Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"hypotonic" Definitions
  1. having deficient tone or tension
  2. having a lower osmotic pressure than a surrounding medium or a fluid under comparison
"hypotonic" Antonyms

101 Sentences With "hypotonic"

How to use hypotonic in a sentence? Find typical usage patterns (collocations)/phrases/context for "hypotonic" and check conjugation/comparative form for "hypotonic". Mastering all the usages of "hypotonic" from sentence examples published by news publications.

A red blood cell in a hypotonic solution, causing water to move into the cell. A hypotonic solution has a lower concentration of solutes than another solution. In biology, a solution outside of a cell is called hypotonic if it has a lower concentration of solutes relative to the cytosol. Due to osmotic pressure, water diffuses into the cell, and the cell often appears turgid, or bloated.
The hypotonic solution is then removed by centrifugation and resuspended in a methanol/glacial acetic acid fixative.
Hypotonic infants often have difficulty feeding, as their mouth muscles cannot maintain a proper suck- swallow pattern, or a good breastfeeding latch.
2/3 1/3 is no longer recommended as a maintenance intravenous fluid in children as it is hypotonic and isotonic fluids are preferred.
Osmotic lysis would be expected to occur when bacterial cells are treated with a hypotonic solution with added lysozyme, which destroys the bacteria's cell walls.
Unlike the descending limb, the thin ascending limb is impermeable to water, a critical feature of the countercurrent exchange mechanism employed by the loop. The ascending limb actively pumps sodium out of the filtrate, generating the hypertonic interstitium that drives countercurrent exchange. In passing through the ascending limb, the filtrate grows hypotonic since it has lost much of its sodium content. This hypotonic filtrate is passed to the distal convoluted tubule in the renal cortex.
M. burtonii are irregular cocci, ranging 0. to 1.8 micrometers in diameter. M. burtonii occur singly or in pairs. During Gram staining, cells lysej; they also lyse in hypotonic solutions.
With worsening wing damage, the effects are exacerbated by water and electrolyte loss across the wound (hypotonic dehydration), which stimulates more frequent arousals in a positive feedback loop that ultimately leads to death.
Water molecules freely diffuse through the plasma membrane in both directions, and as the rate of water diffusion is the same in each direction, the cell will neither gain nor lose water. An iso-osmolar solution can be hypotonic if the solute is able to penetrate the cell membrane. For example, an iso-osmolar urea solution is hypotonic to red blood cells, causing their lysis. This is due to urea entering the cell down its concentration gradient, followed by water.
In the Isotonic solution, the water molecules still moves between the solutions, but the rates are the same from both directions, thus the water movement is balanced between the inside of the cell as well as the outside of the cell. A hypotonic solution is when the solute concentration outside the cell is lower than the concentration inside the cell. In hypotonic solutions, the water moves into the cell, down its concentration gradient (from higher to lower water concentrations). That can cause the cell to swell.
Bludov spa Lázně Bludov or Bludovské lázně is a spa situated in Bludov, Czech Republic. Strongly alkaline hypotonic thermal mineral water containing sulphates, chlorides and sodium is used for curing child obesity, kidney, urinary tract and musculoskeletal diseases, and respiratory problems.
A lesional segment (or an injured metamere) consists of denervated corresponding muscles. The lower motor neuron (LMN) of these muscles is damaged. These muscles are hypotonic, atrophic and have no spontaneous contraction. The existence of joint contractures should be monitored.
The cytosol is conversely categorized as hypotonic, opposite of the outer solution. When plant cells are in a hypertonic solution, the flexible cell membrane pulls away from the rigid cell wall, but remains joined to the cell wall at points called plasmodesmata. The cells often take on the appearance of a pincushion, and the plasmodesmata almost cease to function because they become constricted, a condition known as plasmolysis. In plant cells the terms isotonic, hypotonic and hypertonic cannot strictly be used accurately because the pressure exerted by the cell wall significantly affects the osmotic equilibrium point.
They come in a number of strengths including 5%, 10%, and 50% dextrose. While they may start out hypertonic they become hypotonic solutions as the sugar is metabolised. Versions are also available mixed with saline. Dextrose solutions for medical use became available in the 1920s and 1930s.
Hypoosmolar hyponatremia is a condition where hyponatremia associated with a low plasma osmolality. The term "hypotonic hyponatremia" is also sometimes used. When the plasma osmolarity is low, the extracellular fluid volume status may be in one of three states: low volume, normal volume, or high volume.
These losses appear to be well tolerated by most people. The inclusion of some sodium in fluid replacement drinks has some theoretical benefits and poses little or no risk, so long as these fluids are hypotonic (since the mainstay of dehydration prevention is the replacement of free water losses).
Individuals with Down syndrome also tend to have a more alkaline saliva resulting in a greater resistance to tooth decay, despite decreased quantities of saliva, less effective oral hygiene habits, and higher plaque indexes. Higher rates of tooth wear and bruxism are also common. Other common oral manifestations of Down syndrome include enlarged hypotonic tongue, crusted and hypotonic lips, mouth breathing, narrow palate with crowded teeth, class III malocclusion with an underdeveloped maxilla and posterior crossbite, delayed exfoliation of baby teeth and delayed eruption of adult teeth, shorter roots on teeth, and often missing and malformed (usually smaller) teeth. Less common manifestations include cleft lip and palate and enamel hypocalcification (20% prevalence).
