Sentences Generator
And
Your saved sentences

No sentences have been saved yet

52 Sentences With "osmotically"

How to use osmotically in a sentence? Find typical usage patterns (collocations)/phrases/context for "osmotically" and check conjugation/comparative form for "osmotically". Mastering all the usages of "osmotically" from sentence examples published by news publications.

This knowledge can come from movies and television, from teachers and family members; we acquire it almost osmotically by living in our society.
Home Alone is one of those things that is such a part of the collective American consciousness that it can be absorbed osmotically simply by existing in our culture.
Gandhi absorbed many ideas osmotically during an era when a range of artists and thinkers, from William Morris to D. H. Lawrence, deplored the condition of human beings in industrial production and their entrapment in the cash nexus, and emphasized interdependence over individualism.
Make brownies and give them to a friend, family member, or neighbor This is just reinforcing my weird, eating disorder-behavior of fetishizing foods I don't allow myself to eat, watching other people eat these foods and asking them if it's delicious in the hope that I can taste the food osmotically. 19.
The edema can be reversed by irrigating the eye with hypertonic saline which osmotically draws the excess water out of the eye.
Research has found that PMA may plausibly decrease the absorbency of guard cell membranes to solutes, thereby retarding all stomatal movements that are osmotically prompted.
Blood wastes are filtered by the kidneys. Saltwater fish tend to lose water because of osmosis. Their kidneys return water to the body. The reverse happens in freshwater fish: they tend to gain water osmotically.
Thus, a buildup of calcium starts and slowly falls from the first trigger. When the second action potential is fired within the time interval, it reaches the Calcium threshold to depolarize the cell, closing the trap on the prey within a fraction of a second. Together with the subsequent release of positive potassium ions the action potential in plants involves an osmotic loss of salt (KCl). Whereas, the animal action potential is osmotically neutral because equal amounts of entering sodium and leaving potassium cancel each other osmotically.
Their kidneys return water to the body. The reverse happens in freshwater fish: they tend to gain water osmotically. Their kidneys produce dilute urine for excretion. Some fish have specially adapted kidneys that vary in function, allowing them to move from freshwater to saltwater.
Plasma osmolarity of some reptiles, especial those from a freshwater aquatic environment may be lower than that of mammals (e.g. < 260 mOsm/L) during favourable conditions. Consequently, solutions osmotically balanced for mammals (e.g., 0.9% normal saline) are likely to be mildly hypertonic for such animals.
Measured osmolality is abbreviated "MO", calculated osmolarity is abbreviated "CO", and the osmolality gap is abbreviated "OG". Clinically the osmolar gap is used to detect the presence of an osmotically active particle that is not normally found in plasma, usually a toxic alcohol such as ethanol, methanol or isopropyl alcohol.
Specimens found in what is thought to be life positions indicate that the creature rested on — or possibly in — the sediment in shallow seas. No tracks are known that would seem to be consistent with a moving Pteridinium. It is unclear whether it made food via photosynthesis, or osmotically extracted nutrients from seawater.
On one side, the unstressed plants shared their root system with their neighbors to allow for root communication. On the other side, the unstressed plants did not share root systems with their neighbors. Falik et al. found that unstressed plants demonstrated the ability to sense and respond to stress cues emitted from the roots of the osmotically stressed plant.
Two antidiuretic hormones, Arginine vasotocin (AVT) and angiotensin (AII) are increased in blood plasma as a response to hyperosmolality and hypovolemia. AVT triggers antidiuretic hormone (ADH) which targets the nephrons of the kidney. ADH causes a reabsorption of water from the lumen of the nephron to the extracellular fluid osmotically. These extracellular fluids then drain into blood vessels, causing a rehydrating effect.
Avian kidneys do not send urine to a bladder. Instead it is sent via the ureters to the cloaca to be deposited into the lower intestine. The epithelium of the lower intestine absorbs a large amount of sodium chloride, and water follows osmotically to be reabsorbed into the blood stream. This final step insures a concentrated waste product with minimal water and ion loss from excretion.
