pressurized to eliminate evaporative loss and offer greater portability and improved cleanliness.
Longitudinal circulation, on the other hand, comes about because the ocean has a higher specific heat capacity than land (and also thermal conductivity, allowing the heat to penetrate further beneath the surface ) and thereby absorbs and releases more heat, but the temperature changes less than land. This brings the sea breeze, air cooled by the water, ashore in the day, and carries the land breeze, air cooled by contact with the ground, out to sea during the night. Longitudinal circulation consists of two cells, the Walker circulation and El Niño / Southern Oscillation.
Heavy fermion behavior was discovered by K. Andres, J.E. Graebner and H.R. Ott in 1975, who observed enormous magnitudes of the linear specific heat capacity in CeAl3. While investigations on doped superconductors led to the conclusion that the existence of localized magnetic moments and superconductivity in one material was incompatible, the opposite was shown, when in 1979 Frank Steglich et al. discovered heavy fermion superconductivity in the material CeCu2Si2. The discovery of a quantum critical point and non-Fermi liquid behavior in the phase diagram of heavy fermion compounds by H. von Löhneysen et al.
However, due to the lower specific heat capacity of fats and oils and their higher vaporization temperature, they often attain much higher temperatures inside microwave ovens. This can induce temperatures in oil or fatty foods like bacon far above the boiling point of water, and high enough to induce some browning reactions, much in the manner of conventional broiling (UK: grilling), braising, or deep fat frying. Microwaving foods high in content of sugar, starch, fat may damage some plastic containers. Fruits such as tomatoes have a high sugar content.
Although krypton and xenon can be also used; argon is favorable because of its low cost. The light generated by an explosion is produced primarily by compression heating of the surrounding air. Replacement of the air with a noble gas considerably increases the light output; with molecular gases, the energy is consumed partially by dissociation and other processes, while noble gases are monatomic and can only undergo ionization; the ionized gas then produces the light. The low specific heat capacity of noble gases allows heating to higher temperatures, yielding brighter emission.
This provides more effective cooling in the winter, or at higher altitudes where the temperatures are low. Another effect that is especially important in aircraft cooling is that the specific heat capacity changes with pressure, and this pressure changes more rapidly with altitude than the drop in temperature. Thus, generally, liquid cooling systems lose capacity as the aircraft climbs. This was a major limit on performance during the 1930s when the introduction of turbosuperchargers first allowed convenient travel at altitudes above 15,000 ft, and cooling design became a major area of research.
Although it is more difficult to build an aircraft radiator that is able to handle steam, it is by no means impossible. The key requirement is to provide a system that condenses the steam back into liquid before passing it back into the pumps and completing the cooling loop. Such a system can take advantage of the specific heat of vaporization, which in the case of water is five times the specific heat capacity in the liquid form. Additional gains may be had by allowing the steam to become superheated.
Heating packs can also be made by filling a container with a material that has a high specific heat capacity, which then gradually releases the heat over time. A hot water bottle is the most familiar example of this type of heating pad. A microwavable heating pad is a heating pad that is warmed by placing it in a microwave oven before use. Microwavable heating pads are typically made out of a thick insulative fabric such as flannel and filled with grains such as wheat, buckwheat or flax seed.
The climate is an oceanic climate with mild winters and mild to warm summers. The Atlantic Ocean has a moderating effect on temperature in Jersey, as water has a much greater specific heat capacity than air and tends to heat and cool slowly throughout the year. This has a warming influence on coastal areas in winter and a cooling influence in summer. The highest temperature recorded was 36.0 °C (96.8 °F) on 9 August 2003 and again on 23 July 2019, and the lowest temperature recorded was −10.3 °C (13.5 °F) on 5 January 1894.
James Joule tried to measure the internal pressure of air in his expansion experiment by adiabatically pumping high pressure air from one metal vessel into another evacuated one. The water bath in which the system was immersed did not change its temperature, signifying that no change in the internal energy occurred. Thus, the internal pressure of the air was apparently equal to zero and the air acted as a perfect gas. The actual deviations from the perfect behaviour were not observed since they are very small and the specific heat capacity of water is relatively high.