Several hours prior to harvesting the cultured cells, colcemid is added to the culture medium. Colcemid acts to arrest cells in the metaphase state by disrupting microtubules in mitotic cells. Cells are then trypsinized and resuspended in a hypotonic buffer. This will swell the collected cells and spread the chromosomes.
She used the "hypotonic shock" methodJ.-H. Tjio et A. Levan, Hereditas, 42, 1, 1956. followed by drying the slide after attachment in order to disperse the chromosomes of dividing cells and make them easier to count. Using this protocol, Gautier found that the cells of normal children have 46 chromosomes.
With insufficient ATP in an erythrocyte, all active processes in the cell come to a halt. Sodium potassium ATPase pumps are the first to stop. Since the cell membrane is more permeable to potassium than sodium, potassium leaks out. Intracellular fluid becomes hypotonic, water moves down its concentration gradient out of the cell.
Although water travels down an osmotic gradient in each individual step, overall, water usually travels against the osmotic gradient due to the pumping of sodium ions into the intercellular fluid. This allows the large intestine to absorb water despite the blood in capillaries being hypotonic compared to the fluid within the intestinal lumen.
Osmoregulators actively control salt concentrations despite the salt concentrations in the environment. An example is freshwater fish. The gills actively uptake salt from the environment by the use of mitochondria-rich cells. Water will diffuse into the fish, so it excretes a very hypotonic (dilute) urine to expel all the excess water.
Solutes able to freely cross the membrane do not affect tonicity because they will always equilibrate with equal concentrations on both sides of the membrane without net solvent movement. It is also a factor affecting imbibition. There are three classifications of tonicity that one solution can have relative to another: hypertonic, hypotonic, and isotonic.
Protonephridia are generally found in basal organisms such as flatworms. Protonephridia likely first arose as a way to cope with a hypotonic environment by removing excess water from the organism (osmoregulation). Their use as excretory and ionoregulatory structures likely arose secondarily. These are excretory systems in phyla Platyhelminthes and are also called blind tubules.
When a child is born with Möbius syndrome, there may be difficulty in closing the mouth or swallowing. The tongue may fasciculate (quiver) or be hypotonic (low muscle tone). The tongue may be larger or smaller than average. There may be low tone of the muscles of the soft palate, pharynx, and the masticatory system.
Hypertonic solutions give rise to cell shrinkage. Hypotonic solutions result in cell swelling and poor fixation. 10% neutral buffer formalin is 4% formaldehyde (1.33 osmolar) in PBS buffer (0.3 osmolar) sums to 1.63 osmolar. This is a very hypertonic solution yet it has worked well as a general tissue fixation condition for many years in pathology labs.
When the sacral dorsal roots are cut in experimental animals or interrupted by diseases of the dorsal roots such as tabes dorsalis in humans, all reflex contractions of the bladder are abolished. The bladder becomes distended, thin-walled, and hypotonic, but there are some contractions because of the intrinsic response of the smooth muscle to stretch.
This shrinkage and re- expansion of the cell causes T-tubules to detach from the surface membrane. Alternatively, the osmolarity of the extracellular solution can be decreased, using for example hypotonic saline, causing a transient cell swelling. Returning the extracellular solution to a normal osmolarity allows the cells to return to their previous size, again leading to detubulation.
During drowning, aspirated water enters the lung tissues, causes a reduction in alveolar surfactant, obstructs ventilation, and triggers a release of inflammatory mediators which ultimately results in hypoxia. Specifically, upon reaching the alveoli, hypotonic liquid found in freshwater dilutes pulmonary surfactant, destroying the substance.Bierens JJ, Lunetta P, Tipton M, Warner DS. Physiology Of Drowning: A Review. Physiology (Bethesda).
This raised the levels of mineral pools and led to a gas increase in higher ground caves. Increased carbon dioxide concentration in the visitor route was solved by installing a special suction device that keeps the composition of the air at the values established by the State Mining Administration (up to 1% carbon dioxide). Extraordinary hydrological situation also led to disruption of technical equipment, but without damaging the caves preserved state. The Bečva River in Teplice nad Bečvou Mineral water features in the spas in the two springs and spring Kropác - RI borehole from a depth of 60.40 meters, which is heavily mineralized, carbonic thermal lukewarm, hypotonic mineral water, bicarbonate-calcium type and Jurikuv source - borehole from RIII depth of 101.8 m, which is heavily mineralized mineral water, carbonated, thermal lukewarm, hypotonic, bicarbonate-calcium type.
Measurement of the plasma osmolality to give an indication of the water content of the body, relies on the fact that water losses from the body, (through unavoidable water loss through the skin which is not entirely waterproof and therefore always slightly moist, water vapor in the exhaled air, sweating, vomiting, normal feces and especially diarrhea) are all hypotonic, meaning that they are less salty than the body fluids (compare, for instance, the taste of saliva with that of tears. The latter has almost the same salt content as the extracellular fluid, whereas the former is hypotonic with respect to the plasma. Saliva does not taste salty, whereas tears are decidedly salty). Nearly all normal and abnormal losses of body water therefore cause the extracellular fluid to become hypertonic.
Solute carrier family 12 member 6 is a protein that in humans is encoded by the SLC12A6 gene. This gene is a member of the K-Cl cotransporter (KCC) family. K-Cl cotransporters are integral membrane proteins that lower intracellular chloride concentrations below the electrochemical equilibrium potential. The proteins encoded by this gene are activated by cell swelling induced by hypotonic conditions.
