Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"fibril" Definitions
  1. a small filament or fiber: such as
  2. ROOT HAIR
  3. one of the fine threads into which a striated muscle fiber can be longitudinally split
"fibril" Antonyms

110 Sentences With "fibril"

How to use fibril in a sentence? Find typical usage patterns (collocations)/phrases/context for "fibril" and check conjugation/comparative form for "fibril". Mastering all the usages of "fibril" from sentence examples published by news publications.

A significant quantity of fibrils resulting from primary nucleation and fibril elongation may be formed during the lag phase and secondary steps, rather than only fibril elongation, can be the dominant processes contributing to fibril growth during the exponential phase. With this new model, any perturbing agents of amyloid fibril formation, such as putative drugs, metabolites, mutations, chaperones, etc., can be assigned to a specific step of fibril formation.
Both secondary events increase the number of fibril ends able to recruit new monomers or oligomers, therefore accelerating fibril formation. These events add to the well recognised steps of primary nucleation (formation of the nucleus from the mnonomers through one of models described above), fibril elongation (addition of monomers or oligomers to growing fibril ends) and dissociation (opposite process). Such a new model is described in the figure on the right and involves the utilization of a ‘master equation’ that includes all steps of amyloid fibril formation, i.e.
It is said that natural leather is composed of intertexture web of uneven fibril in diameter.
This enables it bind to collagen molecules within a collagen fibril, thus helping keep adjacent fibrils apart.
Pulp chemistry has a significant influence on nanocellulose microstructure. Carboxymethylation increases the numbers of charged groups on the fibril surfaces, making the fibrils easier to liberate and results in smaller and more uniform fibril widths (5–15 nm) compared to enzymatically pre-treated nanocellulose, where the fibril widths were 10–30 nm. The degree of crystallinity and crystal structure of nanocellulose. Nanocellulose exhibits cellulose crystal I organization and the degree of crystallinity is unchanged by the preparation of the nanocellulose.
However, thinner fibrils can also be detected. Wågberg et al. reported fibril widths of 5–15 nm for a nanocellulose with a charge density of about 0.5 meq./g. The group of Isogai reported fibril widths of 3–5 nm for TEMPO-oxidized cellulose having a charge density of 1.5 meq./g.
This can happen if the bonding between these lamellae is high. Ψ refers to the angle between the tensile axis and the collagen fibril. Mechanisms 1 and 2 both decrease Ψ. Mechanisms 3 and 4 can increase Ψ, as in, the fibril moves away from the tensile axis. Fibrils with a small Ψ stretch elastically.
This gene encodes the alpha chain of type VII collagen. The type VII collagen fibril, composed of three identical alpha collagen chains, is restricted to the basement zone beneath stratified squamous epithelia. It functions as an anchoring fibril between the external epithelia and the underlying stroma. Mutations in this gene are associated with all forms of dystrophic epidermolysis bullosa.
The formation of glucosepane within connective tissues has been shown to be site-specific. For example, studies using Molecular Dynamics simulations of a complete collagen fibril revealed energetically favourable locations, particularly within the collagen fibril gap-region. This may be due to the lower protein density and higher intra- fibrillar water content within the gap-region.
The kinetic data from the light scattering suggest that the fibril formation is not a cooperative multimolecular process, but rather a monomolecular one.
The four mechanisms through which adjustments occur are fibril rotation, collagen fibril stretching, tensile opening between fibrils, and sympathetic lamella rotation. Fibrils adapting to the loading environment enhance the flexibility of the lamellae. This contributes resistance to scale bending, and therefore increases fracture resistance. As a whole, the outer scale layer is hard and brittle, while the inner layer is ductile and tough.
The word fibrillation () is related to the word fibril in the sense of muscle fibrils, the proteins that make up each muscle fiber (muscle cell).
An alternative model assumes that PrPSc exists only as fibrils, and that fibril ends bind PrPC and convert it into PrPSc. If this were all, then the quantity of prions would increase linearly, forming ever longer fibrils. But exponential growth of both PrPSc and of the quantity of infectious particles is observed during prion disease. This can be explained by taking into account fibril breakage.