The water content of these solutions results from the fact water follows the sodium ions (and accompanying anions) osmotically. The same principle applies to the formation of many other body fluids. Calcium ions have a great propensity to bind to proteins. This changes the distribution of electrical charges on the protein, with the consequence that the 3D (or tertiary) structure of the protein is altered.
Some organisms have evolved intricate methods of circumventing hypertonicity. For example, saltwater is hypertonic to the fish that live in it. Because the fish need a large surface area in their gills in contact with seawater for gas exchange, they lose water osmotically to the sea from gill cells. They respond to the loss by drinking large amounts of saltwater, and actively excreting the excess salt.
Drugs for whole bowel irrigation: left side "SCRIT", right side "Niflec". The main component of both products is anhydrous sodium sulfate. Contains a small amount of polyethylene glycol. Whole bowel irrigation (WBI) is a medical process involving the rapid administration of large volumes of an osmotically balanced macrogol solution (GoLYTELY, CoLyte), either orally or via a nasogastric tube, to flush out the entire gastrointestinal tract.
Macrogol is an osmotically acting laxative, that is an inert substance that passes through the gut without being absorbed into the body. It relieves constipation because it causes water to be retained in the bowel instead of being absorbed into the body. This increases the water content and volume of the stools in the bowel, making them softer and easier to pass, as well as improving gut motility.
Technologies for treatment of polluted brine include: membrane filtration processes, such as reverse osmosis and forward osmosis; ion exchange processes such as electrodialysis or weak acid cation exchange; or evaporation processes, such as thermal brine concentrators and crystallizers employing mechanical vapour recompression and steam. New methods for membrane brine concentration, employing osmotically assisted reverse osmosis and related processes, are beginning to gain ground as part of zero liquid discharge systems (ZLD).
Inulin is a natural, storage carbohydrate present in more than 36,000 species of plants, including wheat, onion, bananas, garlic, asparagus, Jerusalem artichoke, and chicory. For these plants, inulin is used as an energy reserve and for regulating cold resistance. Because it is soluble in water, it is osmotically active. Certain plants can change the osmotic potential of their cells by changing the degree of polymerization of inulin molecules by hydrolysis.
This is, however, often greatly reduced, consisting of a small mass of cells without any remaining gill-like structure. Marine teleosts also use gills to excrete electrolytes. The gills' large surface area tends to create a problem for fish that seek to regulate the osmolarity of their internal fluids. Saltwater is less dilute than these internal fluids, so saltwater fish lose large quantities of water osmotically through their gills.
SGK1 is upregulated by osmotic and isotonic cell shrinkage. "It is tempting to speculate that SGK1-dependent regulation of cation channels contributes to the regulation of cell volume, which involves cation channels in a variety of cells". The entrance of NaCl and osmotically driven water into cells leads to an increase in the cell's regulatory cell volume. This occurs as the entrance of Na+ depolarizes the cell, thus allowing the parallel entrance of Cl−.
A synaptosome is an isolated synaptic terminal from a neuron. Synaptosomes are obtained by mild homogenization of nervous tissue under isotonic conditions and subsequent fractionation using differential and density gradient centrifugation. Liquid shear detaches the nerve terminals from the axon and the plasma membrane surrounding the nerve terminal particle reseals. Synaptosomes are osmotically sensitive, contain numerous small clear synaptic vesicles, sometimes larger dense-core vesicles and frequently one or more small mitochondria.
To regain the water, they drink large amounts of seawater and excrete the salt. Freshwater is more dilute than the internal fluids of fish, however, so freshwater fish gain water osmotically through their gills. In some primitive bony fishes and amphibians, the larvae bear external gills, branching off from the gill arches. These are reduced in adulthood, their function taken over by the gills proper in fishes and by lungs in most amphibians.