Natural-colour satellite image of the Tibetan Plateau Monsoons are caused by the different amplitudes of surface temperature seasonal cycles between land and oceans. This differential warming occurs because heating rates differ between land and water. Ocean heating is distributed vertically through a "mixed layer" that may be 50 meters deep through the action of wind and buoyancy-generated turbulence, whereas the land surface conducts heat slowly, with the seasonal signal penetrating only a meter or so. Additionally, the specific heat capacity of liquid water is significantly greater than that of most materials that make up land.
An encapsulated thermal battery is physically similar to a phase change thermal battery in that it is a confined amount of physical material which is thermally heated or cooled to store or extract energy. However, in a non-phase change encapsulated thermal battery the temperature of the substance is changed without inducing a phase change. Since a phase change is not needed many more materials are available for use in an encapsulated thermal battery. One of the key properties of an encapsulated thermal battery is its volumetric heat capacity (VHC), also termed volume- specific heat capacity.
Nearly complete transfer in systems implementing countercurrent exchange, is only possible if the two flows are, in some sense, "equal". For a maximum transfer of substance concentration, an equal flowrate of solvents and solutions is required. For maximum heat transfer, the average specific heat capacity and the mass flow rate must be the same for each stream. If the two flows are not equal, for example if heat is being transferred from water to air or vice versa, then, similar to cocurrent exchange systems, a variation in the gradient is expected because of a buildup of the property not being transferred properly.
Hydrogen is a suitable fuel because it is liquid at deeply cryogenic temperatures, and over its useful range has a very high total specific heat capacity, including the latent heat of vapourisation, higher than water. However, the low density of liquid hydrogen has negative effects on the rest of the vehicle, and the vehicle physically becomes very large, although the weight on the undercarriage and wing loading may remain low. Hydrogen causes structural weakening in many materials, known as hydrogen embrittlement. The weight of the precooler adds to the weight of the engine, thereby reducing its thrust to weight ratio.
Compared to liquid water, microwave heating is less efficient on fats and sugars (which have a smaller molecular dipole moment)."Efficient" here meaning more energy is deposited, not necessarily that the temperature rises more, because the latter also is a function of the specific heat capacity, which is often less than water for most substances. For a practical example, milk heats slightly faster than water in a microwave oven, but only because milk solids have less heat capacity than the water they replace. Sugars and triglycerides (fats and oils) absorb microwaves due to the dipole moments of their hydroxyl groups or ester groups.
Heat capacity is a measurable physical quantity equal to the ratio of the heat added to an object to the resulting temperature change. The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under consideration. The specific heats of monatomic gases, such as helium, are nearly constant with temperature.
Exhaust gas recirculation (EGR), on diesel engines, can be used to achieve a richer fuel to air mixture and a lower peak combustion temperature. Both effects reduce NOx emissions, but can negatively impact efficiency and the production of soot particles. The richer mix is achieved by displacing some of the intake air, but is still lean compared to petrol engines, which approach the stoichiometric ideal. The lower peak temperature is achieved by a heat exchanger that removes heat before re-entering the engine, and works due to the exhaust gases' higher specific heat capacity than air.
Pipework runs should be as short as possible, and should be sized for low velocities to minimize frictional losses, hence reducing pump energy consumption. It is possible to recover some of this energy in the form of heat given off by the motor if a glandless pump is used, where a water jacket surrounds the motor stator, thus picking up some of its heat. The pumped fluid will have to be protected from freezing, and is normally treated with a glycol based anti-freeze. This also reduces the specific heat capacity of the fluid and increases the viscosity, increasing pump power consumption, further reducing the seasonal efficiency of the device.
The failure of the equipartition theorem led to a paradox that was only resolved by quantum mechanics. For most molecules, the transitional temperature Trot is much less than room temperature, whereas Tvib can be ten times larger or more. A typical example is carbon monoxide, CO, for which Trot ≈ 2.8 K and Tvib ≈ 3103 K. For molecules with very large or weakly bound atoms, Tvib can be close to room temperature (about 300 K); for example, Tvib ≈ 308 K for iodine gas, I2. The history of the equipartition theorem is intertwined with that of specific heat capacity, both of which were studied in the 19th century.
