Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"secondary cell" Definitions
  1. STORAGE BATTERY

48 Sentences With "secondary cell"

How to use secondary cell in a sentence? Find typical usage patterns (collocations)/phrases/context for "secondary cell" and check conjugation/comparative form for "secondary cell". Mastering all the usages of "secondary cell" from sentence examples published by news publications.

Marteilia’s morphology is derived from its unique cell cycle. The primary cell undergoes mitosis and produces the secondary cell within the primary cell rather than outside the primary cell. The secondary cell then undergoes mitosis to produce more secondary cells. After reaching a certain number of secondary cells, each secondary cell then undergoes mitosis to produce a spore within itself.
Unlike the primary wall, the cellulose microfibrils are aligned parallel in layers, the orientation changing slightly with each additional layer so that the structure becomes helicoidal. Cells with secondary cell walls can be rigid, as in the gritty sclereid cells in pear and quince fruit. Cell to cell communication is possible through pits in the secondary cell wall that allow plasmodesmata to connect cells through the secondary cell walls.
This layer becomes the cell wall. The organization of microfibrils forming the primary cell wall is rather disorganized. However, another mechanism is used in secondary cell walls leading to its organization. Essentially, lanes on the secondary cell wall are built with microtubules.
In compression wood the MFA is high and reaches up to 45°. These variations influence the mechanical properties of the cell wall. Plant cell overview, showing secondary cell wall. The secondary cell wall has different ratios of constituents compared to the primary wall.
Wood consists mostly of secondary cell wall, and holds the plant up against gravity.Campbell, Reece, Biology, 7th edition, Pearson/Benjamin Cummings, 2005 Some secondary cell walls store nutrients, such as those in the cotyledons and the endosperm. These contain little cellulose, and mostly other polysaccharides.
A silver zinc battery is a secondary cell that utilizes Silver(I,III) oxide and Zinc.
Although its primary function is transport of sugars, phloem may also contain cells that have a mechanical support function. These generally fall into two categories: fibres and sclereids. Both cell types have a secondary cell wall and are therefore dead at maturity. The secondary cell wall increases their rigidity and tensile strength.
The secondary cell wall is a structure found in many plant cells, located between the primary cell wall and the plasma membrane. The cell starts producing the secondary cell wall after the primary cell wall is complete and the cell has stopped expanding.Buchanan, Gruissem, Jones, Biochemistry & molecular biology of plants, 1st edition, American Society of Plant Physiology, 2000 Secondary cell walls provide additional protection to cells and rigidity and strength to the larger plant. These walls are constructed of layered sheaths of cellulose microfibrils, wherein the fibers are in parallel within each layer.
Arabinoxylan is a hemicellulose found in both the primary and secondary cell walls of plants, including woods and cereal grains, consisting of copolymers of two pentose sugars: arabinose and xylose.
Arabinoxylans are found in both the primary and secondary cell walls of plants and are the copolymers of two sugars: arabinose and xylose. They may also have beneficial effects on human health.
Magnesium batteries are batteries that utilize magnesium cations as the active charge transporting agent in solution and as the elemental anode of an electrochemical cell. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries. Magnesium secondary cell batteries are an active topic of research, specifically as a possible replacement or improvement over lithium- ion–based battery chemistries in certain applications.
A secondary cell, commonly referred to as a rechargeable battery, is an electrochemical cell that can be run as both a galvanic cell and as an electrolytic cell. This is used as a convenient way to store electricity, when current flows one way the levels of one or more chemicals build up (charging), while it is discharging they reduce and the resulting electromotive force can do work. A common secondary cell is the Lead-acid battery. This can be commonly found as car batteries.
Xylan () (CAS number: 9014-63-5) is a group of hemicelluloses that represents the third most abundant biopolymer on Earth. It is found in plants, in the secondary cell walls of dicots and all cell walls of grasses.
The inclusion of lignin makes the secondary cell wall less flexible and less permeable to water than the primary cell wall.Raven, P. H., R. F. Evert, et al. (1999). Biology of plants. New York, W.H. Freeman : Worth Publishers.
Marteilia has a very peculiar morphology. The outermost cell is the primary cell. Within the primary cell, there is a nucleus and between 3 and 16 secondary cells. Within a secondary cell, there is a nucleus and between 1 and 6 spores.
A primary cell is a Galvanic battery that is designed to be used once and discarded, in contrast to a secondary cell (rechargeable battery), which can be recharged with electricity and reused. In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity and is useless. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants.
Sunderland, Mass., Sinauer Associates. Pectins may also be absent from the secondary wall, and unlike primary walls, no structural proteins or enzymes have been identified. Because of the low permeability through the secondary cell wall, cellular transport is carried out through openings in the wall called pits.