The terminal portion of the small bowel (ileum) is where bile acids are reabsorbed. When this section is removed, the bile acids pass into the large bowel and cause diarrhea due to stimulation of chloride/fluid secretion by the colonocytes resulting in a secretory diarrhea. Colestyramine prevents this increase in water by making the bile acids insoluble and osmotically inactive. Colestyramine is also used in the control of other types of bile acid diarrhea.
The water that is osmotically flowing into the lens fibers is not accompanied by ions such as Na+, K+, and Cl−, and so the electrolyte concentration inside the lens is simply diluted by the influx of water. The net concentration of the individual ions does not change during the initial vacuolar stage however. In Fig. 7, note the decrease in electrolyte concentration due to osmotic swelling during the initial vacuolar stage of galactosemic cataract.
According to other definitions, the term also encompasses yeasts. The name spheroplast stems from the fact that after the microbe's cell wall is digested, membrane tension causes the cell to acquire a characteristic spherical shape. Spheroplasts are osmotically fragile, and will lyse if transferred to a hypotonic solution. When used to describe Gram-negative bacteria, the term spheroplast refers to cells from which the peptidoglycan component but not the outer membrane component of the cell wall has been removed.
The basis of many functional gastrointestinal disorders (FGIDs) is distension of the intestinal lumen. Such luminal distension may induce pain, a sensation of bloating, abdominal distension and motility disorders. Therapeutic approaches seek to reduce factors that lead to distension, particularly of the distal small and proximal large intestine. Food substances that can induce distension are those that are poorly absorbed in the proximal small intestine, osmotically active, and fermented by intestinal bacteria with hydrogen (as opposed to methane) production.
In mammals, an elegant rete mirabile in the efferent arterioles of juxtamedullary glomeruli is important in maintaining the hypertonicity of the renal medulla. It is the hypertonicity of this zone, resorbing water osmotically from the renal collecting ducts as they exit the kidney, that makes possible the excretion of a hypertonic urine and maximum conservation of body water. Vascular retia mirabilia are also found in the limbs of a range of mammals. These reduce the temperature in the extremities.
One study found that both salt and sour taste mechanisms detect, in different ways, the presence of sodium chloride (salt) in the mouth. However, acids are also detected and perceived as sour. The detection of salt is important to many organisms, but specifically mammals, as it serves a critical role in ion and water homeostasis in the body. It is specifically needed in the mammalian kidney as an osmotically active compound which facilitates passive re-uptake of water into the blood.
However, at this stage there is no cavity within the morula; the embryo is still a ball of dividing cells. In a process called cavitation, the trophoblast cells secrete fluid into the morula to create a blastocoel, the fluid-filled cavity. The membranes of the trophoblast cells contain sodium (Na+) pumps, Na+/K+\- ATPase and Na+/H+ exchangers, that pump sodium into the centrally forming cavity. The accumulation of sodium pulls in water osmotically, creating and enlarging the blastocoel within the mammalian embryo.
These solutions also contain ingredients to minimize damage by free radicals, prevent edema, compensate for ATP loss, etc. Cryopreservation of cells is guided by the "two-factor hypothesis" of American cryobiologist Peter Mazur, which states that excessively rapid cooling kills cells by intracellular ice formation and excessively slow cooling kills cells by either electrolyte toxicity or mechanical crushing. During slow cooling, ice forms extracellularly, causing water to osmotically leave cells, thereby dehydrating them. Intracellular ice can be much more damaging than extracellular ice.
TRPC6 is a calcium-permeable non-selective cation channel expressed in the cardiovascular system. TRPC6 is potentially a sensor of mechanically and osmotically induced membrane stretch, and is possibly directly gated by membrane tension. Other examples include TREK-1 and TRAAK which are found in mammalian neurons and are classified as potassium channels in the tandem pore domain class and "MID-1" (also known as "MCLC" or CLCC1.) The six K2P channel subfamilies are regulated by various physical, cellular, and pharmacological stimulants, including membrane stretch, heat, pH change, calcium flux, and protein kinases.
