Sentences Generator
And
Your saved sentences

No sentences have been saved yet

52 Sentences With "optical microscopes"

How to use optical microscopes in a sentence? Find typical usage patterns (collocations)/phrases/context for "optical microscopes" and check conjugation/comparative form for "optical microscopes". Mastering all the usages of "optical microscopes" from sentence examples published by news publications.

The magnification of optical microscopes was too weak to show them up.
By fusing proteins with fluorescent tags, they have enabled scientists using optical microscopes to track the biological processes inside living cells.
Lara Gonzalez Carratero, a PhD student at University College London, imaged 24 ashy remnants recovered from Shubayqa 1 using scanning electron microscopy, a far more precise imaging method than traditional optical microscopes.
Selection of a certain irradiation dose allows tuning the concentration of produced N-V centers such that individual N-V centers are separated by micrometre-large distances. Then, individual N-V centers can be studied with standard optical microscopes or, better, near-field scanning optical microscopes having sub-micrometre resolution.
Alternatively, microscopes can be classified based on whether they analyze the sample via a scanning point (confocal optical microscopes, scanning electron microscopes and scanning probe microscopes) or analyze the sample all at once (wide field optical microscopes and transmission electron microscopes). Wide field optical microscopes and transmission electron microscopes both use the theory of lenses (optics for light microscopes and electromagnet lenses for electron microscopes) in order to magnify the image generated by the passage of a wave transmitted through the sample, or reflected by the sample. The waves used are electromagnetic (in optical microscopes) or electron beams (in electron microscopes). Resolution in these microscopes is limited by the wavelength of the radiation used to image the sample, where shorter wavelengths allow for a higher resolution.
With current optical microscopes, scientists can only make out relatively large structures within a cell, such as its nucleus and mitochondria. With a superlens, optical microscopes could one day reveal the movements of individual proteins traveling along the microtubules that make up a cell's skeleton, the researchers said. Optical microscopes can capture an entire frame with a single snapshot in a fraction of a second. With superlenses this opens up nanoscale imaging to living materials, which can help biologists better understand cell structure and function in real time.
For his PhD he focused on developing high-resolution optical microscopes that could see past the theoretical limit of .2 micrometers.
The most common type of microscope (and the first invented) is the optical microscope. This is an optical instrument containing one or more lenses producing an enlarged image of a sample placed in the focal plane. Optical microscopes have refractive glass (occasionally plastic or quartz), to focus light on the eye or on to another light detector. Mirror- based optical microscopes operate in the same manner.
In contrast to conventional optical microscopes it enables patients, students and staff to see precisely the same view as the surgeon. Moreover, the same quality images can be recorded for documentation and educative purposes.
Elert, Glenn. "Aberration." – The Physics Hypertextbook. The use of achromats was an important step in the development of optical microscopes and telescopes. An alternative to achromatic doublets is the use of diffractive optical elements.
Historically, the calculation of glass properties is directly related to the founding of glass science. At the end of the 19th century the physicist Ernst Abbe developed equations that allow calculating the design of optimized optical microscopes in Jena, Germany, stimulated by co-operation with the optical workshop of Carl Zeiss. Before Ernst Abbe's time the building of microscopes was mainly a work of art and experienced craftsmanship, resulting in very expensive optical microscopes with variable quality. Now Ernst Abbe knew exactly how to construct an excellent microscope, but unfortunately, the required lenses and prisms with specific ratios of refractive index and dispersion did not exist.
Prior Scientific Instruments Ltd was established in London in 1919 as a manufacturer of optical microscopes. It is the last traditional microscope manufacturer of makers such as Vickers, W.Watson and Son, Baker, Charles Perry, Cooke, Troughton & Simms and many others who have ceased to produce microscopes.
Photon emission can be detected by light sensitive apparatus such as a luminometer or modified optical microscopes. This allows observation of biological processes. Since light excitation is not needed for luciferase bioluminescence, there is minimal autofluorescence and therefore virtually background-free fluorescence. Therefore, as little as 0.02 pg can still be accurately measured using a standard scintillation counter.
Types of microscopes illustrated by the principles of their beam paths Evolution of spatial resolution achieved with optical, transmission (TEM) and aberration-corrected electron microscopes (ACTEM). Microscopes can be separated into several different classes. One grouping is based on what interacts with the sample to generate the image, i.e., light or photons (optical microscopes), electrons (electron microscopes) or a probe (scanning probe microscopes).