The age of some herbaceous perennial plants can be determined by herbchronology, the analysis of annual growth rings in the secondary root xylem. Herbaceous plants do not produce perennializing above ground structures using lignin, which is a complex phenolic polymer deposited in the secondary cell wall of all vascular plants. The development of lignin during vascular plant evolution provided mechanical strength, rigidity, and hydrophobicity to secondary cell walls, allowing plants to grow tall and transport water and nutrients over longer distances within the plant body. Since most woody plants are perennials with a longer life cycle because it takes more time and more resources (nutrients and water) to produce persistently living lignified woody stems, they are not as able to colonize open and dry ground as rapidly as herbs.
Calliarthron reproduces by means of conceptacles; it produces tetraspores, dispores and carpospores. The genus has lignin and contains secondary cell walls, traits which are normally associated with the vascular plants. It is similar to the genus Bossiella. Calliarthron is calcified, but also has uncalcified joints that allow it to flex in response to the waves to which it is subjected.
Land plants maintain adequate tissue hydration by means of an outer waterproof layer. In soft or green tissues, this is usually a waxy cuticle over the outer epidermis. In older, woody tissues, waterproofing chemicals are present in the secondary cell wall that limit or inhibit the flow of water. Vascular plants also possess an internal vascular system that distributes fluids throughout the plant.
The hardening of seed coats during ripening often occurs through sclerification, when the secondary cell walls are thickened in the epidermis and below the epidermis. Leguminous seeds are examples of such sclerification. Larger sclereids form columns in the epidermis of pea, bean, and soybean seeds, and bone-shaped osteosclereids occur beneath the epidermis. In the seedcoats of coconuts, sclereids possess numerous bordered pits.
As John Howland explains The apparent rigidity of the cell wall thus results from inflation of the cell contained within. This inflation is a result of the passive uptake of water. In plants, a secondary cell wall is a thicker additional layer of cellulose which increases wall rigidity. Additional layers may be formed by lignin in xylem cell walls, or suberin in cork cell walls.
Whitaker (2005), 101. The secondary cell passed through Sydney two hours later than the first, just after 10:00 pm, having been approximately south of Sydney when the supercell struck. It dropped hail up to in diameter, as well as producing heavy rainfall. Damage caused by the second cell was mostly due to rain coming in through roofs already damaged by hail from the first cell.
In other words, individuals could pass on the genotype that is different from their majority (or self) genotype. Consider a father marmoset was chimeric in his germ line. This father could potentially pass on his secondary cell line (the majority or self cell line of his brother) to his offspring. In this way, this father's offspring would be more genetically similar to their uncle than to their father.
A secondary cell, for example a rechargeable battery, is a cell in which the chemical reactions are reversible. When the cell is being charged, the anode becomes the positive (+) and the cathode the negative (−) electrode. This is also the case in an electrolytic cell. When the cell is being discharged, it behaves like a primary cell, with the anode as the negative and the cathode as the positive electrode.
The active components in a secondary cell are the chemicals that make up the positive and negative active materials, and the electrolyte. The positive and negative are made up of different materials, with the positive exhibiting a reduction potential and the negative having an oxidation potential. The sum of these potentials is the standard cell potential or voltage. In primary cells the positive and negative electrodes are known as the cathode and anode, respectively.
Cellulose is an aggregation of unbranched polymer chains made of β-(1→4)-linked glucose residues that makes up a large portion of primary and secondary cell walls. Although important for plants, it is also synthesized by most algae, some bacteria, and some animals. Worldwide, 2 × 1011 tons of cellulose microfibrils are produced, which serves as a critical source of renewable biofuels and other biological-based products, such as lumber, fuel, fodder, paper and cotton.
In the secondary cell wall of fibres of trees a low microfibril angle is found in the S2-layer, while S1 and S3-layers show a higher MFA . However, the MFA can also change depending on the loads on the tissue. It has been shown that in reaction wood the MFA in S2-layer can vary. Tension wood has a low MFA, meaning that the microfibril is oriented parallel to the axis of the fibre.
On most Gram-stained preparations, Gram-negative organisms appear red or pink due to their counterstain. Due to the presence of higher lipid content, after alcohol- treatment, the porosity of the cell wall increases, hence the CVI complex (crystal violet – iodine) can pass through. Thus, the primary stain is not retained. In addition, in contrast to most Gram-positive bacteria, Gram- negative bacteria have only a few layers of peptidoglycan and a secondary cell membrane made primarily of lipopolysaccharide.