The most distinctive feature of this species is its buoyancy organ, an internal, chambered, endogastrically coiled shell in the shape of an open planispiral (a flat spiral wherein the coils do not touch each other), and consisting of two prismatic layers. The shell functions to osmotically control buoyancy; the gas-filled chambers keep the spirula in a vertical, head-down attitude. Another trait is that it is mineralized, a feature only seen in cuttlefish and the nautilus amongst extant species. The siphuncle is marginal, on the inner surface of the spiral.
Significant increases in glucose, fructose, sucrose in fruits and proline content in leaves showed some tendency of this crop to adjust osmotically to water stress. Water stress increased the sugar and acid contents (ascorbic, malic and citric acid) of the tomato fruits and thus improved the fruit quality. This study investigates the effects of water stress on moisture content distribution at different soil layers (pot) and on morphological characters of tomato plants. Moisture content distribution was higher at the surface and decreased with increasing stress at all growth stages.
Nonketotic hyperosmolar coma (HNS) is an acute complication sharing many symptoms with DKA, but an entirely different origin and different treatment. A person with very high (usually considered to be above 300 mg/dl (16 mmol/L)) blood glucose levels, water is osmotically drawn out of cells into the blood and the kidneys eventually begin to dump glucose into the urine. This results in loss of water and an increase in blood osmolarity. If fluid is not replaced (by mouth or intravenously), the osmotic effect of high glucose levels, combined with the loss of water, will eventually lead to dehydration.
W. Kundt, Reidel 1987, pp. 1-28. on 'neutron stars, active galactic nuclei, and jets'. His scientific interests thereby moved from gravitational waves to neutron stars and accretion disks, to the astrophysical jets, to supernova explosions and gamma-ray bursts, further to terrestrial plate tectonics, to the Tunguska event, and to the osmotically pumped water circulation in plants. With these widely spaced interests, he followed his teacher Pascual Jordan, and decades- long friend Thomas Gold; they influenced his almost 300 publications, among them the books "Astrophysics, a new approach" Kundt, W.: ASTROPHYSICS, A new Approach, Springer A & A Library, 2005, 235 pages.
With all the essential molecules inside the epithelial cell, some such as Cl-, glucose and vitamins pass through their respective channels on the basal lateral side into the blood. Na+ continues to be pumped into the blood maintaining the osmotic gradient allowing for continuous reabsorption of these molecules and ions.Muller, Michael, "The Excretory System" , "University of Illinois at Chicago, Department of Biological Sciences", 2004 Terrestrial birds like the Corvus corax produce urine that is osmotically more concentrated then its blood plasma. This is likely due to the fact that water is not as abundant in raven habitat.
Osmotherapy is the use of osmotically active substances to reduce the volume of intracranial contents. Osmotherapy serves as the primary medical treatment for cerebral edema. The primary purpose of osmotherapy is to improve elasticity and decrease intracranial volume by removing free water, accumulated as a result of cerebral edema, from brain's extracellular and intracellular space into vascular compartment by creating an osmotic gradient between the blood and brain. Normal serum osmolality ranges from 280-290 mOsm/kg and serum osmolality to cause water removal from brain without much side effects ranges from 300-320 mOsm/kg.
Counter current multiplier diagram The loop of Henle is supplied by blood in a series of straight capillaries descending from the cortical efferent arterioles. These capillaries (called the vasa recta; recta is from the Latin for "straight") also have a countercurrent multiplier mechanism that prevents washout of solutes from the medulla, thereby maintaining the medullary concentration. As water is osmotically driven from the descending limb into the interstitium, it readily enters the capillaries. The low bloodflow through the vasa recta allows time for osmotic equilibration, and can be altered by changing the resistance of the vessels' efferent arterioles.
