Sentences Generator
And
Your saved sentences

No sentences have been saved yet

27 Sentences With "hyperoxia"

How to use hyperoxia in a sentence? Find typical usage patterns (collocations)/phrases/context for "hyperoxia" and check conjugation/comparative form for "hyperoxia". Mastering all the usages of "hyperoxia" from sentence examples published by news publications.

Hyperoxia occurs when cells, tissues and organs are exposed to an excess supply of oxygen (O2) or higher than normal partial pressure of oxygen. In medicine, it refers to excess oxygen in the lungs or other body tissues, which can be caused by breathing air or oxygen at pressures greater than normal atmospheric pressure. This kind of hyperoxia can lead to oxygen toxicity, caused from the harmful effects of breathing molecular oxygen at elevated partial pressures. Hyperoxia is the opposite of hypoxia; hyperoxia refers to a state in which oxygen supply is excessive, and hypoxia refers to a state in which oxygen supply is insufficient.
These guidelines stress the use of 28% oxygen masks and caution the dangers of hyperoxia. Long-term use of supplemental oxygen improves survival in patients with COPD, but can lead to lung injury. An additional cause of hyperoxia is related to underwater diving with breathing apparatus. Underwater divers breath a mixture of gasses which must include oxygen, and the partial pressure of any given gas mixture will increase with depth.
ORi is intended to supplement, not replace, oxygen saturation (SpO2) monitoring and partial pressure of oxygen (PaO2) measurements. ORi can be trended and has optional alarms to notify clinicians of changes in a patient's oxygen reserve, and may enable proactive interventions to avoid hypoxia and unintended hyperoxia.
Differentiation between a right-to-left shunt and pulmonary disease is often aided clinically by the results of a hyperoxia test. Using high levels of inspired oxygen should have little effect on the dissolved O2 in the blood because highly oxygenated blood is diluted by shunted (low oxygenation) blood.
This cascade includes both strokes and heart attacks. Oxidative stress has also been implicated in chronic fatigue syndrome (ME/CFS). Oxidative stress also contributes to tissue injury following irradiation and hyperoxia, as well as in diabetes. Oxidative stress is likely to be involved in age-related development of cancer.
A mixture known as nitrox is used to reduce the risk of decompression sickness by substituting oxygen for part of the nitrogen content. Breathing nitrox can lead to hyperoxia due to the high partial pressure of oxygen if used too deep or for too long. Protocols for the safe use of raised oxygen partial pressure in diving are well established and used routinely by recreational scuba divers, military combat divers and professional saturation divers alike. The highest risk of hyperoxia is in hyperbaric oxygen therapy, where it is a high probability side effect of the treatment for more serious conditions, and is considered an acceptable risk as it can be managed effectively without apparent long term effects.
The rebreather control circuit responds as if there is insufficient oxygen in the loop and injects more oxygen to reach a setpoint the cell can never indicate resulting in hyperoxia. Non-linear cells do not perform in the expected manner across the required range of oxygen partial pressures. Two-point calibration against diluent and oxygen at atmospheric pressure will not pick up this fault which results in inaccurate loop contents of a rebreather. This gives the potential for decompression illness if the loop is maintained at a lower partial pressure than indicated by the cell output, or hyperoxia if the loop os maintained at a lower partial pressure than indicated by cell output.
Pulse oximetry can guide the use of supplemental oxygen to maintain oxygen saturation greater than 94%. Hyperoxia should be avoided as may be detrimental in stroke. Hypertension is common in an acute ischemic stroke. A low BP is uncommon and may indicate symptoms exacerbation of a previous stroke due to poor perfusion.
There are 3 levels of consequences: physiologic, intermediate and clinical. The physiologic consequences contain hypoxia, sleep fragmentation, autonomic nervous system dysregulation or hyperoxia. The intermediate results regroup inflammation, pulmonary vasoconstriction, general metabolic dysfunction, oxidation of proteins and lipids or increased adiposity. The clinical repercussions are composed by pulmonary hypertension, accidents, obesity, diabetes, different heart diseases or hypertension.
The NFPA 704 standard rates compressed oxygen gas as nonhazardous to health, nonflammable and nonreactive, but an oxidizer. Refrigerated liquid oxygen (LOX) is given a health hazard rating of 3 (for increased risk of hyperoxia from condensed vapors, and for hazards common to cryogenic liquids such as frostbite), and all other ratings are the same as the compressed gas form.
The result of breathing increased partial pressures of oxygen is hyperoxia, an excess of oxygen in body tissues. The body is affected in different ways depending on the type of exposure. Central nervous system toxicity is caused by short exposure to high partial pressures of oxygen at greater than atmospheric pressure. Pulmonary and ocular toxicity result from longer exposure to increased oxygen levels at normal pressure.