Cytogenetics, the study of chromosomal material by analysis of G-Banded chromosomes, uses mitotic inhibitors extensively. In order to prepare a slide for cytogenetic study, a mitotic inhibitor is added to the cells being studied. This stops the cells during mitosis, while the chromosomes are still visible. Once the cells are centrifuged and placed in a hypotonic solution, they swell, spreading the chromosomes.
A hypotonic-hyporesponsive episode (HHE) is defined as sudden onset of poor muscle tone, reduced consciousness, and pale or bluish skin occurring within 48 hours after vaccination, most commonly pertussis vaccination. An HHE is estimated to occur after 1 in 4,762 to 1 in 1,408 doses of whole cell pertussis vaccine, and after 1 in 14,286 to 1 in 2,778 doses of acellular pertussis vaccine.
Hyponatremia means that the concentration of sodium in the blood is too low. It is generally defined as a concentration lower than 135 mEq/L. This relatively common electrolyte disorder can indicate the presence of a disease process, but in the hospital setting is more often due to administration of Hypotonic fluids. The majority of hospitalized patients only experience mild hyponatremia, with levels above 130 mEq/L.
In a hypotonic environment, cells will swell and eventually shrink; this shrinkage is due to efflux of taurine. This process also works in the opposite way in hypertonic environments. In hypertonic environments cells tend to shrink and then enlarge; this enlargement is due to an influx in taurine, effectively changing the osmotic pressure. This adaptation allows the flamingo to regulate between differences in salinity.
It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity and the cell bursts. The presence of a cell wall prevents the membrane from bursting, so cytolysis only occurs in animal and protozoa cells which do not have cell walls. The reverse process is plasmolysis.
After several days, the plate is microscopically inspected and Naegleria cysts are identified by their morphology. Final confirmation of the species' identity can be performed by various molecular or biochemical methods. Confirmation of Naegleria presence can be done by a so-called flagellation test, where the organism is exposed to a hypotonic environment (distilled water). Naegleria, in contrast to other amoebae, differentiates within two hours into the flagellate state.
The subfornical organ is active in many bodily processes including, but not limited to, osmoregulation, cardiovascular regulation, and energy homeostasis. In a study by Ferguson, both hyper- and hypotonic stimuli facilitated an osmotic response. This observation demonstrated the fact that the SFO is involved in the maintenance of blood pressure. Featuring an AT1 receptor for ANG, the SFO neurons demonstrate an excitatory response when activated by ANG, therefore increasing blood pressure.
Maintenance of cerebral perfusion pressure using appropriate fluid management is essential in patients with brain injury. Dehydration, or intravascular volume loss, and the use of hypotonic fluids, such as D5W or half normal saline, should be avoided. Blood serum ion concentration, or osmolality, should be maintained in the normo to hyperosmolar range. Judicial use of hypertonic saline can be used to increase serum osmolality and decrease cerebral edema, as discussed below.
When a plant cell is placed in a solution that is hypotonic relative to the cytoplasm, water moves into the cell and the cell swells to become turgid. Osmosis is responsible for the ability of plant roots to draw water from the soil. Plants concentrate solutes in their root cells by active transport, and water enters the roots by osmosis. Osmosis is also responsible for controlling the movement of guard cells.
An example is freshwater fish. The gills actively uptake salt from the environment by the use of mitochondria-rich cells. Water will diffuse into the fish, so it excretes a very hypotonic (dilute) urine to expel all the excess water. A marine fish has an internal osmotic concentration lower than that of the surrounding seawater, so it tends to lose water (to the more negative surroundings) and gain salt.
Osmotic stress is defined as difficulty maintaining proper fluids in the cell within a hypertonic or hypotonic environment. MAAs accumulate within a cell’s cytoplasm and contribute to the osmotic pressure within a cell, thus relieving pressure from salt stress in a hypertonic environment. As evidence of this, MAAs are seldom found in large quantities in cyanobacteria living in freshwater environments. However, in saline and hypertonic environments, cyanobacteria often contain high concentrations of MAAs.
Plasmolysis is the process in which cells lose water in a hypertonic solution. The reverse process, deplasmolysis or cytolysis, can occur if the cell is in a hypotonic solution resulting in a lower external osmotic pressure and a net flow of water into the cell. Through observation of plasmolysis and deplasmolysis, it is possible to determine the tonicity of the cell's environment as well as the rate solute molecules cross the cellular membrane.
The first step required is the hypotonic lysis of the cells of interest to isolate the nuclei. The nuclei are then centrifuged, washed in a buffer solution, complexed with lectin-coated magnetic beads. The Lectin-Nuclei complex is then resuspended with an antibody targeted at the protein of interest. The antibody and nuclei are then incubated in the buffer for approximately 2 hours before the nuclei are washed in buffer to remove unbound antibodies.
This condition is called hypertonic and if enough water leaves the cell it will not be able to perform essential chemical functions. If the interstitial fluid becomes less concentrated the cell will fill with water as it tries to equalize the concentrations. This condition is called hypotonic and can be dangerous because it can cause the cell to swell and rupture. One set of receptors responsible for thirst detects the concentration of interstitial fluid.
The contractile vacuole is a specialized type of vacuole that regulates the quantity of water inside a cell. In freshwater environments, the concentration of solutes is hypotonic, lesser outside than inside the cell. Under these conditions, osmosis causes water to accumulate in the cell from the external environment. The contractile vacuole acts as part of a protective mechanism that prevents the cell from absorbing too much water and possibly lysing (rupturing) through excessive internal pressure.