Wormell RL. New fibres from proteins. Academic Press, 1954, p. 106. There are two characteristic scattering diffraction signals produced at 4.7 and 10 Ångstroms (0.47 nm and 1.0 nm), corresponding to the interstrand and stacking distances in beta sheets. The "stacks" of beta sheet are short and traverse the breadth of the amyloid fibril; the length of the amyloid fibril is built by aligned β-strands.
This gene encodes the alpha chain of type XVI collagen, a member of the FACIT collagen family (fibril-associated collagens with interrupted helices). Members of this collagen family are found in association with fibril-forming collagens such as type I and II, and serve to maintain the integrity of the extracellular matrix. High levels of type XVI collagen have been found in fibroblasts and keratinocytes, and in smooth muscle and amnion.
It has exceptionally high tensile strength and ductility, with respectively low density, compared to other natural fibril. Its feature varies from different kinds of spider for different utility.
Normally folded proteins have to unfold partially before aggregation can take place through one of these mechanisms. In some cases, however, folded proteins can aggregate without crossing the major energy barrier for unfolding, by populating native-like conformations as a consequence of thermal fluctuations, ligand release or local unfolding occurring in particular circumstances. In these native-like conformations, segments that are normally buried or structured in the fully folded and possessing a high propensity to aggregate become exposed to the solvent or flexible, allowing the formation of native-like aggregates, which convert subsequently into nuclei and fibrils. This process is called ‘native-like aggregation’ (green arrows in the figure) and is similar to the ‘nucleated conformational conversion’ model. A more recent, modern and thorough model of amyloid fibril formation involves the intervention of secondary events, such as ‘fragmentation’, in which a fibril breaks into two or more shorter fibrils, and ‘secondary nucleation’, in which fibril surfaces (not fibril ends) catalyze the formation of new nuclei.
Locally, the separations between adjacent collagen fibrils are very uniform. Stromal transparency is mainly a consequence of the remarkable degree of order in the arrangement of the collagen fibrils in the lamellæ and of fibril diameter uniformity. Light entering the cornea is scattered by each fibril. The arrangement and the diameter of the fibrils is such that scattered light interferes constructively only in the forward direction, allowing the light through to the retina.
A mathematical solution for the exponential growth rate resulting from the combination of fibril growth and fibril breakage has been found. The exponential growth rate depends largely on the square root of the PrPC concentration. The incubation period is determined by the exponential growth rate, and in vivo data on prion diseases in transgenic mice match this prediction. The same square root dependence is also seen in vitro in experiments with a variety of different amyloid proteins.
Further, the build up of cross-links such as glucosepane within and between proteins is shown to reduce proteolytic degradation in the ECM. This leads to increased cross-link accumulation and is thought to be linked to the thickening of basement membranes in capillaries, glomeruli, lens, and lungs. Atomic-force microscopy experiments identified nanoscale morphologic differences in collagen fibril structures as a function of ageing in skin. A decrease in Young's modulus of the transverse fibril was observed.
The most common Bouligand structure found in nature is the twisted plywood structure where there is a constant angle of misalignment between layers. A rare variation of this structure is the so- called "double twisted" Bouligand structure seen in Coelacanth. This structure uses stacks of two as units to be twisted with respect to each other at some constant misalignment angle. The two fibril layers in each of these units in this case lay such that their fibril orientation is perpendicular to each other.
In this case, dermatopontin indicated as domain unfolding of a Fn molecule due to the binding site for anastellin (the only known protein that induce superfibronectin formation) on Fn is located between III_(2-3) and III_(12-14) inside the interaction site, which is the important binding site for the Fn fibril formation. Therefore, dermatopontin is protein within the ECM that could activate Fn and induce Fn fibril formation, which could help in wound healing due to its accumulation in the wound whether from the ECM's surrounded or from the serum.
Fibril in Senile Systemic Amyloidosis is derived from normal transthyretin. Proceedings of the National Academy of Sciences of the United States of America 87, 2843-5. in which cardiomyopathy results from the aggregation of wild-type transthyretin exclusively.
