Sentences Generator
And
Your saved sentences

No sentences have been saved yet

8 Sentences With "fractionates"

How to use fractionates in a sentence? Find typical usage patterns (collocations)/phrases/context for "fractionates" and check conjugation/comparative form for "fractionates". Mastering all the usages of "fractionates" from sentence examples published by news publications.

Layers of cumulate rock (gabbro) in Oman Cumulate rocks, because they are fractionates of a parental magma, should not be used to infer the composition of a magma from which they are formed. The chemistry of the cumulate itself can inform on the residual melt composition, but several factors need to be considered.
Each element has a different partition coefficient, and therefore fractionates into solid and liquid phases distinctly. These concepts are also applicable to metamorphic and sedimentary petrology. In igneous rocks, particularly in felsic melts, the following observations apply: anomalies in europium are dominated by the crystallization of feldspars. Hornblende, controls the enrichment of MREE compared to LREE and HREE.
The Ycf4 protein is firmly associated with the thylakoid membrane, presumably through a transmembrane domain. Ycf4 co-fractionates with a protein complex larger than PSI upon sucrose density gradient centrifugation of solubilised thylakoids. The Ycf3 protein is loosely associated with the thylakoid membrane and can be released from the membrane with sodium carbonate. This suggests that Ycf3 is not part of a stable complex and that it probably interacts transiently with its partners.
In chemistry, fractional crystallization is a method of refining substances based on differences in their solubility. It fractionates via differences in crystallization (forming of crystals). If a mixture of two or more substances in solution are allowed to crystallize, for example by allowing the temperature of the solution to decrease or increase, the precipitate will contain more of the least soluble substance. The proportion of components in the precipitate will depend on their solubility products.
Second, mass spectrum from a complex mixture is very difficult to interpret due to the overwhelming number of mixture components. This is exacerbated by the fact that enzymatic digestion of a protein gives rise to a large number of peptide products. In light of these problems, the methods of one- and two-dimensional gel electrophoresis and high performance liquid chromatography are widely used for separation of proteins. The first method fractionates whole proteins via two-dimensional gel electrophoresis.
To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis, in which a cell's membrane is disrupted and its internal contents released into a solution known as a crude lysate. The resulting mixture can be purified using ultracentrifugation, which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles, and nucleic acids. Precipitation by a method known as salting out can concentrate the proteins from this lysate.
This is because the crust is usually less dense than the underplating magma, and this is the point at which the ascending magma reaches a level of neutral buoyancy. The evolving melt will remain here until it fractionates enough (through melting-assimilation-storage-homogenization (MASH) processes) that the remaining melt is less dense than the surrounding rock; the melt will then continue up into the crust, leaving behind the heavier mafic minerals which were crystallized during fractional crystallization. The assemblage of minerals remaining behind are typically mafic or ultramafic, and are responsible for the observed seismic anomaly which indicates underplated material.
All kinetic and equilibrium isotope effects result from differences in atomic mass. As a result, a reaction that fractionates 34S will also fractionate 33S and 36S, and the fractionation factor for each isotope will be mathematically proportional to its mass. Because of the mathematical relationships of their masses, the observed relationships between δ34S, δ33S, and δ36S in most natural materials are approximately δ33S = 0.515 × δ34S and δ36S = 1.90 × δ34S. Rarely, natural processes can create deviations from this relationship, and these deviations are reported as Δ33S and Δ36S values, usually pronounced as "cap delta." These values are typically calculated as follows: Δ33S = 1000 × [(1 + δ33S/1000) - (1 + δ34S 1000)0.518 \- 1] Δ36S = 1000 × [(1 + δ36S/1000) − (1 + δ34S/1000)1.91 − 1] However, the method for calculating Δ33S and Δ36S values is not standardized, and can differ among publications.

No results under this filter, show 8 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.