For example, of the four currently recognized KCl transporters, KCC1 and KCC4 both recognize KCl with similar affinities, but KCC1 exhibits anion selectivity: Cl− > SCN− = Br− > PO > I−, while KCl4 exhibits anion selectivity: Cl− > Br− > PO = I− > SCN−. Both are activated by cell swelling under hypotonic conditions. These proteins may cotransport water (H2O). CCCs share a conserved structural scaffold that consists of a transmembrane transport domain followed by a cytoplasmic regulatory domain.
Sri Lanka introduced Quinvaxem in January 2008. Within 3 months, four reports of deaths and 24 reports of suspected hypotonic-hyporesponsive episodes prompted regulatory attention and precautionary suspension of the initial vaccine lot. A subsequent death that occurred with the next lot in April 2009 led the authorities to suspend pentavalent vaccine use and resume DTwP and hepatitis B vaccination. Following an investigation by independent national and international experts, the vaccine was reintroduced in 2010.
Water molecules travel through the plasma membrane, tonoplast membrane (vacuole) or protoplast by diffusing across the phospholipid bilayer via aquaporins (small transmembrane proteins similar to those responsible for facilitated diffusion and ion channels). Osmosis provides the primary means by which water is transported into and out of cells. The turgor pressure of a cell is largely maintained by osmosis across the cell membrane between the cell interior and its relatively hypotonic environment.
Breastfeeding and babywearing often go hand in hand. Many baby slings and other carriers offer mothers privacy and for many mothers, the option of nursing hands-free while tending to other activities or household chores. Not all mothers can nurse hands-free in a baby carrier. Large-breasted mothers and mothers of small or hypotonic infants may need to support the breast or help maintain proper positioning of the baby's head or body.
Some drugs cause RBC (red blood cell) lysis even in normal individuals. These include dapsone and sulfasalazine. Non-immune drug-induced hemolysis can also arise from drug-induced damage to cell volume control mechanisms; for example drugs can directly or indirectly impair regulatory volume decrease mechanisms, which become activated during hypotonic RBC swelling to return the cell to a normal volume. The consequence of the drugs actions are irreversible cell swelling and lysis (e.g.
Physical expression of nemaline myopathy varies greatly, but weakness is usually concentrated in the proximal muscles, particularly respiratory, bulbar and trunk muscles. People with severe NM show obvious symptoms at birth, while those with intermediate or mild NM may initially appear unaffected. Babies with NM are frequently observed to be "floppy" and hypotonic. Children born with NM often gain strength as they grow, though the effect of muscle weakness on body features may become more evident with time.
According to other definitions, the term also encompasses yeasts. The name spheroplast stems from the fact that after the microbe's cell wall is digested, membrane tension causes the cell to acquire a characteristic spherical shape. Spheroplasts are osmotically fragile, and will lyse if transferred to a hypotonic solution. When used to describe Gram-negative bacteria, the term spheroplast refers to cells from which the peptidoglycan component but not the outer membrane component of the cell wall has been removed.
Sea turtles maintain an internal environment that is hypotonic to the ocean. To maintain hypotonicity they must excrete excess salt ions. Like other marine reptiles, sea turtles rely on a specialized gland to rid the body of excess salt, because reptilian kidneys cannot produce urine with a higher ion concentration than sea water. All species of sea turtles have a lachrymal gland in the orbital cavity, capable of producing tears with a higher salt concentration than sea water.
For cells without a cell wall such as animal cells, if the gradient is large enough, the uptake of excess water can produce enough pressure to induce cytolysis, or rupturing of the cell. When plant cells are in a hypotonic solution, the central vacuole takes on extra water and pushes the cell membrane against the cell wall. Due to the rigidity of the cell wall, it pushes back, preventing the cell from bursting. This is called turgor pressure.
When a plant cell is placed in a hypotonic solution, water enters into a cell by osmosis and as a result turgor pressure develops in the cell which is in solution . The cell membrane becomes stretched and the osmotic pressure of the cell decreases. As the cell absorbs more and more water its Turgor Pressure increases and Osmotic Pressure decreases. When a cell is fully turgid, its OP is equal to TP and DPD is zero.
In flaccid bladder (also known as lower motor neuron or hypotonic bladder), the muscles of the bladder lose ability to contract normally. This can cause the inability to void urine even if the bladder is full and cause a large bladder capacity. The internal urinary sphincter can contract normally, however urinary incontinence is common. This type of neurogenic bladder is caused by damage to the peripheral nerves that travel from the spinal cord to the bladder.
Sweat glands are used to regulate temperature and remove waste by secreting water, sodium salts, and nitrogenous waste (such as urea) onto the skin surface. The main electrolytes of sweat are sodium and chloride, though the amount is small enough to make sweat hypotonic at the skin surface. Eccrine sweat is clear, odorless, and is composed of 98–99% water; it also contains NaCl, fatty acids, lactic acid, citric acid, ascorbic acid, urea, and uric acid. Its pH ranges from 4 to 6.8.
Osmolarity and tonicity are related but distinct concepts. Thus, the terms ending in -osmotic (isosmotic, hyperosmotic, hyposmotic) are not synonymous with the terms ending in -tonic (isotonic, hypertonic, hypotonic). The terms are related in that they both compare the solute concentrations of two solutions separated by a membrane. The terms are different because osmolarity takes into account the total concentration of penetrating solutes and non-penetrating solutes, whereas tonicity takes into account the total concentration of non- freely penetrating solutes only.