Epidermolysis bullosa acquisita is a chronic subepidermal blistering disease associated with autoimmunity to type VII collagen within anchoring fibril structures that are located at the dermoepidermal junction.Freedberg, et al. (2003). Fitzpatrick's Dermatology in General Medicine. (6th ed.). McGraw-Hill. .
FACIT collagen (Fibril Associated Collagens with Interrupted Triple helicesGO term: FACIT collagen) is a type of collagen which is also a proteoglycan. FACIT collagens include collagen types IX, XII, XIV, XIX, and XXI. COL22A1 is also included in this class.
The familial amyloid neuropathies (or familial amyloidotic neuropathies, neuropathic heredofamilial amyloidosis, familial amyloid polyneuropathy) are a rare group of autosomal dominant diseases wherein the autonomic nervous system and/or other nerves are compromised by protein aggregation and/or amyloid fibril formation.
Collagen alpha-1(XIX) chain is a protein that in humans is encoded by the COL19A1 gene. This gene encodes the alpha chain of type XIX collagen, a member of the FACIT collagen family (fibril-associated collagens with interrupted helices). Although the function of this collagen is not known, other members of this collagen family are found in association with fibril-forming collagens such as type I and II, and serve to maintain the integrity of the extracellular matrix. The transcript produced from this gene has an unusually large 3' UTR which has not been completely sequenced.
A similar Bouligand structure was found in the scales of the common carp (Cyprinus carpio). Compared to the arapaima, the mineral content in carp scales is lower, while exhibiting higher total energy dissipation in tensile testing as well as higher fibril extensibility.
Opticin may noncovalently bind collagen fibrils and regulate fibril morphology, spacing, and organization. The opticin gene is mapped to a region of chromosome 1 that is associated with the inherited eye diseases age-related macular degeneration (AMD) and posterior column ataxia with retinosa pigmentosa (AXPC1).
The evolution of collagens was a fundamental step in the early evolution of animals, supporting multicellular animal forms. Collagens are the most abundant proteins in vertebrates, making up some 30% of all proteins in the human body. Based on their molecular structures, collagen proteins are divided into two main classes - fibril-forming (or fibrillar) collagens and non-fibril-forming (non- fibrillar) collagens - which are further divided into 28 different types (as of 2017), based on individual structures and functions that the protein specifically has in the body. Fibrillar collagen, producing the three- dimensional frameworks in different tissues and organs, derived from a single common ancestor during evolution.
From the respective of the interactions among the PrPc molecules, hydrophobic interactions play a crucial role in the formation of β-sheets, a hallmark of PrPSc, as the sheets bring fragments of polypeptide chains into close proximity. Indeed, Kutznetsov and Rackovsky showed that disease-promoting mutations in the human PrPc had a statistically significant tendency towards increasing local hydrophobicity. In vitro experiments showed the kinetics of misfolding has an initial lag phase followed by a rapid growth phase of fibril formation. It is likely that PrPc goes through some intermediate states, such as at least partially unfolded or degraded, before finally ending up as part of an amyloid fibril.
Apomorphine is reported to be an inhibitor of amyloid beta protein (Aβ) fiber formation, whose presence is a hallmark of Alzheimer's disease (AD), and a potential therapeutic under the amyloid hypothesis. While it promotes oligomerization of the Aβ40 group of molecules, it inhibits more advanced fibril formation; this is thought to be due to the autoxidation that occurs at the hydroxyl groups. Once this functional group was altered, the inhibitory effect could be seen to decrease, reducing either the indirect or direct interference of the fibril formation. The protective effects of apomorphine were tested in mouse models with mutations in genes related to AD, such as the amyloid precursor protein gene.
PLOD2 is most expressed in active osteoblasts since collagen cross-linking is tissue-specific. Mutation in PLOD2 alters the structure of telopeptide lysyl hydroxylase and prevents fibril formation of collagen type 1. Bone analysis shows the lysine residues of telopeptides in collagen type 1 are under-hydroxylated.