NIRS monitoring is helpful in a number of ways. Preterm infants can be monitored reducing cerebral hypoxia and hyperoxia with different patterns of activities. It is an effective aid in Cardiopulmonary bypass, is strongly considered to improve patient outcomes and reduce costs and extended stays. There are inconclusive results for use of NIRS with patients with traumatic brain injury, so it has been concluded that it should remain a research tool.
PDE4 hydrolyzes cyclic adenosine monophosphate (cAMP) to inactive adenosine monophosphate (AMP). Inhibition of PDE4 blocks hydrolysis of cAMP thereby increasing levels of cAMP within cells. cAMP suppresses the activity of immune and inflammatory cells. PDE4 inhibition in an induced chronic lung disease murine model was shown to have anti-inflammatory properties, attenuate pulmonary fibrin deposition and vascular alveolar leakage, and prolong survival in hyperoxia- induced neonatal lung injury.
The fluctuation of brine salinity, which is controlled by atmospheric temperatures, is the single-most influential factor on the chemistry of the sea ice matrix. The solubility of carbon dioxide and oxygen, two biologically essential gases, decreases in higher salinity solutions. This can result in hypoxia within high heterotrophic activity regions of the sea ice matrix. Regions of high photosynthetic activity often exhibit internal depletion of inorganic carbon compound and hyperoxia.
If hyperoxia or excess oxygen occurs in our body, our cellular metabolism produce several highly reactive forms of oxygen called free radicals. This can cause oxidative damage to cellular components including the DNA. In normal cells, our body repairs the damaged sections. In the case of this disease, Due to subtle defects in transcription, children's genetic machinery for synthesizing proteins needed by the body does not operate at normal capacity.
Prolonged exposure to high inspired fractions of oxygen causes damage to the retina. Damage to the developing eye of infants exposed to high oxygen fraction at normal pressure has a different mechanism and effect from the eye damage experienced by adult divers under hyperbaric conditions. Hyperoxia may be a contributing factor for the disorder called retrolental fibroplasia or retinopathy of prematurity (ROP) in infants. In preterm infants, the retina is often not fully vascularised.
Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Experimental cell research 220, 186-193.Harley, C.B., and Villeponteau, B. (1995). Telomeres and telomerase in aging and cancer. Current Opinion in Genetics & Development 5, 249-255. Geron's academic collaborators Elizabeth Blackburn and Carol Greider later shared the 2009 Nobel prize in Physiology or Medicine with Jack Szostak for their early discovery of how chromosomes are protected by telomeres and the enzyme telomerase.
Carbogen, also called Meduna's Mixture after its inventor Ladislas Meduna, is a mixture of carbon dioxide and oxygen gas. Meduna's original formula was 5% CO2 and 95% oxygen, but the term carbogen can refer to any mixture of these two gases, from 1.5%Prisman E, Slessarev M, Azami T, Nayot D, Milosevic M, and Fisher J. (2007). Modified oxygen mask to induce target levels of hyperoxia and hypercarbia during radiotherapy: a more effective alternative to carbogen. International Journal of Radiation Biology. Jul;83(7):457-62.
Studies show that, in the long term, a robust recovery from most types of oxygen toxicity is possible. Protocols for avoidance of the effects of hyperoxia exist in fields where oxygen is breathed at higher-than- normal partial pressures, including underwater diving using compressed breathing gases. These protocols have resulted in the increasing rarity of seizures due to oxygen toxicity. Central nervous system oxygen toxicity manifests as symptoms such as visual changes (especially tunnel vision), ringing in the ears (tinnitus), nausea, twitching (especially of the face), behavioural changes (irritability, anxiety, confusion), and dizziness.
Many diver training organizations teach the "diluent flush" technique as a safe way to restore the mix in the loop to a level of oxygen that is neither too high nor too low. It only works when partial pressure of oxygen in the diluent alone would not cause hypoxia or hyperoxia, such as when using a normoxic diluent and observing the diluent's maximum operating depth. The technique involves simultaneously venting the loop and injecting diluent. This flushes out the old mix and replaces it with a known proportion of oxygen.
There also exists a third form of SOD in extracellular fluids, which contains copper and zinc in its active sites. The mitochondrial isozyme seems to be the most biologically important of these three, since mice lacking this enzyme die soon after birth. In contrast, the mice lacking copper/zinc SOD (Sod1) are viable but have numerous pathologies and a reduced lifespan (see article on superoxide), while mice without the extracellular SOD have minimal defects (sensitive to hyperoxia). In plants, SOD isozymes are present in the cytosol and mitochondria, with an iron SOD found in chloroplasts that is absent from vertebrates and yeast.