This layer forms when the cells at the vegetal pole of the blastoderm combine with the yolk cell underneath it. Later in development the yolk syncytial layer will be important in directing cell movements of gastrulation. The second cell population is the enveloping layer which is made of superficial cells from the blastoderm that eventually form a single epithelial cell layer. This layer functions in protection by allowing the embryo to develop in a hypotonic solution so the cell will not burst.
Losing fluids can lead to feelings of dehydration and dry mucous membrane. The second scenario that may lead to hyperchloremia is known as loss of hypotonic fluid which can be a direct result of loss of electrolyte fluid. Normally, water in the body is moving from an area of low ion concentration to an area of high ion concentration. In this case, the water is being excreted in there urine, therefore, less water is available to dilute these areas of high ion concentration.
Cells from bone marrow, blood, amniotic fluid, cord blood, tumor, and tissues (including skin, umbilical cord, chorionic villi, liver, and many other organs) can be cultured using standard cell culture techniques in order to increase their number. A mitotic inhibitor (colchicine, colcemid) is then added to the culture. This stops cell division at mitosis which allows an increased yield of mitotic cells for analysis. The cells are then centrifuged and media and mitotic inhibitor are removed, and replaced with a hypotonic solution.
This causes the white blood cells or fibroblasts to swell so that the chromosomes will spread when added to a slide as well as lyses the red blood cells. After the cells have been allowed to sit in hypotonic solution, Carnoy's fixative (3:1 methanol to glacial acetic acid) is added. This kills the cells and hardens the nuclei of the remaining white blood cells. The cells are generally fixed repeatedly to remove any debris or remaining red blood cells.
NKCC1/2 will promote the influx of Na+, K+, and Cl− ions into the cell thereby causing the flow of water into the cell. In the reverse circumstances, where hypotonic (low extracellular Cl− ) conditions induce cell swelling, WNK1 is inhibited. Another cotransporter, KCC is inactive when phosphorylated; without activated WNK1, KCC does not undergo phosphorylation and can activate. The cotransporter will promote the efflux of K+ and Cl− ions and cause the flow of water out of the cell to combat swelling.
Higher levels of potassium in the roots creates a greater amount of photosynthesis in the leaves by helping to control osmosis occurring throughout the cells. By controlling potassium, the HAK5 potassium transporter plays this important role in osmosis, and creates large influxes of water molecules to the plant to ensure its survival. By increasing the affinity of potassium uptake within the plant, it lowers the concentration of water within the cell. This increases the concentration of solute outside, creating a hypotonic solute.
Water is a critical issue for the survival of all living organisms. Some can use salt water but many organisms including the great majority of higher plants and most mammals must have access to fresh water to live. Some terrestrial mammals, especially desert rodents, appear to survive without drinking, but they do generate water through the metabolism of cereal seeds, and they also have mechanisms to conserve water to the maximum degree. Fresh water creates a hypotonic environment for aquatic organisms.
As cell membranes in general are freely permeable to water, the osmolality of the extracellular fluid (ECF) is approximately equal to that of the intracellular fluid (ICF). Therefore, plasma osmolality is a guide to intracellular osmolality. This is important, as it shows that changes in ECF osmolality have a great effect on ICF osmolality — changes that can cause problems with normal cell functioning and volume. If the ECF were to become too hypotonic, water would readily fill surrounding cells, increasing their volume and potentially lysing them (cytolysis).
For example, freshwater and saltwater aquarium fish placed in water of a different salinity than that to which they are adapted to will die quickly, and in the case of saltwater fish, dramatically. Another example of a harmful osmotic effect is the use of table salt to kill leeches and slugs. Suppose an animal or a plant cell is placed in a solution of sugar or salt in water. # If the medium is hypotonic relative to the cell cytoplasm — the cell will gain water through osmosis.
STE20/SPS1-related proline-alanine-rich protein kinase is an enzyme that in humans is encoded by the STK39 gene. This gene encodes a serine/threonine kinase that is thought to function in the cellular stress response pathway. The kinase is activated in response to hypotonic stress, leading to phosphorylation of several cation-chloride-coupled cotransporters. The catalytically active kinase specifically activates the p38 MAP kinase pathway, and its interaction with p38 decreases upon cellular stress, suggesting that this kinase may serve as an intermediate in the response to cellular stress.
Emamectin works as a chloride channel activator by binding gamma aminobutyric acid (GABA) receptor and glutamate- gated chloride channels disrupting nerve signals within arthropods. The compound stimulates the release of GABA from the synapses between nerve cells and while additionally increasing GABA’s affinity for its receptor on the post-junction membrane of muscle cells in insects and arthropods. The stronger binding of GABA increases the cells permeability to chloride ions within the cell due to the hypotonic concentration gradient. Neurotransmission is thereby reduced by subsequent hyperpolarisation and the elimination of signal transduction.
This is because as the solution surrounding the cell is hypertonic, exosmosis takes place and the space between the cell wall and cytoplasm is filled with solutes, as most of the water drains away and hence the concentration inside the cell becomes more hypertonic. There are some mechanisms in plants to prevent excess water loss in the same way as excess water gain. Plasmolysis can be reversed if the cell is placed in a hypotonic solution. Stomata help keep water in the plant so it does not dry out.
Hypotonic patients may display a variety of objective manifestations that indicate decreased muscle tone. Motor skills delay is often observed, along with hypermobile or hyperflexible joints, drooling and speech difficulties, poor reflexes, decreased strength, decreased activity tolerance, rounded shoulder posture, with leaning onto supports, and poor attention. The extent and occurrence of specific objective manifestations depends upon the age of the patient, the severity of the hypotonia, the specific muscles affected, and sometimes the underlying cause. For instance, some people with hypotonia may experience constipation, while others have no bowel problems.