Forward osmosis based feedwater pre-treatment for multi stage flash distillation One unexploited application is to 'soften' or pre-treat the feedwater to multi stage flash (MSF) or multiple effect distillation (MED) plants by osmotically diluting the recirculating brine with the cooling water. This reduces the concentrations of scale forming calcium carbonate and calcium sulphate compared to the normal process, thus allowing an increase in top brine temperature (TBT), output and gained output ratio (GOR). Darwish et al. showed that the TBT could be raised from 110 °C to 135 °C whilst maintaining the same scaling index for calcium sulphate.
High levels of stimulation and subsequent ionic influx through activated ion channels can result in cellular swelling as osmotically-obliged water is drawn into neurons along with ionic solutes. This phenomenon is known as excitotoxicity. KCC2 has been shown to be activated by cell-swelling, and may therefore play a role in eliminating excess ions following periods of high stimulation in order to maintain steady-state neuronal volume and prevent cells from bursting. This role may also account for the fact that KCC2 has been known to colocalize near excitatory synapses, even though its primary role is to establish the chloride gradient for postsynaptic inhibition.
Today, tin-coated steel is the material most commonly used. Laminate vacuum pouches are also used for canning, such as used in MREs and Capri Sun drinks. To prevent the food from being spoiled before and during containment, a number of methods are used: pasteurisation, boiling (and other applications of high temperature over a period of time), refrigeration, freezing, drying, vacuum treatment, antimicrobial agents that are natural to the recipe of the foods being preserved, a sufficient dose of ionizing radiation, submersion in a strong saline solution, acid, base, osmotically extreme (for example very sugary) or other microbially-challenging environments. Other than sterilization, no method is perfectly dependable as a preservative.
Ronald Kaback became interested in membrane transport at a time when studies on biological membranes were in their infancy, and in the early phase of his career, he developed a cell-free membrane system to study active transport. The system consisted of osmotically sealed membrane vesicles of defined orientation (right-side-out) that catalyze active transport essentially as well as intact cells, but lack subsequent metabolism of the solutes accumulated. These vesicles were dubbed Kabackosomes by the Dutch scientist Wilhelmus N. Konings, Kaback's close friend and early collaborator. In addition to transforming the field of transport from phenomenology to biochemistry, this seminal development caused him to forego the practice of pediatrics for a career in basic science.
Cytoplasmic galectin-8 and galectin-9 have been shown to control mTOR (mTORC1) and PRKAA (AMPK) in response to lysosomal membrane damage. Lysosomal perforation and other endomembrane damage can be inflicted by various agents such as some chemicals yielding osmotically active products, crystalline silica, possibly amyloid aggregates and cytoplasmic organic or inorganic crystals, as well as intracellular microbial pathogens such as Mycobacterium tuberculosis; such injury can be modeled using membrane-permeant dipeptide precursors that polymerize in lysosomes,. Under resting, homeostatic conditions galectin-8 interacts with mTOR, which in its active state resides on the cytosolic (cytofacial) side of lysosomal membranes. However, under lysosome damaging conditions leading to exposure of the exofacially, i.e.
The particles are electrically active. They can be ferroelectric or, as mentioned above, made from a conducting material coated with an insulator, or electro- osmotically active particles. In the case of ferroelectric or conducting material, the particles would have a high dielectric constant. There may be some confusion here as to the dielectric constant of a conductor, but "if a material with a high dielectric constant is placed in an electric field, the magnitude of that field will be measurably reduced within the volume of the dielectric" (see main page: Dielectric constant), and since the electric field is zero in an ideal conductor, then in this context the dielectric constant of a conductor is infinite.
While studying RhD, Agre's team serendipitously discovered a 28 kilodalton red cell membrane protein. Also abundant in kidney tubules, the 28 kDa protein was related to proteins from diverse origins including fruit fly brain, mammalian lens, bacteria, and plants. Since the function was unknown, Agre consulted John C. Parker, his former hematology professor at the University of North Carolina, who suggested that the protein may be the long-sought water channel responsible for rapid movements of water across the membranes of red cells and certain other cell types. Teaming up with William Guggino at the Department of Physiology at Johns Hopkins, Agre's postdoctoral fellow Gregory Preston confirmed water channel function by expressing the cRNA in Xenopus laevis oocytes (frog eggs) that then became osmotically active and exploded in fresh water.