By comparison, weathered and fractured crystalline rocks yield smaller quantities of groundwater in many environments. Unconsolidated to poorly cemented alluvial materials that have accumulated as valley-filling sediments in major river valleys and geologically subsiding structural basins are included among the most productive sources of groundwater. The high specific heat capacity of water and the insulating effect of soil and rock can mitigate the effects of climate and maintain groundwater at a relatively steady temperature. In some places where groundwater temperatures are maintained by this effect at about 10 °C (50 °F), groundwater can be used for controlling the temperature inside structures at the surface.
One of the first quantum effects to be explicitly noticed (but not understood at the time) was a Maxwell observation involving hydrogen, half a century before full quantum mechanical theory arrived. Maxwell observed that the specific heat capacity of H2 unaccountably departs from that of a diatomic gas below room temperature and begins to increasingly resemble that of a monatomic gas at cryogenic temperatures. According to quantum theory, this behavior arises from the spacing of the (quantized) rotational energy levels, which are particularly wide-spaced in H2 because of its low mass. These widely spaced levels inhibit equal partition of heat energy into rotational motion in hydrogen at low temperatures.
An isochoric process is described by the equation Q = ΔU. It would be convenient to have a similar equation for isobaric processes. Substituting the second equation into the first yields : Q = \Delta U + \Delta (p\,V) = \Delta (U + p\,V) The quantity U + pV is a state function so that it can be given a name. It is called enthalpy, and is denoted as H. Therefore, an isobaric process can be more succinctly described as : Q = \Delta H \,. Enthalpy and isochoric specific heat capacity are very useful mathematical constructs, since when analyzing a process in an open system, the situation of zero work occurs when the fluid flows at constant pressure.
Warm glass is rolled on the marver, both to shape it and as a means of temperature control. With a high specific heat capacity, the surface absorbs heat from the glass; because of the relatively slow flow of heat through the glass, it does so particularly from the outermost material, forming a more viscous skin. Because the glass comes in direct contact with the marver, it must be kept exceptionally clean in order to prevent points of poor conduction or the transfer of debris into glass worked upon it. Metallic marvers are generally rubbed with steel wool and then wiped with rubbing alcohol to prevent rust.
It is an effective neutron moderator and was used in James Chadwick's 1932 experiments to identify the neutron. Paraffin wax is an excellent material for storing heat, with a specific heat capacity of 2.14–2.9 J g−1 K−1 (joules per gram kelvin) and a heat of fusion of 200–220 J g−1. Paraffin wax phase-change cooling coupled with retractable radiators was used to cool the electronics of the Lunar Roving Vehicle during the manned missions to the Moon in the early 1970s. Wax expands considerably when it melts and this allows its use in wax element thermostats for industrial, domestic and, particularly, automobile purposes.
Behind schedule, over-budget and not fully tested, the initial run of VL7 luminaires immediately fell victim to a wide range of teething troubles, for which—in most cases—there was no immediate cure. This left technicians only able to replace failed parts, rather than fix the problems which were causing them to fail. For example: a problem in the CVF, which caused the teeth to soften and become stripped from the belts that drove the filter plates, was traced to their drive gears, which had been made of a material with a high Specific Heat Capacity. Once this was understood, the gears could be changed, but not before several hundred belts had already required replacement.
When the temperature is lower than the Bloch–Grüneisen temperature, the most energetic thermal phonons have a typical momentum of kBT/vs which is smaller than ħkF, the momentum of the conducting electrons at the Fermi surface. This means that the electrons will only scatter in small angles when they absorb or emit a phonon. In contrast when the temperature is higher than the Bloch–Grüneisen temperature, there are thermal phonons of all momenta and in this case electrons will also experience large angle scattering events when they absorb or emit a phonon. In many cases, the Bloch–Grüneisen temperature is approximately equal to the Deybe temperature (usually written \Theta_D), which is used in modeling specific heat capacity.
In contrast, a liquid-cooled engine might dump heat from the engine to a liquid, heating the liquid to 135 °C (Water's standard boiling point of 100 °C can be exceeded as the cooling system is both pressurised, and uses a mixture with antifreeze) which is then cooled with 20 °C air. In each step, the liquid-cooled engine has half the temperature difference and so at first appears to need twice the cooling area. However, properties of the coolant (water, oil, or air) also affect cooling. As example, comparing water and oil as coolants, one gram of oil can absorb about 55% of the heat for the same rise in temperature (called the specific heat capacity).