It preferentially binds collagens IV, VI and type XIII collagen, but also fibril- forming collagens. Specific binding sites in collagen I and IV have been identified. This receptor is situated mainly on mesenchymal cells. Functions include: fibroblast proliferation; regulation of collagen synthesis and MMP expression; response to renal injury.
The ultrastructure of nanocellulose derived from various sources has been extensively studied. Techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), wide angle X-ray scattering (WAXS), small incidence angle X-ray diffraction and solid state 13C cross-polarization magic angle spinning (CP/MAS), nuclear magnetic resonance (NMR) and spectroscopy have been used to characterize typically dried nanocellulose morphology. A combination of microscopic techniques with image analysis can provide information on fibril widths, it is more difficult to determine fibril lengths, because of entanglements and difficulties in identifying both ends of individual nanofibrils. Also, nanocellulose suspensions may not be homogeneous and can consist of various structural components, including cellulose nanofibrils and nanofibril bundles.
DDR2 structure as above. Binds fibril-forming collagens, collagen of types I, II, III and X. A specific binding site in collagen II has been identified. It is specific for mesenchymal cells. Functions include: Chondrocyte proliferation and bone growth; regulation of cell proliferation, cell adhesion and induction of MMP expression.
Integrin α2β1 preferentially binds fibril-forming collagens. Specific binding sites in collagen I and III have been identified. Integrin α2β1 is expressed mainly on epithelial cells and platelets. Functions include: platelet adhesion - the most abundant receptor for collagen in platelets; branching morphogenesis; mast cell activation; keratinocyte adhesion and it is the main regulator of cell migration.
In vitro tests yield evidence that suggest tenascin X accelerates collagen fibril formation through an additive mechanism when collagen VI is present. In addition to tenascin X, multiple proteins, glycoconjugates, and small molecules have shown to influence not only the rate of collagen fibrillogenesis, but also the structure of collagen fibrils as well as their size in lab studies.
CEP55 then recruits the Vps23 subunit of ESCRT-I and accessory protein ALIX, which form into rings on either side of the midbody. ESCRT-I and ALIX recruit ESCRT-III via its Snf7 subunit. ESCRT-III subunits Vps20, Snf7, Vps24, Vps2, and Did2 form into a spiral-shaped fibril adjacent to the rings formed by Vps23.
A component of the Rosetta software suite, RosettaDesign, was used to accurately predict which regions of amyloidogenic proteins were most likely to make amyloid-like fibrils. By taking hexapeptides (six amino acid-long fragments) of a protein of interest and selecting the lowest energy match to a structure similar to that of a known fibril forming hexapeptide, RosettaDesign was able to identify peptides twice as likely to form fibrils as are random proteins. Rosetta@home was used in the same study to predict structures for amyloid beta, a fibril- forming protein that has been postulated to cause Alzheimer's disease. Preliminary but as yet unpublished results have been produced on Rosetta- designed proteins that may prevent fibrils from forming, although it is unknown whether it can prevent the disease.
DEB is caused by genetic defects (or mutations) within the human COL7A1 gene encoding the protein type VII collagen (collagen VII). DEB-causing mutations can be either dominant or recessive. Most families with family members with this condition have distinct mutations. Collagen VII is a very large molecule (300 kDa) that dimerizes to form a semicircular looping structure: the anchoring fibril.
Collagen alpha-1(VIII) chain is a protein that in humans is encoded by the COL8A1 gene. This gene encodes one of the two alpha chains of type VIII collagen. The gene product is a short chain collagen and a major component of the basement membrane of the corneal endothelium. The type VIII collagen fibril can be either a homo- or a heterotrimer.
A microfibril is a very fine fibril, or fiber-like strand, consisting of glycoproteins and cellulose. It is usually, but not always, used as a general term in describing the structure of protein fiber, e.g. hair and sperm tail. Its most frequently observed structural pattern is the 9+2 pattern in which two central protofibrils are surrounded by nine other pairs.