In both cases, the coefficient of friction is simplified to the ratio of the two masses: :\mu\ = m_H / m_T In most test applications using tribometers, wear is measured by comparing the mass or surfaces of test specimens before and after testing. Equipment and methods used to examine the worn surfaces include optical microscopes, scanning electron microscopes, optical interferometry and mechanical roughness testers.
Nikon's N-SIM microscopy system can produce two times conventional resolution by combining Structured Illumination Microscopy technology licensed from UCSF based on Nikon's Eclipse Ti research inverted microscope. N-STORM is a new super-resolution microscope system that combines “Stochastic Optical Reconstruction Microscopy” technology (licensed from Harvard University) and Nikon's Eclipse Ti, providing resolution that is 10 times greater than that of conventional optical microscopes.
The electron microscope directs a focused beam of electrons at a specimen. Some electrons change their properties, such as movement direction, angle, and relative phase and energy as the beam interacts with the material. Microscopists can record these changes in the electron beam to produce atomically resolved images of the material. In blue light, conventional optical microscopes have a diffraction-limited resolution of about 200 nm.
Once in the lab, they can use equipment such as optical microscopes, in order to actually see evidence of micro organic remains. Archaeologists that look at these microorganisms do not actually find the living bacteria or protist, but instead find indentations left behind in material from where they had been. Depending on where the indentations were in the strata, archaeologists can determine the age of the microorganisms.
Birefringence is utilized in medical diagnostics. One powerful accessory used with optical microscopes is a pair of crossed polarizing filters. Light from the source is polarized in the direction after passing through the first polarizer, but above the specimen is a polarizer (a so- called analyzer) oriented in the direction. Therefore, no light from the source will be accepted by the analyzer, and the field will appear dark.
In all instances and contrary to optical microscopes, rendering software is necessary to produce images. Such software is produced and embedded by instrument manufacturers but also available as an accessory from specialized work groups or companies. The main packages used are freeware: Gwyddion, WSxM (developed by Nanotec) and commercial: SPIP (developed by Image Metrology), FemtoScan Online (developed by Advanced Technologies Center), MountainsMap SPM (developed by Digital Surf), TopoStitch (developed by Image Metrology).
Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast. The object is placed on a stage and may be directly viewed through one or two eyepieces on the microscope. In high-power microscopes, both eyepieces typically show the same image, but with a stereo microscope, slightly different images are used to create a 3-D effect. A camera is typically used to capture the image (micrograph).
Leica Microsystems GmbH is a manufacturer of optical microscopes, equipment for the preparation of microscopic specimens and related products. There are ten plants in eight countries with distribution partners in over 100 countries. Leica Microsystems emerged in 1997 out of a 1990 merger between Wild-Leitz, headquartered in Heerbrugg Switzerland and Cambridge Instruments of Cambridge England. The merger of those two umbrella companies created an alliance of the following 8 individual manufacturers of scientific instruments.
One potential application is microscopy beyond the diffraction limit. Gradient index plasmonics were used to produce Luneburg and Eaton lenses that interact with surface plasmon polaritons rather than photons. A theorized superlens could exceed the diffraction limit that prevents standard (positive-index) lenses from resolving objects smaller than one-half of the wavelength of visible light. Such a superlens would capture spatial information that is beyond the view of conventional optical microscopes.
In practice it is considered to be 2× the aperture in millimetres or 50× the aperture in inches; so, a 60mm diameter telescope has a maximum usable magnification of 120×. With an optical microscope having a high numerical aperture and using oil immersion, the best possible resolution is 200 nm corresponding to a magnification of around 1200×. Without oil immersion, the maximum usable magnification is around 800×. For details, see limitations of optical microscopes.
A modern optical microscope with a mercury bulb for fluorescence microscopy. The microscope has a digital camera which is connected to a computer. The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
Diagram of a simple microscope There are two basic types of optical microscopes: simple microscopes and compound microscopes. A simple microscope uses the optical power of single lens or group of lenses for magnification. A compound microscope uses a system of lenses (one set enlarging the image produced by another) to achieve much higher magnification of an object. The vast majority of modern research microscopes are compound microscopes while some cheaper commercial digital microscopes are simple single lens microscopes.
But the optical quality did not improve until the 1880s when he hired Otto Schott and eventually Ernst Abbe. Optical microscopes can focus on objects the size of a wavelength or larger, giving restrictions still to advancement in discoveries with objects smaller than the wavelengths of visible light. The development of the electron microscope in the 1920s made it possible to view objects that are smaller than optical wavelengths, once again opening up new possibilities in science.