Micrograph of grey cast iron. Gray iron, or grey cast iron, is a type of cast iron that has a graphitic microstructure. It is named after the gray color of the fracture it forms, which is due to the presence of graphite.. It is the most common cast iron and the most widely used cast material based on weight.. It is used for housings where the stiffness of the component is more important than its tensile strength, such as internal combustion engine cylinder blocks, pump housings, valve bodies, electrical boxes, and decorative castings. Grey cast iron's high thermal conductivity and specific heat capacity are often exploited to make cast iron cookware and disc brake rotors.
A water block is better at dissipating heat than an air-cooled heatsink due to water's higher specific heat capacity and thermal conductivity. The water is usually pumped through to a radiator which allows a fan pushing air through it to take the heat created from the device and expel it into the air. A radiator is more efficient than a standard CPU or GPU heatsink/air cooler at removing heat because it has a much larger surface area. Installation of a water block is also similar to that of a heatsink, with a thermal pad or thermal grease placed between it and the device being cooled to aid in heat conduction.
CFD image of the NASA X-43A at Mach 7 Simulation of hypersonic speed (Mach 5) In aerodynamics, a hypersonic speed is one that greatly exceeds the speed of sound, often stated as starting at speeds of Mach 5 and above. The precise Mach number at which a craft can be said to be flying at hypersonic speed varies, since individual physical changes in the airflow (like molecular dissociation and ionization) occur at different speeds; these effects collectively become important around Mach 5-10. The hypersonic regime can also be alternatively defined as speeds where specific heat capacity changes with the temperature of the flow as kinetic energy of the moving object is converted into heat.
Depending on a variety of factors (wall thickness, type of wood, particular mortar recipe), the insulative value of a cordwood wall, as expressed in R-value is generally less than that of a high-efficiency stud wall. Cordwood walls have greater thermal mass than stud frame but less than common brick and mortar. This is because the specific heat capacity of clay brick is higher (0.84 versus wood's 0.42), and is denser than airy woods like cedar, cypress, or pine. However, the insulated mortar matrix utilized in most cordwood walls places useful thermal mass on both sides of the insulated internal cavity, helping to store heat in winter and "coolth" in summer.
The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. Informally, it is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature. The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J/K/m3 or J/(K·m3). The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J/K/kg) times the density of the substance (in kg/L, or g/mL).
The molar volume of solid elements is very roughly constant, and (even more reliably) so also is the molar heat capacity for most solid substances. These two factors determine the volumetric heat capacity, which as a bulk property may be striking in consistency. For example, the element uranium is a metal which has a density almost 36 times that of the metal lithium, but uranium's volumetric heat capacity is only about 20% larger than lithium's. Since the volume-specific corollary of the Dulong-Petit specific heat capacity relationship requires that atoms of all elements take up (on average) the same volume in solids, there are many departures from it, with most of these due to variations in atomic size.
An equivalent statement of the Dulong–Petit law in modern terms is that, regardless of the nature of the substance, the specific heat capacity c of a solid element (measured in joule per kelvin per kilogram) is equal to 3R/M, where R is the gas constant (measured in joule per kelvin per mole) and M is the molar mass (measured in kilogram per mole). Thus, the heat capacity per mole of many elements is 3R. The initial form of the Dulong–Petit law was: :cM = K where K is a constant which we know today is about 3R. In modern terms the mass m of the sample divided by molar mass M gives the number of moles n.
The PE material becomes molten at around , allowing it to be fed through a mould/die, which shapes the molten material into a circular shape. After coming through the die, the newly formed pipe quickly enters the cooling tanks, which submerge or spray water at the pipe exterior, each one reducing the temperature of the pipe by 10-20 degrees. Because polyethylene has a high specific heat capacity, the pipe must be cooled in stages, to avoid deforming the shape, and by the time it reaches the "haul-off tractor," it is hard enough to be gently pulled by the 2-3 belts. A digital or powder printer, the size, type, date and manufacturers name is printed on the side of the pipe.
Dulong and Petit predicted in 1818 that the product of solid substance density and specific heat capacity (ρcp) would be constant for all solids. This amounted to a prediction that volumetric heat capacity in solids would be constant. In 1819 they found that volumetric heat capacities were not quite constant, but that the most constant quantity was the heat capacity of solids adjusted by the presumed weight of the atoms of the substance, as defined by Dalton (the Dulong–Petit law). This quantity was proportional to the heat capacity per atomic weight (or per molar mass), which suggested that it is the heat capacity per atom (not per unit of volume) which is closest to being a constant in solids.