Hypotonic infants are late in lifting their heads while lying on their stomachs, rolling over, lifting themselves into a sitting position, remaining seated without falling over, balancing, crawling, and sometimes walking. Fine motor skills delays occur in grasping a toy or finger, transferring a small object from hand to hand, pointing out objects, following movement with the eyes, and self-feeding. Speech difficulties can result from hypotonia. Low-tone children learn to speak later than their peers, even if they appear to understand a large vocabulary, or can obey simple commands.
Mild or benign hypotonia is often diagnosed by physical and occupational therapists through a series of exercises designed to assess developmental progress, or observation of physical interactions. Since a hypotonic child has difficulty deciphering his spatial location, he may have some recognizable coping mechanisms, such as locking the knees while attempting to walk. A common sign of low-tone infants is a tendency to observe the physical activity of those around them for a long time before attempting to imitate, due to frustration over early failures. Developmental delay can indicate hypotonia.
DTP vaccines may cause additional adverse effects such as fever, irritability, drowsiness, loss of appetite, and, in 6–13% of vaccine recipients, vomiting. Severe adverse effects of DTP vaccines include fever over 40.5 °C/104.9 °F (1 in 333 doses), febrile seizures (1 in 12,500 doses), and hypotonic-hyporesponsive episodes (1 in 1,750 doses). Side effects of DTaP vaccines are similar but less frequent. Tetanus toxoid containing vaccines (Td, DT, DTP and DTaP) may cause brachial neuritis at a rate of 0.5 to 1 case per 100,000 toxoid recipients.
When the afferent and efferent nerves are both destroyed, as they may be by tumors of the cauda equina or filum terminale, the bladder is flaccid and distended for a while. Gradually, however, the muscle of the "decentralized bladder" becomes active, with many contraction waves that expel dribbles of urine out of the urethra. The bladder becomes shrunken and the bladder wall hypertrophied. The reason for the difference between the small, hypertrophic bladder seen in this condition and the distended, hypotonic bladder seen when only the afferent nerves are interrupted is not known.
Joe Hin Tjio working in Albert Levan's lab was responsible for finding the approach: :# Using cells in culture :# Pre-treating cells in a hypotonic solution, which swells them and spreads the chromosomes :# Arresting mitosis in metaphase by a solution of colchicine :# Squashing the preparation on the slide forcing the chromosomes into a single plane :# Cutting up a photomicrograph and arranging the result into an indisputable karyogram. It took until 1956 for it to be generally accepted that the karyotype of man included only 46 chromosomes.Tjio J.H & Levan A. 1956. The chromosome number of man.
Normal looking at birth and for the first few years, hypotonic (floppy), in particular difficulty to hold the head, possibly difficulty to thrive, possibly with delayed myelination (if so, some cases are reported with an MRI pattern similar to Pelizaeus–Merzbacher disease, known as PMD), possibly with decreased mitochondrial enzyme activities, possibly with fluctuating lactate level. Patients have an alert face, a limited IQ, patients may never talk/walk, 50% need feeding tube, patients have a normal life span. This disease can be ruled out with a simple TSH/T4/T3 thyroid test.
375px Osmosis is the process in which water flows from an area with a low solute concentration, to an adjacent area with a higher solute concentration until equilibrium between the two areas is reached. All cells are surrounded by a lipid bi-layer cell membrane which permits the flow of water in and out of the cell while also limiting the flow of solutes. In hypertonic solutions, water flows out of the cell which decreases the cell's volume. When in a hypotonic solution, water flows into the membrane and increases the cell's volume.
However, in certain conditions, such as diabetes mellitus, the concentration of glucose in the blood (hyperglycemia) exceeds the maximum reabsorption capacity of the kidney. When this happens, glucose remains in the filtrate, leading to the osmotic retention of water in the urine. Glucosuria causes a loss of hypotonic water and Na+, leading to a hypertonic state with signs of volume depletion, such as dry mucosa, hypotension, tachycardia, and decreased turgor of the skin. Use of some drugs, especially stimulants, may also increase blood glucose and thus increase urination..
Regardless of patient’s demographic characteristics, it seems that oral hygiene instructions in combination with scaling and root planning can help with controlling excessive colonization of parasites, particularly E. gingivalis and T. tenax and their probable opportunistic infestation. T. tenax can easily be detected through the use of phase-contrast microscopy. Biofilm harvested from infested areas of the periodontal pockets can be mounted onto a slide; T. tenax, if present, will be clearly visible. The preparation must use the patient's saliva as the medium, as the use of plain water or saline as hypotonic solutions could cause the cells to lyse.
New techniques were needed to definitively solve the problem: # Using cells in culture # Arresting mitosis in metaphase by a solution of colchicine # Pretreating cells in a hypotonic solution 0.075 M KCl, which swells them and spreads the chromosomes # Squashing the preparation on the slide forcing the chromosomes into a single plane # Cutting up a photomicrograph and arranging the result into an indisputable karyogram. It took until 1954 before the human diploid number was confirmed as 46. Considering the techniques of Winiwarter and Painter, their results were quite remarkable.Hsu T.C. Human and mammalian cytogenetics: a historical perspective.
A plant cell in hypotonic solution will absorb water by endosmosis, so that the increased volume of water in the cell will increase pressure, making the protoplasm push against the cell wall, a condition known as turgor. Turgor makes plant cells push against each other in the same way and is the main line method of support in non-woody plant tissue. Plant cell walls resist further water entry after a certain point, known as full turgor, which stops plant cells from bursting as animal cells do in the same conditions. This is also the reason that plants stand upright.