Thin section of quartz from a hydrothermal vein – upper in CL and lower in transmitted light A cathodoluminescence (CL) microscope combines methods from electron and regular (light optical) microscopes. It is designed to study the luminescence characteristics of polished thin sections of solids irradiated by an electron beam. Using a cathodoluminescence microscope, structures within crystals or fabrics can be made visible which cannot be seen in normal light conditions. Thus, for example, valuable information on the growth of minerals can be obtained.
The material featured ultra-thin and ultra- smooth layers with sharp interfaces. Possible applications include a “planar hyperlens” that could make optical microscopes able to see objects as small as DNA, advanced sensors, more efficient solar collectors, nano-resonators, quantum computing and diffraction free focusing and imaging. The material works across a broad spectrum from near-infrared to visible light. Near- infrared is essential for telecommunications and optical communications, and visible light is important for sensors, microscopes and efficient solid-state light sources.
Polarizing sheets are used in liquid-crystal displays, optical microscopes and sunglasses. Since Polaroid sheet is dichroic, it will absorb impinging light of one plane of polarization, so sunglasses will reduce the partially polarized light reflected from level surfaces such as windows and sheets of water, for example. They are also used to examine for chain orientation in transparent plastic products made from polystyrene or polycarbonate. The intensity of light passing through a Polaroid polarizer is described by Malus' law.
To better study the fission tracks created, the natural damage tracks are further enlarged by chemical etching so they can be viewed under ordinary optical microscopes. The age of the mineral is then determined by first knowing the spontaneous rate of fission decay, and then measuring the number of tracks accumulated over the mineral's lifetime as well as estimating the amount of Uranium still present. At higher temperatures, fission tracks are known to anneal. Therefore, exact dating of samples is very hard.
Ultraviolet microscopes have two main purposes. The first is to utilize the shorter wavelength of ultraviolet electromagnetic energy to improve the image resolution beyond that of the diffraction limit of standard optical microscopes. This technique is used for non-destructive inspection of devices with very small features such as those found in modern semiconductors. The second application for UV microscopes is contrast enhancement where the response of individual samples is enhanced, relative to their surrounding, due to the interaction of light with the molecules within the sample itself.
The Rayleigh criterion specifies that two point sources can be considered to be resolvable if the separation of the two images is at least the radius of the Airy disk, i.e. if the first minimum of one coincides with the maximum of the other. Thus, the larger the aperture of the lens, and the smaller the wavelength, the finer the resolution of an imaging system. This is why telescopes have very large lenses or mirrors, and why optical microscopes are limited in the detail which they can see.
In 2005 the imaging resolution limit for optical microscopes was at about one tenth the diameter of a red blood cell. With the silver superlens this results in a resolution of one hundredth of the diameter of a red blood cell. Conventional lenses, whether man-made or natural, create images by capturing the propagating light waves all objects emit and then bending them. The angle of the bend is determined by the index of refraction and has always been positive until the fabrication of artificial negative index materials.
Combinations of microlens arrays have been designed that have novel imaging properties, such as the ability to form an image at unit magnification and not inverted as is the case with conventional lenses. Micro-lens arrays have been developed to form compact imaging devices for applications such as photocopiers and mobile-phone cameras. In optical microscopes, two microlens arrays can be used to realize uniform illumination. By placing two microlens arrays into the illumination path of a microscope, a coefficient of variation of the illumination uniformity between 1% and 2% can be achieved.
A Zeiss 100 cm aperture reflecting telescope Zeiss star projector for a planetarium The Zeiss company was responsible for many innovations in optical design and engineering in each of their major fields of business. Today this becomes exemplarily visible in the latest EUV lithography systems, the equipment needed to produce the latest generations of semiconductor components. It also includes early high- performance optical microscopes up to today's electron and ion microscopes, which reach a sub-nanometers resolution. It includes technology leadership in the first surgical microscopes and ophthalmic devices.
A range of objective lenses with different magnification are usually provided mounted on a turret, allowing them to be rotated into place and providing an ability to zoom-in. The maximum magnification power of optical microscopes is typically limited to around 1000x because of the limited resolving power of visible light. The magnification of a compound optical microscope is the product of the magnification of the eyepiece (say 10x) and the objective lens (say 100x), to give a total magnification of 1,000×. Modified environments such as the use of oil or ultraviolet light can increase the magnification.