If the hot fluid had a much larger heat capacity rate, then when hot and cold fluids went through a heat exchanger, the hot fluid would have a very small change in temperature while the cold fluid would heat up a significant amount. If the cool fluid has a much lower heat capacity rate, that is desirable. If they were equal, they would both change more or less temperature equally, assuming equal mass-flow per unit time through a heat exchanger. In practice, a cooling fluid which has both a higher specific heat capacity and a lower heat capacity rate is desirable, accounting for the pervasiveness of water cooling solutions in technology--the polar nature of the water molecule creates some distinct sub-atomic behaviors favorable in practice.
However, the average atomic volume in solid elements is not quite constant, so there are deviations from this principle. For instance, arsenic, which is only 14.5% less dense than antimony, has nearly 59% more specific heat capacity on a mass basis. In other words; even though an ingot of arsenic is only about 17% larger than an antimony one of the same mass, it absorbs about 59% more heat for a given temperature rise. The heat capacity ratios of the two substances closely follows the ratios of their molar volumes (the ratios of numbers of atoms in the same volume of each substance); the departure from the correlation to simple volumes, in this case, is due to lighter arsenic atoms being significantly more closely packed than antimony atoms, instead of similar size.
Informally, the Laplacian operator gives the difference between the average value of a function in the neighborhood of a point, and its value at that point. Thus, if is the temperature, tells whether (and by how much) the material surrounding each point is hotter or colder, on the average, than the material at that point. By the second law of thermodynamics, heat will flow from hotter bodies to adjacent colder bodies, in proportion to the difference of temperature and of the thermal conductivity of the material between them. When heat flows into (respectively, out of) a material, its temperature increases (respectively, decreases), in proportion to the amount of heat divided by the amount (mass) of material, with a proportionality factor called the specific heat capacity of the material.
By taking N to be the Avogadro constant NA, and using the relation R = NAkB between the gas constant R and the Boltzmann constant kB, this provides an explanation for the Dulong–Petit law of specific heat capacities of solids, which stated that the specific heat capacity (per unit mass) of a solid element is inversely proportional to its atomic weight. A modern version is that the molar heat capacity of a solid is 3R ≈ 6 cal/(mol·K). However, this law is inaccurate at lower temperatures, due to quantum effects; it is also inconsistent with the experimentally derived third law of thermodynamics, according to which the molar heat capacity of any substance must go to zero as the temperature goes to absolute zero. A more accurate theory, incorporating quantum effects, was developed by Albert Einstein (1907) and Peter Debye (1911).
The molar heat capacity of a chemical substance is the amount of energy that must be added, in the form of heat, to one mole of the substance in order to cause an increase of one unit in its temperature. Alternatively, it is the heat capacity of a sample of the substance divided by the amount of substance of the sample; or also the specific heat capacity of the substance times its molar mass. The SI unit of specific heat is joule per kelvin per mole, J⋅K−1⋅mol−1. Like the specific heat, measured the molar heat capacity of a substance, especially a gas, may be significantly higher when the sample is allowed to expand as it is heated (at constant pressure, or isobaric) than when is heated in a closed vessel that prevents expansion (at constant volume, or isochoric).
The heating element heats the oil, which transfers heat to the metal wall through convection, through the walls via conduction, then to the surroundings via air convection and thermal radiation. The columns of oil heaters are typically constructed as thin fins, such that the surface area of the metal columns is large relative to the amount of oil and element which provides the warmth. A large surface area allows more air to be in contact with the heater at any point in time, allowing for the heat to be transferred more effectively, which results in a surface temperature which is safe enough to touch. The relatively large specific heat capacity of the oil and metal parts means this type of heater takes a few minutes to heat up and cool down, providing a short-term thermal store.
Most biological processes are dependent upon enzymatic activity that can be impacted by the organism's body temperature, which in term is a function of the organism's metabolism and environment as each enzyme has a finite window in which it can function properly. An organism's niche in the environment may then be dependent upon the thermal optima for all of its necessary biological processes. In animals that inhabit the wave-tossed tidal pools of rocky shores thermal optima vary for each species and dictate the species' tolerance of environmental conditions that lead to increased heating or loss of mechanisms for cooling. For example, exposure to sunlight when the tide is out, and lack of thermal insulation from the buffering effects of water due to its specific heat capacity may contribute to increased temperature leading to increased desiccation.