Difficulties with muscles in the mouth and jaw can inhibit proper pronunciation, and discourage experimentation with word combination and sentence-forming. Since the hypotonic condition is actually an objective manifestation of some underlying disorder, it can be difficult to determine whether speech delays are a result of poor muscle tone, or some other neurological condition, such as intellectual disability, that may be associated with the cause of hypotonia. Additionally, lower muscle tone can be caused by Mikhail-Mikhail syndrome, which is characterized by muscular atrophy and cerebellar ataxia which is due to abnormalities in the ATXN1 gene.
Physical therapists might use neuromuscular/sensory stimulation techniques such as quick stretch, resistance, joint approximation, and tapping to increase tone by facilitating or enhancing muscle contraction in patients with hypotonia. For patients who demonstrate muscle weakness in addition to hypotonia strengthening exercises that do not overload the muscles are indicated. Electrical Muscle Stimulation, also known as Neuromuscular Electrical Stimulation (NMES) can also be used to “activate hypotonic muscles, improve strength, and generate movement in paralyzed limbs while preventing disuse atrophy (p.498).” When using NMES it is important to have the patient focus on attempting to contract the muscle(s) being stimulated.
Striated duct in Parotid gland A striated duct (Pflüger's ducts ) is a gland duct which connects an intercalated duct to an interlobular duct. It is characterized by the basal infoldings of its plasma membrane, characteristic of ion-pumping activity by the numerous mitochondria. \- "Mammal, salivary glands (EM, Low)" \- "Mammal, salivary glands (LM, Medium)" Along with the intercalated ducts, they function to modify salivary fluid by secreting HCO3− and K+ and reabsorbing Na+ and Cl− using the Na-K pump and the Cl-HCO3 pump, making the saliva hypotonic. Their epithelium can be simple cuboidal or simple columnar.
Between 10% and 50% of people given the whole-cell vaccines develop redness, swelling, soreness or tenderness at the injection site and/or fever, less than 1% experience febrile seizures or long periods of crying, and less than 1 out of every 1,000 to 2,000 people vaccinated have a hypotonic-hyporesponsive episode. The same reactions may occur after acellular vaccines, but are less common. Side effects with both types of vaccines, but especially the whole- cell vaccine, are more likely the older the child. The whole-cell vaccines should not be used after seven years of age.
Conversely, excessive fluid intake dilutes the extracellular fluid causing the hypothalamus to register hypotonic hyponatremia conditions. When the hypothalamus detects a hypertonic extracellular environment, it causes the secretion of an antidiuretic hormone (ADH) called vasopressin which acts on the effector organ, which in this case is the kidney. The effect of vasopressin on the kidney tubules is to reabsorb water from the distal convoluted tubules and collecting ducts, thus preventing aggravation of the water loss via the urine. The hypothalamus simultaneously stimulates the nearby thirst center causing an almost irresistible (if the hypertonicity is severe enough) urge to drink water.
Hyperchloremia is an electrolyte disturbance in which there is an elevated level of the chloride ions in the blood. The normal serum range for chloride is 96 to 106 mEq/L, therefore chloride levels at or above 110 mEq/L usually indicate kidney dysfunction as it is a regulator of chloride concentration. As of now there are no specific symptoms of hyperchloremia, however, it can be the influenced by multiple abnormalities that cause a loss of electrolyte-free fluid, loss of hypotonic fluid, or increased administration of sodium chloride. These abnormalities are caused by diarrhea, vomiting, increased sodium chloride intake, renal dysfunction, diuretic use, and diabetes.
Fusion of ancestral chromosomes left distinctive remnants of telomeres, and a vestigial centromere Joe Hin Tjio working in Albert Levan's lab found the chromosome count to be 46 using new techniques available at the time: # Using cells in tissue culture # Pretreating cells in a hypotonic solution, which swells them and spreads the chromosomes # Arresting mitosis in metaphase by a solution of colchicine # Squashing the preparation on the slide forcing the chromosomes into a single plane # Cutting up a photomicrograph and arranging the result into an indisputable karyogram. The work took place in 1955, and was published in 1956. The karyotype of humans includes only 46 chromosomes.Hsu T.C. 1979.
A genetic disorder (discovered in 2003 and 2004) is caused by mutation in the transporter of thyroid hormone, MCT8, also known as SLC16A2, is believed to be account for a significant fraction of the undiagnosed neurological disorders (usually resulting in hypotonic/floppy infants with delayed milestones). This genetic defect was known as Allan–Herndon–Dudley syndrome (since 1944) without knowing its actual cause. It has been shown mutated in cases of X-linked leukoencephalopathy. Some of the symptoms for this disorder as are follows: normal to slightly elevated TSH, elevated T3 and reduced T4 (ratio of T3/T4 is about double its normal value).
The DNA on the slide is a reference sample, and is thus obtained from a karyotypically normal man or woman, though it is preferential to use female DNA as they possess two X chromosomes which contain far more genetic information than the male Y chromosome. Phytohaemagglutinin stimulated peripheral blood lymphocytes are used. 1mL of heparinised blood is added to 10ml of culture medium and incubated for 72 hours at 37 °C in an atmosphere of 5% CO2. Colchicine is added to arrest the cells in mitosis, the cells are then harvested and treated with hypotonic potassium chloride and fixed in 3:1 methanol/acetic acid.