Lumican is a major keratan sulfate proteoglycan of the cornea but is ubiquitously distributed in most mesenchymal tissues throughout the body. Lumican is involved in collagen fibril organization and circumferential growth, corneal transparency, and epithelial cell migration and tissue repair. Corneal transparency is possible due to the exact alignment of collagen fibers by lumican (and keratocan) in the intrafibrillar space.
Arthrofibrosis can occur after total knee replacement or partial knee replacement. The common pathway for the development of arthrofibrosis (AF) is excessive collagen fibril deposition in and around the knee. This can be accompanied by shortening of the patellar tendon (patella baja/infera) which can also contribute to limited flexion. The rates of AF after TKA vary widely in the literature as there is no standard definition.
Cellulose pulp may also be treated with strong acid to hydrolyze the amorphous fibril regions, thereby producing short rigid cellulose nanocrystals a few 100 nm in length. These nanocelluloses are of high technological interest due to their self-assembly into cholesteric liquid crystals, production of hydrogels or aerogels, use in nanocomposites with superior thermal and mechanical properties, and use as Pickering stabilizers for emulsions.
The dermatan sulfate side chains of decorin aggregate in solution, and this behavior can assist with the assembly of the collagen fibrils. When decorin molecules are bound to a collagen fibril, their dermatan sulfate chains may extend and associate with other dermatan sulfate chains on decorin that is bound to separate fibrils, therefore creating interfibrillar bridges and eventually causing parallel alignment of the fibrils.
Since they are noncovalently bound to the fibrils, they may reversibly associate and disassociate so that the bridges between fibrils can be broken and reformed. This process may be involved in allowing the fibril to elongate and decrease in diameter under tension.Cribb, A. M.; Scott, J.E. (1995). In Tendon response to tensile-stress - an ultrastructural investigation of collagen - proteoglycan interactions in stressed tendon,1995; Cambridge Univ Press.
It is reported that pulp stones are more commonly found in the coronal region of pulp, albeit also found in the radicular pulp. It is believed that pulp stones develop around a central nidus of pulp tissue, for instance collagen fibril, ground substance and necrotic cell remnants. Initial calcification occurs around the central nidus and extends outward with regular calcified material in a concentric or radial manner.
Heterodimer model of prion propagation Fibril model of prion propagation. The first hypothesis that tried to explain how prions replicate in a protein-only manner was the heterodimer model. This model assumed that a single PrPSc molecule binds to a single PrPC molecule and catalyzes its conversion into PrPSc. The two PrPSc molecules then come apart and can go on to convert more PrPC.
Miller also works in biomedical engineering, creating three-dimensional scaffolds through the control of proteins and peptides. She explores the relationship between mesoscopic structure, material properties and cell response. She has studied how proteins self-assemble, including what causes them to unfold and form fibril structures. The morphology (roughness, porosity) and mechanical properties (such as Young's modulus and viscosity) can be controlled through self-assembly.
Hydration has been shown to produce a noticeable effect in the mechanical properties of fibrillar materials. The presence of water has been shown to decrease the stiffness of collagen fibrils, as well as increase their rate of stress relaxation and strength. From a biological standpoint, water content acts as a toughening mechanism for fibril structures, allowing for higher energy absorption and greater straining capabilities.
Collagen is synthesized as a soluble precursor, procollagen, which supports collagen self-assembly. Since collagen fibrils have almost 50 binding components in vivo, the definite requirement to generate fibrillogenesis in vivo is still cryptic. With acidic or saline solution, collagen can be extracted from tissues and rearrange into fibril by changing temperature or pH value. Experiments discovered attractive force between collagen monomers which helps the rearrangement.
Dermatan 4-O-sulfotransferase enzymatically transfers an active sulfate to position 4 of N-acetyl-D- galactosamine residues of dermatan sulfate, stabilizing this glycosaminoglycan. Dermatan sulfate is essential to extracellular matrix formation and is found in extensively in skin, tendons, cartilage, and the aortic wall. Mutation of CHST14 results in a deficiency of dermatan sulfate, which disrupts glycosaminoglycan constituents in fibroblasts and impairs collagen fibril linkage within collagen bundles.