An additional factor with these systems is that light around the 1550 nm wavelength band (common for optical amplifiers) is regarded as relatively low risk, since the eye fluids absorb the light before it is focused on the retina. This tends to reduce the overall risk factor of such systems. Optical microscopes and magnifying devices also present unique safety challenges. If any optical power is present, and a simple magnifying device is used to examine the fiber end, then the user is no longer protected by beam divergence, since the entire beam may be imaged onto the eye.
In CLSM a specimen is illuminated by a point laser source, and each volume element is associated with a discrete scattering or fluorescence intensity. Here, the size of the scanning volume is determined by the spot size (close to diffraction limit) of the optical system because the image of the scanning laser is not an infinitely small point but a three-dimensional diffraction pattern. The size of this diffraction pattern and the focal volume it defines is controlled by the numerical aperture of the system's objective lens and the wavelength of the laser used. This can be seen as the classical resolution limit of conventional optical microscopes using wide-field illumination.
All optical microscopes are diffraction-limited because of the wave nature of light. Current research focuses on techniques to go beyond this limit known as the Rayleigh criterion. The use of SIL can achieve spatial resolution better than the diffraction limit in air, for both far-field imaging R. Chen, K. Agarwal, C. Sheppard, J. Phang, and X. Chen, "A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope," Opt. Express 21, 14316-14330 (2013). L. Hu, R. Chen, K. Agarwal, C. Sheppard, J. Phang, and X. Chen, "Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy," Opt.
The diffraction limit is only valid in the far field as it assumes that no evanescent fields reach the detector. Various near-field techniques that operate less than ≈1 wavelength of light away from the image plane can obtain substantially higher resolution. These techniques exploit the fact that the evanescent field contains information beyond the diffraction limit which can be used to construct very high resolution images, in principle beating the diffraction limit by a factor proportional to how well a specific imaging system can detect the near-field signal. For scattered light imaging, instruments such as near-field scanning optical microscopes peripherally resemble an atomic force microscope.
The microstructure of a material (such as metals, polymers, ceramics or composites) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behaviour or wear resistance. These properties in turn govern the application of these materials in industrial practice. Microstructure at scales smaller than that can be viewed with optical microscopes is often called nanostructure, while the structure in which individual atoms are arranged is known as crystal structure. The nanostructure of biological specimens is referred to as ultrastructure. A microstructure’s influence on the mechanical and physical properties of a material is primarily governed by the different defects present or absent of the structure.
The versatility of dielectric coatings leads to their use in many scientific optical instruments (such as lasers, optical microscopes, refracting telescopes, and interferometers) as well as consumer devices such as binoculars, spectacles, and photographic lenses. Dielectric layers are sometimes applied over top of metal films, either to provide a protective layer (as in silicon dioxide over aluminium), or to enhance the reflectivity of the metal film. Metal and dielectric combinations are also used to make advanced coatings that cannot be made any other way. One example is the so- called "perfect mirror", which exhibits high (but not perfect) reflection, with unusually low sensitivity to wavelength, angle, and polarization.
The earliest reported observations of pollen under a microscope are likely to have been in the 1640s by the English botanist Nehemiah Grew, who described pollen and the stamen, and concluded that pollen is required for sexual reproduction in flowering plants. By the late 1870s, as optical microscopes improved and the principles of stratigraphy were worked out, Robert Kidston and P. Reinsch were able to examine the presence of fossil spores in the Devonian and Carboniferous coal seams and make comparisons between the living spores and the ancient fossil spores. Early investigators include Christian Gottfried Ehrenberg (radiolarians, diatoms and dinoflagellate cysts), Gideon Mantell (desmids) and Henry Hopley White (dinoflagellate cysts).
It is a useful concept in Fourier optics, astronomical imaging, medical imaging, electron microscopy and other imaging techniques such as 3D microscopy (like in confocal laser scanning microscopy) and fluorescence microscopy. The degree of spreading (blurring) of the point object is a measure for the quality of an imaging system. In non-coherent imaging systems, such as fluorescent microscopes, telescopes or optical microscopes, the image formation process is linear in the image intensity and described by linear system theory. This means that when two objects A and B are imaged simultaneously, the resulting image is equal to the sum of the independently imaged objects.