Finally, additional mitochondrial processes may also be affected by SSADH deficiency. Succinate semialdehyde is considered a reactive carbonyl and may lead to increased oxidative stress. This stress is believed to contribute to the formation of free radicals in the brain tissue of animal models induced with SSADH deficiency, which further leads to secondary cell damage and death. Additionally, oxidative stress may be responsible for loss of striatal dopamine which may contribute to pathophysiology of the disease.
Separate sets of CesA genes are involved in primary and secondary cell wall biosynthesis. There are known to be about seven subfamilies in the plant CesA superfamily, some of which include the more cryptic, tentatively-named Csl (cellulose synthase-like) enzymes. These cellulose syntheses use UDP-glucose to form the β(1→4)-linked cellulose. Bacterial cellulose is produced using the same family of proteins, although the gene is called BcsA for "bacterial cellulose synthase" or CelA for "cellulose" in many instances.
In the second stage suberin (or endoderm) coats the entire wall on the inside of the cell. As a result, the Casparian strip is separated from the cytoplasm and the connection between the two ceases to be evident. In the third stage, a thick cellulose layer is deposited over the suberin, sometimes mainly on the inner tangential walls. The thickened wall, as well as the original wall in which the Casparian strip is located, may become lignified, creating a secondary cell wall.
Xylan can be converted in xylooligosaccharides by chemical hydrolysis using acids or by enzymatic hydrolysis using endo-xylanases. Some enzymes from yeast can exclusively converts xylan into only xylooligosaccharides-DP-3 to 7. Xylan is a major components of plant secondary cell walls which is a major source of renewable energy especially for second generation biofuels. However, xylose (backbone of xylan) is a pentose sugar that is hard to ferment during biofuel conversion because microorganisms like yeast cannot ferment pentose naturally.
In addition to making the walls more resistant to degradation, the hydrophobic nature of lignin within these tissues is essential for containing water within the vascular tissues that carry it throughout the plant. The secondary cell wall consists primarily of cellulose, along with other polysaccharides, lignin, and glycoprotein. It sometimes consists of three distinct layers - S1, S2 and S3 \- where the direction of the cellulose microfibrils differs between the layers. The direction of the microfibrils is called microfibril angle (MFA).
Several varieties of cathode exist, but typically they can easily divided into two categories, namely charged and discharged. Charged cathodes are materials with pre-existing crystallographic vacancies. These materials, for instance spinels, vanadium pentoxide, molybdenum oxide or LiV3O8, typically are tested in cell configurations with a lithium metal anode as they need a source of lithium to function. While not as common in secondary cell designs, this class is commonly seen in primary batteries that do not require recharging, such as implantable medical device batteries.
In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as flashlights and portable radios. Primary batteries make up about 90% of the $50 billion battery market, but secondary batteries have been gaining market share. About 15 billion primary batteries are thrown away worldwide every year, virtually all ending up in landfills.
In 1135, after persistent attacks from the local Welsh population, the monks retreated to Gloucester where they founded a secondary cell, Llanthony Secunda. However, around 1186 another member of the de Lacy family, Hugh, the fifth baron, endowed the estate with funds from his Irish estates to rebuild the priory church, and this work was completed by 1217. There are also letters from Pope Clement III (CSM,i,p. 157–159), between 1185 and 1188, confirming further grants and gifts to the priory from Adam de Feypo and Geoffrey de Cusack in Ireland.
Regulation of CCR expression is thought to occur primarily at the transcriptional level. In Arabidopsis thaliana, several of the required transcription factors for CCR expression have actually been identified, including MYB58 and MYB63, both of which are implicated generally in secondary cell wall formation. It has been shown that over-expression of these two transcription factors results in a 2- to 3-fold increase in CCR mRNA transcripts, though intriguingly, the up-regulation of genes further upstream in the monolignol pathway is even greater. Non-transcriptional regulation of CCR, however, can be important as well.
Wood, in the strict sense, is yielded by trees, which increase in diameter by the formation, between the existing wood and the inner bark, of new woody layers which envelop the entire stem, living branches, and roots. This process is known as secondary growth; it is the result of cell division in the vascular cambium, a lateral meristem, and subsequent expansion of the new cells. These cells then go on to form thickened secondary cell walls, composed mainly of cellulose, hemicellulose and lignin. Where the differences between the four seasons are distinct, e.g.
A variety of standard sizes of primary cells. From left: 4.5V multicell battery, D, C, AA, AAA, AAAA, A23, 9V multicell battery, (top) LR44, (bottom) CR2032 A primary cell is a battery (a galvanic cell) that is designed to be used once and discarded, and not recharged with electricity and reused like a secondary cell (rechargeable battery). In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity.