The ascending limb of the loop of Henle receives an even lower volume of fluid and has different characteristics compared to the descending limb. In the ascending portion, the loop becomes impermeable to water and the cells of the loop actively reabsorb solutes from the luminal fluid; therefore water is not reabsorbed and ions are readily reabsorbed. As ions leave the lumen via the Na-K-2Cl symporter and the Na-H antiporter, the concentration becomes more and more hypotonic until it reaches approximately 100-150 mOsm/L. The ascending limb is also called the diluting segment of the nephron because of its ability to dilute the fluid in the loop from 1200 mOsm/L to 100 mOsm/L.
The lysin catalytic domain digests peptidoglycan locally at a high rate, which causes holes in the cell wall. Since the cross-linked peptidoglycan cell wall is the only mechanism that prevents the spontaneous burst of bacterial cells due to the high internal pressure (3 to 5 atmospheres), enzymatic digestion by lysins irreversibly causes hypotonic lysis. Theoretically, due to the catalytic properties of phage lysins, a single enzyme would be sufficient to kill the host bacterium by cleaving the necessary number of bonds, even though this has yet to be proven. The work by Loessner et al suggests that cleavage is typically achieved by the joint action of multiple lysin molecules at a local region of the host's cell wall.
For distant objects, the lens needs to be made flatter; for near objects the lens needs to be made thicker and more rounded. Water in the eye can alter the optical properties of the eye and blur vision. It can also wash away the tear fluid—along with it the protective lipid layer—and can alter corneal physiology, due to osmotic differences between tear fluid and freshwater. Osmotic effects are made apparent when swimming in freshwater pools, because the osmotic gradient draws water from the pool into the corneal tissue (the pool water is hypotonic), causing edema, and subsequently leaving the swimmer with "cloudy" or "misty" vision for a short period thereafter.
In 1919, Weed and McKibben, biomedical researchers at Johns Hopkins Medical School, were the first ones to document the use and effect of osmotically active substances on brain mass. While studying transfer of salt solutions from blood to Cerebrospinal Fluid (CSF), they first noted that concentrated sodium chloride intravenous (IV) injection led to collapse of the thecal sac which prevented them from withdrawing CSF from the lumbar cistern. In order to further study the effect, they conducted lab experiments on anesthetized cats which underwent craniotomy. They observed changes to the convexity of cat's brain upon IV injection, specifically, they noted that Hypertonic Saline IV injection resulted in maximum shrinkage of the brain in 15-30 mins, while administration of hypotonic solutions resulted in protrusion and rupture of the brain tissue.
In summer, cloudiness is reduced (about 25 sunny days in a month) and the duration of sunshine is of 10–12 hours a day. Annual precipitation is low (about ). The sea breeze is stronger in summer. The natural cure factors are the water of the Black Sea, which is chlorided, sulphated, sodic, magnesian, hypotonic (mineralization 15.5g), the sulphurous, chlorided, bicarbonated, sodic, calcic, mesothermal (21-28 °C) mineral waters of the springs in the northern part of the city, in the area of the beach between Saturn and Venus, the sulphurous peat mud, rich in minerals, which is extracted from the peat bog north of the city (expected to last another 250 years) and the marine climate, rich in saline aerosols and solar radiation that have a bracing effect on the organism.
The osmotic gradient is the difference in concentration between two solutions on either side of a semipermeable membrane, and is used to tell the difference in percentages of the concentration of a specific particle dissolved in a solution. Usually the osmotic gradient is used while comparing solutions that have a semipermeable membrane between them allowing water to diffuse between the two solutions, toward the hypertonic solution (the solution with the higher concentration). Eventually, the force of the column of water on the hypertonic side of the semipermeable membrane will equal the force of diffusion on the hypotonic (the side with a lesser concentration) side, creating equilibrium. When equilibrium is reached, water continues to flow, but it flows both ways in equal amounts as well as force, therefore stabilizing the solution.
Much has been learned about histone H1 from studies on purified chromatin fibers. Ionic extraction of linker histones from native or reconstituted chromatin promotes its unfolding under hypotonic conditions from fibers of 30 nm width to beads-on-a-string nucleosome arrays. It is uncertain whether H1 promotes a solenoid-like chromatin fiber, in which exposed linker DNA is shortened, or whether it merely promotes a change in the angle of adjacent nucleosomes, without affecting linker length However, linker histones have been demonstrated to drive the compaction of chromatin fibres that had been reconstituted in vitro using synthetic DNA arrays of the strong '601' nucleosome positioning element. Nuclease digestion and DNA footprinting experiments suggest that the globular domain of histone H1 localizes near the nucleosome dyad, where it protects approximately 15-30 base pairs of additional DNA.
Viaduct support of mineral water supply for the bottling plant Mineral water springs are numerous, with a close and stable chemical composition over time, with variable but sufficient flows to be economically used and are currently the main economic engine of the resort. The mineralization characters fall into the group of bicarbonate, calcium, magnesium, carbonate and hypotonic mixed mineral waters. The springs of the Borsec Depression occur in two groups - the northern one of greater importance - the springs line having originating from dolomitic crystalline limestone, sources characterized by the accumulation of water in the cracks and the karstic voids (springs 1, 2, 3, 5, 6); and the southern group - the line of springs cantonated in calcareous tuff with a restricted circulation of water through cracks and areas of alteration (springs 10, 11, 15). The most important springs qualitative and as flow of the resort are the springs 1 and 2.

No results under this filter, show 101 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.