Sentences Generator
And
Your saved sentences

No sentences have been saved yet

16 Sentences With "precessions"

How to use precessions in a sentence? Find typical usage patterns (collocations)/phrases/context for "precessions" and check conjugation/comparative form for "precessions". Mastering all the usages of "precessions" from sentence examples published by news publications.

The UT-Arlington scientists are following in the footsteps of Donald Olson, a self-described "forensic astronomer" at Texas State University, who has used his expertise to analyze meteor precessions that inspired a painting by Canadian astronomer Gustav Hahn and a poem by Walt Whitman.
Despite being quite small, it is still two orders of magnitude larger than Thomas precession for such a pendulum. The above does not include the de Sitter precession; it would need to be added to get the total relativistic precessions on Earth.
This so-called planetary precession shift amounts to a rotation of the ecliptic plane of 0.47 seconds of arc per year (more than a hundred times smaller than lunisolar precession). The sum of the two precessions is known as the general precession.
The fact that the Earth's gravitational field slightly deviates from being spherically symmetrical also affects the orbits of satellites through secular orbital precessions. They depend on the orientation of the Earth's symmetry axis in the inertial space, and, in the general case, affect all the Keplerian orbital elements with the exception of the semimajor axis. If the reference z axis of the coordinate system adopted is aligned along the Earth's symmetry axis, then only the longitude of the ascending node Ω, the argument of pericenter ω and the mean anomaly M undergo secular precessions. Such perturbations, which were earlier used to map the Earth's gravitational field from space, may play a relevant disturbing role when satellites are used to make tests of general relativity because the much smaller relativistic effects are qualitatively indistinguishable from the oblateness-driven disturbances.
There are various regional Christmas season traditions. In Alvarado and Tlacotalpan, there is the Fiesta Negrohispana, which is a celebration of African identity in Mexico which runs from December 16 to the 24th. In Oaxaca, a major event is the feast day of the patroness of the state, the Virgin of Solitude, on December 18. She is honored with precessions called calendas, with allegorical floats and costumes.
Recreating both requires either a combination of resonance crossings and an encounter between Saturn and an ice giant, or multiple encounters of an ice giant with one or both gas giants. During the smooth migration of the giant planets the ν5 secular resonance sweeps through the inner Solar System, exciting the eccentricities of the terrestrial planets. When planets are in a secular resonance the precessions of their orbits are synchronized, keeping their relative orientations and the average torques exerted between them fixed.
It also corresponds to the rotation of the Laplace–Runge–Lenz vector, which points along the line of apsides. Newton's law of gravitation soon became accepted because it gave very accurate predictions of the motion of all the planets. These calculations were carried out initially by Pierre-Simon Laplace in the late 18th century, and refined by Félix Tisserand in the later 19th century. Conversely, if Newton's law of gravitation did not predict the apsidal precessions of the planets accurately, it would have to be discarded as a theory of gravitation.
Furthermore, for large precession angles, the radius of the excited Laue circle becomes quite large. These contributions combine such that the overall integrated diffraction pattern resembles the kinematical pattern much more closely than a single zone axis pattern. # Broader range of measured reflections: The Laue circle (see Ewald sphere) that is excited at any given moment during precession extends farther into reciprocal space. After integration over multiple precessions, many more reflections in the zeroeth order Laue zone (ZOLZ) are present, and as stated previously, their relative intensities are much more kinematical.
At the same time the stars can be observed to anticipate slightly such motion, at the rate of approximately 50 arc seconds per year, a phenomenon known as the "precession of the equinoxes". In describing this motion astronomers generally have shortened the term to simply "precession". In describing the cause of the motion physicists have also used the term "precession", which has led to some confusion between the observable phenomenon and its cause, which matters because in astronomy, some precessions are real and others are apparent. This issue is further obfuscated by the fact that many astronomers are physicists or astrophysicists.
Two gyroscopes are used to cancel gyroscopic precession, the tendency of a gyroscope to twist at right angles to an input torque. By mounting a pair of gyroscopes (of the same rotational inertia and spinning at the same speed in opposite directions) at right angles the precessions are cancelled and the platform will resist twisting. This system allows a vehicle's roll, pitch and yaw angles to be measured directly at the bearings of the gimbals. Relatively simple electronic circuits can be used to add up the linear accelerations, because the directions of the linear accelerometers do not change.
Pulsars are rapidly rotating neutron stars which emit regular radio pulses as they rotate. As such they act as clocks which allow very precise monitoring of their orbital motions. Observations of pulsars in orbit around other stars have all demonstrated substantial periapsis precessions that cannot be accounted for classically but can be accounted for by using general relativity. For example, the Hulse–Taylor binary pulsar PSR B1913+16 (a pair of neutron stars in which one is detected as a pulsar) has an observed precession of over 4° of arc per year (periastron shift per orbit only about 10−6).
A secular resonance is a type of orbital resonance between two bodies with synchronized precessional frequencies. In celestial mechanics, secular refers to the long-term motion of a system and resonance is when two periods or frequencies are a simple numerical ratio of small integers. Typically, the synchronized precessions in secular resonances are between the rates of change of the argument of the periapses or the rates of change of the longitude of the ascending nodes of two system bodies. Secular resonances can be used to study the long-term orbital evolution of asteroids and their families within the asteroid belt (see the ν6 resonance below).
The ancient Greek astronomer Hipparchos noted the apsidal precession of the Moon's orbit; it is corrected for in the Antikythera Mechanism (circa 80 BCE) with the almost exactly accurate value of 8.88 years per full cycle, correct within 0.34%. The precession of the solar apsides was discovered in the eleventh century by al-Zarqālī., at pp. 314–317. The lunar apsidal precession was not accounted for in Claudius Ptolemy's Almagest, and as a group these precessions, the result of a plethora of phenomena, remained difficult to account for until the 20th century when the last unidentified part of Mercury's precession was precisely explained in Albert Einstein's general theory of relativity.
D=60 cm) Tests of the Lense–Thirring precession, consisting of small secular precessions of the orbit of a test particle in motion around a central rotating mass, for example, a planet or a star, have been performed with the LAGEOS satellites, but many aspects of them remain controversial. The same effect may have been detected in the data of the Mars Global Surveyor (MGS) spacecraft, a former probe in orbit around Mars; also such a test raised a debate. First attempts to detect the Sun's Lense–Thirring effect on the perihelia of the inner planets have been recently reported as well. Frame dragging would cause the orbital plane of stars orbiting near a supermassive black hole to precess about the black hole spin axis.
In general relativity, Lense–Thirring precession or the Lense–Thirring effect (named after Josef Lense and Hans Thirring) is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum S. The difference between de Sitter precession and the Lense–Thirring effect is that the de Sitter effect is due simply to the presence of a central mass, whereas the Lense–Thirring effect is due to the rotation of the central mass. The total precession is calculated by combining the de Sitter precession with the Lense–Thirring precession.
An illustration of what Mars may have looked like during an ice age about 400,000 years ago caused by a large axial tilt As on Earth, the effect of precession causes the north and south celestial poles to move in a very large circle, but on Mars the cycle is 175,000 Earth years rather than 26,000 years as on Earth. As on Earth, there is a second form of precession: the point of perihelion in Mars's orbit changes slowly, causing the anomalistic year to differ from the sidereal year. However, on Mars, this cycle is 83,600 years rather than 112,000 years as on Earth. On both Earth and Mars, these two precessions are in opposite directions, and therefore add, to make the precession cycle between the tropical and anomalistic years 21,000 years on Earth and 56,600 years on Mars.

No results under this filter, show 16 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.