The center of the dimers is the main point of catalytic activity, and the lobes are presumed to contain the plant specific PC-R and CS-R. Since cellulose is made in all cell walls, CesA proteins are present in all tissues and cell types of plants. Nonetheless, there are different types of CesA, some tissue types may have varying concentrations of one over another. For example, the AtCesA1 (RSW1) protein is involved in the biosynthesis of primary cell walls throughout the whole plant while the AtCesA7 (IRX3) protein is only expressed in the stem for secondary cell wall production.
The most basic description of the plant extracellular matrix (ECM) is the cell wall, but it is actually the cell surface continuum that includes a variety of proteins with major roles in plant growth, development, and response. The ECM is composed of the primary and secondary cell walls, along with the intercellular gap between its neighboring cells. The ECM has a functional structure, along with aid in the regulation of turgor, which acts as a protective barrier and communicates with other cells using signaling pathways. In mammalian animals, extracellular matrix metalloproteinases (MMPs) modify the ECM to play significant roles in biological processes.
The study also revealed two distinct phases in swarm formation. The first phase occurs when a small number of “pioneer” neutrophils respond to an initial signal and form small clusters and this is followed by the second phase where there are a large scale migration of neutrophils leading to the growth of multiple cell clusters. The exact size or duration of swarms depends on the specific inflammatory conditions as well as the tissue type of the infection location. Several factors that influence the swarm phenotype are: the size of the initial tissue damage, the presence of pathogens, the induction of secondary cell death, and the number of recruited neutrophils.
A battery bank used for an uninterruptible power supply in a data center lithium polymer mobile phone battery A common consumer battery charger for rechargeable AA and AAA batteries A rechargeable battery, storage battery, or secondary cell, (or archaically accumulator) is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network.
Plants synthesise a number of unique polymers like the polysaccharide molecules cellulose, pectin and xyloglucan from which the land plant cell wall is constructed. Vascular land plants make lignin, a polymer used to strengthen the secondary cell walls of xylem tracheids and vessels to keep them from collapsing when a plant sucks water through them under water stress. Lignin is also used in other cell types like sclerenchyma fibres that provide structural support for a plant and is a major constituent of wood. Sporopollenin is a chemically resistant polymer found in the outer cell walls of spores and pollen of land plants responsible for the survival of early land plant spores and the pollen of seed plants in the fossil record.
Remains of Tythe Barn on North Side of Inner Court In 1135 after persistent attacks from the local Welsh population, the monks of Llanthony Priory retreated to Gloucester where they founded a secondary cell, called Llanthony Secunda. In 1530 the prior of Llanthony at Gloucester sent "cheese, carp and baked lampreys" to King Henry VIII at Windsor. It was customary at the commencement of the fishing season to send the sovereign the first lamprey caught in the river. The intermittent custom of the City of Gloucester to present the sovereign at Christmas with a lamprey pie with a raised crust may have originated in the time of King Henry I, who was inordinately fond of lamprey and who frequently held his court at Gloucester during the Christmas season.
Carl Jung credited Gross with having described two general types – "inferiority with shallow consciousness" and "inferiority with contracted consciousness" – that very closely resemble what Jung described as the extraverted feeling and introverted thinking types a decade later. Despite having issues with Gross's theoretical assumptions of a secondary cell function and the "individual" nature of a person's passion, Jung credited Gross with major advances in typological and psychological theory. In his 1913 work A Contribution to the Study of Psychological Types, Jung devoted a paragraph to Otto Gross's contributions. > The relation he [Gross] established between manic-depressive insanity and > the type with a shallow consciousness shows that we are dealing with > extraversion, while the relation between the psychology of the paranoiac and > the type with a contracted consciousness indicates the identity with > introversion (Jung, [1921] 1971: par. 879).
Cellulose biosynthesis is the process during which separate homogeneous β-(1→4)-glucan chains, ranging from 2,000 to 25,000 glucose residues in length, are synthesized and then immediately hydrogen bond with one another to form rigid crystalline arrays, or microfibrils. Microfibrils in the primary cell wall are approximately 36 chains long while those of the secondary cell wall are much larger, containing up to 1200 β-(1→4)-glucan chains. Uridine diphosphate- glucose (UDP), which is produced by the enzyme sucrose synthase (SuSy) that produces and transports UDP-glucose to the plasma membrane is the substrate used by cellulose synthase to produce the glucan chains. The rate at which glucose residues are synthesized per one glucan chain ranges from 300 to 1000 glucose residues per minute, the higher rate being more prevalent in secondary wall particles, such as in the xylem.

No results under this filter, show 48 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.