PFM has been successfully applied to a range of biological materials such as teeth, bone, lung, and single collagen fibrils. It has been hypothesized that the endogenous piezoelectricity in these materials may be relevant in their mechanobiology. For example, using PFM it has been shown that a single collagen fibril as small as 100 nm behaves predominantly as a shear piezoelectric materials with an effective piezoelectric constant of ~1 pm/V.
Fibronectin a glycoprotein that binds to receptor proteins known as integrins within the cytoskeleton is a key player in the hypothesized method of fibrillogenesis. The interaction between fibronectin and the integrin receptor causes a conformational change in the fibronectin. Additional receptors bind to fibronectin bringing in type I collagen, procollagen I and collagen V. These molecules interact with fibronectin to promote fibril formation on the surface of the cell.
Fibronectin is a glycoprotein that is believed to act as a template for the oriented deposition of the collagen fibers, stabilizing the collagen fibrils. Fibronectin also acts as a skeleton for the elastic tissue formation. Reticular and collagenous fibers were seen to run along the edges of the VF throughout the entire lamina propria. Fibronectin in the Reinke's space appeared to guide those fibers and orient the fibril deposition.
The collagen fibrils are made of a mixture of type I and type V collagens. These molecules are tilted by about 15 degrees to the fibril axis, and because of this, the axial periodicity of the fibrils is reduced to 65 nm (in tendons, the periodicity is 67 nm). The diameter of the fibrils is remarkably uniform and varies from species to species. In humans, it is about 31 nm.
The tenocytes produce the collagen molecules, which aggregate end-to-end and side-to-side to produce collagen fibrils. Fibril bundles are organized to form fibres with the elongated tenocytes closely packed between them. There is a three-dimensional network of cell processes associated with collagen in the tendon. The cells communicate with each other through gap junctions, and this signalling gives them the ability to detect and respond to mechanical loading.
In material selection it is important to look at the interaction between the matrix and the secondary phase. For example, crosslinking within the rubber phase will promote high strength fibril formation that will toughen the rubber, preventing particle fracture. Carboxyl-terminated butadiene-acrylonitrile (CTBN) is often used to toughen epoxies, but using CTBN alone increases the toughness at the cost of stiffness and heat resistance. Amine-terminated butadiene acrylonitrile (ATBN) is also used.
Nanocellulose Nanocellulose is a term referring to nano-structured cellulose. This may be either cellulose nanocrystal (CNC or NCC), cellulose nanofibers (CNF) also called nanofibrillated cellulose (NFC), or bacterial nanocellulose, which refers to nano-structured cellulose produced by bacteria. CNF is a material composed of nanosized cellulose fibrils with a high aspect ratio (length to width ratio). Typical fibril widths are 5–20 nanometers with a wide range of lengths, typically several micrometers.
Resilin is an elastomeric insect protein, consisting of both α-helices and β-sheets structure. It is one of the most resilient protein in nature. It has a low stiffness ~0.6MPa but a high energy restoring percentage ~98%, and efficiently helps flying insects to flap wings or fleas to jump. Spider silk fibril is composed of stiff crystallized β-sheets structure, responsible for strength, and amorphous matrix surrounding, improving toughness and elongation ability.
Achilles tendon degeneration (tendinosis) is typically investigated with either MRI or ultrasound. In both cases, the tendon is thickened, may demonstrate surrounding inflammation by virtue of the presence of paratenonitis, retrocalcaneal or retro-achilles bursitis. Within the tendon, increased blood flow, tendon fibril disorganisation, and partial thickness tears may be identified. Achilles tendinosis frequently involves the mid portion of the tendon but may involve the insertion, which is then known as enthesopathy.
Dermatopontin is a component of the intercellular junction that holds membranes of adjacent cells together (2). The components of the ECM are connected to proteins embedded in the plasma membrane, which in turn are connected to the internal cytoskeleton of the cell. These connections also facilitate cell-to-cell communication (1). Dermatopontin mediates adhesion by cell surface integrin binding and accelerates collagen fibril formation that determines the size and arrangement of collagen fibrils within the extracellular matrix (2).