In 1919, Weed and McKibben, biomedical researchers at Johns Hopkins Medical School, were the first ones to document the use and effect of osmotically active substances on brain mass. While studying transfer of salt solutions from blood to Cerebrospinal Fluid (CSF), they first noted that concentrated sodium chloride intravenous (IV) injection led to collapse of the thecal sac which prevented them from withdrawing CSF from the lumbar cistern. In order to further study the effect, they conducted lab experiments on anesthetized cats which underwent craniotomy. They observed changes to the convexity of cat's brain upon IV injection, specifically, they noted that Hypertonic Saline IV injection resulted in maximum shrinkage of the brain in 15-30 mins, while administration of hypotonic solutions resulted in protrusion and rupture of the brain tissue.
However, like most sugar alcohols, it carries a risk of gastric distress, including flatulence and diarrhea, when consumed in large quantities (above about 20–30 g (1 oz) per day). Isomalt may prove upsetting to the intestinal tract because it is incompletely absorbed in the small intestine, and when polyols pass into the large intestine, they can cause osmotically induced diarrhea and stimulate the gut flora, causing flatulence. As with dietary fibers, regular consumption of isomalt can lead to desensitisation, decreasing the risk of intestinal upset. Isomalt can be blended with high-intensity sweeteners such as sucralose, giving a mixture that has the same sweetness as sugar. Isomalt is an equimolar mixture of two diastereomeric disaccharides, each composed of two sugars: glucose and mannitol (α-D-glucopyranosido-1,6-mannitol) and also glucose and sorbitol (α-D-glucopyranosido-1,6-sorbitol).
Transient receptor potential cation channel subfamily V member 4 is an ion channel protein that in humans is encoded by the TRPV4 gene. The TRPV4 gene encodes TRPV4, initially named "vanilloid-receptor related osmotically activated channel" (VR-OAC) and "OSM9-like transient receptor potential channel, member 4 (OTRPC4)", a member of the vanilloid subfamily in the transient receptor potential (TRP) superfamily of ion channels. The encoded protein is a Ca2+-permeable, nonselective cation channel that has been found involved in multiple physiologic functions, dysfunctions and also disease. It functions in the regulation of systemic osmotic pressure by the brain, in vascular function, in liver, intestinal, renal and bladder function, in skin barrier function and response of the skin to ultraviolet-B radiation, in growth and structural integrity of the skeleton, in function of joints, in airway- and lung function, in retinal and inner ear function, and in pain.
Active mTORC1 is positioned on lysosomes. mTOR is inhibited when lysosomal membrane is damaged by various exogenous or endogenous agents, such as invading bacteria, membrane-permeant chemicals yielding osmotically active products (this type of injury can be modeled using membrane-permeant dipeptide precursors that polymerize in lysosomes), amyloid protein aggregates (see above section on Alzheimer's disease) and cytoplasmic organic or inorganic inclusions including urate crystals and crystalline silica. The process of mTOR inactivation following lysosomal/endomembrane is mediated by the protein complex termed GALTOR. At the heart of GALTOR is galectin-8, a member of β-galactoside binding superfamily of cytosolic lectins termed galectins, which recognizes lysosomal membrane damage by binding to the exposed glycans on the lumenal side of the delimiting endomembrane. Following membrane damage, galectin-8, which normally associates with mTOR under homeostatic conditions, no longer interacts with mTOR but now instead binds to SLC38A9, RRAGA/RRAGB, and LAMTOR1, inhibiting Ragulator's (LAMTOR1-5 complex) guanine nucleotide exchange function- TOR is a negative regulator of autophagy in general, best studied during response to starvation, which is a metabolic response.

No results under this filter, show 52 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.