Associated with hyperoxia is an increased level of reactive oxygen species (ROS), which are chemically reactive molecules containing oxygen. These oxygen containing molecules can damage lipids, proteins, and nucleic acids, and react with surrounding biological tissues. The human body has naturally occurring antioxidants to combat reactive molecules, but the protective antioxidant defenses can become depleted by abundant reactive oxygen species, resulting in oxidation of the tissues and organs. The symptoms produced from breathing high concentrations of oxygen for extended periods have been studied in a variety of animals, such as frogs, turtles, pigeons, mice, rats, guinea pigs, cats, dogs and monkeys.
Protocols for avoidance of the effects of hyperoxia exist in fields where oxygen is breathed at higher-than- normal partial pressures, including underwater diving using compressed breathing gases, hyperbaric medicine, neonatal care and human spaceflight. These protocols have resulted in the increasing rarity of seizures due to oxygen toxicity, with pulmonary and ocular damage being mainly confined to the problems of managing premature infants. In recent years, oxygen has become available for recreational use in oxygen bars. The US Food and Drug Administration has warned those suffering from problems such as heart or lung disease not to use oxygen bars.
Bronchopulmonary dysplasia is among the most common complications of prematurely born infants and its incidence has grown as the survival of extremely premature infants has increased. Nevertheless, the severity has decreased as better management of supplemental oxygen has resulted in the disease now being related mainly to factors other than hyperoxia. In 1997 a summary of studies of neonatal intensive care units in industrialised countries showed that up to 60% of low birth weight babies developed retinopathy of prematurity, which rose to 72% in extremely low birth weight babies, defined as less than at birth. However, severe outcomes are much less frequent: for very low birth weight babies—those less than at birth—the incidence of blindness was found to be no more than 8%.
A hyperoxia test is a test that is performed—usually on an infant—to determine whether the patient's cyanosis is due to lung disease or a problem with blood circulation. It is performed by measuring the arterial blood gases of the patient while they breathe room air, then re-measuring the blood gases after the patient has breathed 100% oxygen for 10 minutes.:141:141 If the cause of the cyanosis is poor oxygen saturation by the lungs, allowing the patient to breathe 100% oxygen will augment the lungs' ability to saturate the blood with oxygen, and the partial pressure of oxygen in the arterial blood will rise (usually above 150 mmHg). However, if the lungs are healthy and already fully saturating the blood that is delivered to them, then supplemental oxygen will have no effect, and the partial pressure of oxygen will usually remain below 100 mmHg.
However, non-carotid body chemoreceptors are sometimes not enough to ensure appropriate ventilatory response; SIDS deaths occur most frequently during the days or weeks in which the carotid body is still developing, and it is suggested that lack of appropriate carotid body activity is implicated in this condition. SIDS victims often are reported to have displayed some of the characteristic troubles in carotid body development, including periodic breathing, much sleep apnea, impaired arousal during sleep, and low sensitivity to hypoxia. The carotid bodies of SIDS victims also often display physiological abnormalities, such as hypo- and hypertrophy. Many of the findings on to carotid body’s relation to SIDS report that carotid body development is impaired by environmental factors that were already known to increase the risk of SIDS, such as premature birth and exposure to smoke, substances of abuse, hyperoxia, and hypoxia, so it may seem initially as if carotid body studies are only extending what we know about SIDS into another domain.
This view changed with the discovery of sulfiredoxin, an enzyme that can reduce sulfinic acid back to thiol, in an ATP-dependent manner. Additional work suggests that it plays a role in resolving mixed disulfide bonds. Initially discovered in yeast, sulfiredoxin is conserved in all eukaryotes, including mammals. In a perfect example of how multiple gene names can confuse the field, sulfiredoxin (Srxn1) was already known as a gene of unknown function, cloned by differential display of an in vitro model of tumorgenesis, and termed “Neoplastic progression 3/Npn3” although nothing about its actual function was reported. As a result, in most mouse microarray studies, sulfiredoxin is termed neoplastic progression 3, and typically classified as “cancer related” or “other” rather than as “antioxidant”. Npn3/Srxn1 is upregulated by an exceptionally large fold-magnitude in microarray studies of oxidative stress. Npn3/Srxn1 is induced up to 32-fold by D3T (liver), 12-fold by CdCl2, (liver), 4- to 10-fold by paracetamol (liver) and 3.3-fold by paraquat (heart). A survey of the GEO database also indicates a large induction of Npn3/Srxn1 is observed in injury to the lung by hyperoxia (data set GDS247, ID# 102780_at) or phosgene (GDS1244, 1451680_at).

No results under this filter, show 27 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.