Much more serious was the problem of elements which form more than one oxide or series of salts, which have (in today's terminology) different oxidation states. Copper will react with oxygen to form either brick red cuprous oxide (copper(I) oxide, with 63.5 g of copper for 8 g of oxygen) or black cupric oxide (copper(II) oxide, with 32.7 g of copper for 8 g of oxygen), and so has two equivalent weights. Supporters of atomic weights could turn to the Dulong–Petit law (1819), which relates the atomic weight of a solid element to its specific heat capacity, to arrive at a unique and unambiguous set of atomic weights. Most supporters of equivalent weights—which were the great majority of chemists prior to 1860—simply ignored the inconvenient fact that most elements exhibited multiple equivalent weights.
Onset dates and prevailing wind currents of the southwest summer monsoon Monsoons are caused by the larger amplitude of the seasonal cycle of land temperature compared to that of nearby oceans. This differential warming happens because heat in the ocean is mixed vertically through a "mixed layer" that may be fifty meters deep, through the action of wind and buoyancy- generated turbulence, whereas the land surface conducts heat slowly, with the seasonal signal penetrating perhaps a meter or so. Additionally, the specific heat capacity of liquid water is significantly higher than that of most materials that make up land. Together, these factors mean that the heat capacity of the layer participating in the seasonal cycle is much larger over the oceans than over land, with the consequence that the air over the land warms faster and reaches a higher temperature than the air over the ocean.
The laser flash method is used to measure thermal diffusivity of a thin disc in the thickness direction. This method is based upon the measurement of the temperature rise at the rear face of the thin-disc specimen produced by a short energy pulse on the front face. With a reference sample specific heat can be achieved and with known density the thermal conductivity results as follows :k(T) = a(T) \cdot c_P(T) \cdot \rho(T) where : k is the thermal conductivity of the sample, in [W·m−1·K−1] : a is the thermal diffusivity of the sample, in [m2 ·s−1] : c_P is the specific heat capacity of the sample, in [J·kg−1·K−1] : \rho is the density of the sample, in [kg·m−3] It is suitable for a multiplicity of different materials over a broad temperature range (−120 °C to 2800 °C).
Deepcool Captain 360, an all- in-one cooling unit, installed in a case DIY water cooling setup showing a 12 V pump, CPU waterblock and the typical application of a T-Line Schematic of a regular liquid cooling setup for PC's Liquid cooling is a highly effective method of removing excess heat, with the most common heat transfer fluid in desktop PCs being (distilled) water. The advantages of water cooling over air cooling include water's higher specific heat capacity and thermal conductivity. The principle used in a typical (active) liquid cooling system for computers is identical to that used in an automobile's internal combustion engine, with the water being circulated by a water pump through a waterblock mounted on the CPU (and sometimes additional components as GPU and northbridge) and out to a heat exchanger, typically a radiator. The radiator is itself usually cooled additionally by means of a fan.
For instance, arsenic, which is only 14.5% less dense than antimony, has nearly 59% more specific heat capacity on a mass basis. In other words; even though an ingot of arsenic is only about 17% larger than an antimony one of the same mass, it absorbs about 59% more heat for a given temperature rise. The heat capacity ratios of the two substances closely follows the ratios of their molar volumes (the ratios of numbers of atoms in the same volume of each substance); the departure from the correlation to simple volumes in this case is due to lighter arsenic atoms being significantly more closely packed than antimony atoms, instead of similar size. In other words, similar-sized atoms would cause a mole of arsenic to be 63% larger than a mole of antimony, with a correspondingly lower density, allowing its volume to more closely mirror its heat capacity behavior.
Heat of vaporization of water from melting to critical temperature Water has a very high specific heat capacity of 4.1814 J/(g·K) at 25 °C – the second highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its molecules. These two unusual properties allow water to moderate Earth's climate by buffering large fluctuations in temperature. Most of the additional energy stored in the climate system since 1970 has accumulated in the oceans. The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C.

No results under this filter, show 108 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.