While optical microscopes have been around and used for particle analysis since the 1600s, the "analysis" in the past has been accomplished by humans using the human visual system. As such, much of this analysis is subjective, or qualitative in nature. Even when some sort of qualitative tools are available, such as a measuring reticle in the microscope, it has still required a human to determine and record those measurements. Beginning in the late 1800s with the availability of photographic plates, it became possible to capture microscope images permanently on film or paper, making measurements easier to acquire by simply using a scaled ruler on the hard copy image.
Many of the simpler units which connect to a computer use standard operating system facilities, and do not require device-specific drivers. A consequence of this is that many different microscope software packages can be used interchangeably with different microscopes, although such software may not support features unique to the more advanced devices. Basic operation may be possible with software included as part of computer operating systems--in Windows XP, images from microscopes which do not require special drivers can be viewed and recorded from "Scanners and Cameras" in Control Panel. The more advanced digital microscope units have stands that hold the microscope and allow it to be racked up and down, similarly to standard optical microscopes.
Clay cannot be resolved by optical microscopes as its particles are or less in diameter and a thickness of only 10 angstroms (10−10 m). In medium-textured soils, clay is often washed downward through the soil profile (a process called eluviation) and accumulates in the subsoil (a process called illuviation). There is no clear relationship between the size of soil mineral components and their mineralogical nature: sand and silt particles can be calcareous as well as siliceous, while textural clay () can be made of very fine quartz particles as well as of multi-layered secondary minerals. Soil mineral components belonging to a given textural class may thus share properties linked to their specific surface area (e.g.
MEMS (microelectromechanical systems) for in situ mechanical characterization refers to microfabricated systems (lab-on-a-chip) used to measure the mechanical properties (Young’s modulus, fracture strength) of nanoscale specimens such as nanowires, nanorods, whiskers, nanotubes and thin films. They distinguish themselves from other methods of nanomechanical testing because the sensing and actuation mechanisms are embedded and/or co-fabricated in the microsystem, providing — in the majority of cases— greater sensitivity and precision. This level of integration and miniaturization allows carrying out the mechanical characterization in situ, i.e., testing while observing the evolution of the sample in high magnification instruments such as optical microscopes, scanning electron microscopes (SEM), transmission electron microscopes (TEM) and X-ray setups.
Carbon-based pigments such as soot have been used to create tattoos on human skin all across the world for at least the last 5,300 years. The oldest examples of carbon-based tattooing discovered to date appear as 61 marks on the body of the 5,300 year old Tyrolean ice mummy known as Ötzi, discovered in 1991 near Similaun mountain and Hauslabjoch on the border between Austria and Italy. This is also believed to be the oldest example of all human tattooing. Skin samples from several of the Iceman's tattoos were examined by researchers using optical microscopes, bright field transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), electron energy loss spectrometry (EELS), energy filtering TEM (EFTEM) and electron diffraction.
The different types of scanning probe microscopes arise from the many different types of interactions that occur when a small probe is scanned over and interacts with a specimen. These interactions or modes can be recorded or mapped as function of location on the surface to form a characterization map. The three most common types of scanning probe microscopes are atomic force microscopes (AFM), near-field scanning optical microscopes (MSOM or SNOM, scanning near-field optical microscopy), and scanning tunneling microscopes (STM). An atomic force microscope has a fine probe, usually of silicon or silicon nitride, attached to a cantilever; the probe is scanned over the surface of the sample, and the forces that cause an interaction between the probe and the surface of the sample are measured and mapped.
The facilities and services at CSM are available to students, academic staff, research partners, and individuals and organisations from the business community. Short Courses and Continuing Professional Development (CPD) include Renewable Energy Industry Training Modules, and Quarry Shotfiring / Explosives Supervisor courses (EPIC-validated). The school's geochemical and mineralogical analytical laboratories include a £1.5 million microbeam analytical facility that contains an extensive range of sample preparation and analytical facilities including optical microscopes, cathodoluminescence, low-vacuum scanning electron microscope, electron probe microanalyser, QEMSCAN (particle analysis and mineral identification), X-ray fluorescence spectrometer, X-ray diffraction, atomic absorption spectrometers, atomic fluorescence spectrometer plus elemental, physical and thermal analysers. Facilities for mining engineering, tunnelling, surveying and geotechnics include underground and surface testing facilities; Leica surveying equipment, a Leica/DMT Gyromat 2000 Precision Gyrotheodolite, and a triaxial test rig.

No results under this filter, show 52 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.