Each microfibril is interdigitated with its neighboring microfibrils to a degree that might suggest they are individually unstable, although within collagen fibrils, they are so well ordered as to be crystalline. Three polypeptides coil to form tropocollagen. Many tropocollagens then bind together to form a fibril, and many of these then form a fibre. A distinctive feature of collagen is the regular arrangement of amino acids in each of the three chains of these collagen subunits.
The basidia (spore-bearing cells) consist of a globular part (the hypobasidia) to which inflated or elongated epibasidia are attached. In Guepinia, the hypobasidia are egg-shaped to ellipsoid, measuring 12–16 by 9–12 μm, and attached to fibril-like epibasidia that are 20–45 by 3–4 μm. The spore deposit is white, while the spores are 9–11 by 5–6 μm, hyaline (translucent), cylindrical to elongated ellipsoid in shape, and have a large oil drop.
Its ectodomain consists of a collagen- binding discoidin domain followed by ~200 residues of unknown structure. It binds fibril-forming collagens and primarily type IV collagen, but also collagen of types I, VI, VIII. It is expressed mainly in epithelial cells and leukocytes and expression rate changes due to cell cycle phase. Functions include: mammary gland development; arterial wound repair; regulation of cell proliferation, cell adhesion and MMP expression; kidney function, differentiation and function of leukocytes.
He introduced the approach of simulating complex protein structures in transient or otherwise undetectable states (transition states, transient intermediates, transient aggregates, etc.) using exploitable experimental data as restraints. He edited computational programs able to predict essential characteristics of protein folding and protein aggregation. In a collaboration with other scholars he dissected the process of Amyloid fibril formation in its microscopic steps and computed programs to analyse experimental kinetic time courses and study effects of Small molecules and other agents.
In November 2011, F. Curciarello et al. published a paper that analyzed the abrupt changes in the yellowed fibril density values on the Shroud image. They concluded that the rapid changes in the body image intensity are not anomalies in the manufacturing process of the linen but that they can be explained with the presence of aromas or burial ointments. However, their work leaves the existence of an energy source for the image an open question.
The laboratory of Jeffery W. Kelly began looking for ways to inhibit TTR fibril formation in the 1990s. Tafamidis was eventually discovered by Kelly's team using a structure-based drug design strategy; the chemical structure was first published in 2003. In 2003, Kelly co-founded a company called FoldRx with Susan Lindquist of MIT and the Whitehead Institute and FoldRx developed tafamidis up through submitting an application for marketing approval in Europe in early 2010. FoldRx was acquired by Pfizer later that year.
Tropocollagen molecule: three left-handed procollagens (red, green, blue) join to form a right-handed triple helical tropocollagen. Collagen () is the main structural protein in the extracellular matrix in the various connective tissues in the body. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole-body protein content. Collagen consists of amino acids bound together to form a triple helix of elongated fibril known as a collagen helix.
Islands-in-the-sea extrusions are also called matrix-fibril, because fibrils of one polymer are distributed in the matrix of another polymer. The matrix is known as the "sea", and the fibrils are known as islands. The matrix is a soluble material that is washed away by a suitable solvent at some point in the manufacturing process. What remains at the microscopic level are bundles of thin parallel fibers, resulting in a fabric that is very soft and flexible.
These fiber bundles help keep the structure together by greatly increasing the energy needed for inter- fibril sliding. These bundles are coupled with the double twisted nature of the plywood arraignment, which shifts the direction a crack would like to grow drastically with each layer. It has also been observed that a structure can form mostly similar to the single twisted bouligand structure, but with a non- constant angle of misalignment. It is still unclear how this particular structural difference affects mechanical properties.
In order to mimic a mature bone matrix, self-assembled fibrils can be used to align a given mineral matrix. This is accomplished using a self- assembling molecule with a hydrophobic alkyl tail and a hydrophilic oligopeptide head. These molecules form micellar structures in situ, and disulfide bridges at low pH, leading to the formation and crystallization of 200 kDa polymeric nanofibrils. The mineral matrix ultimately interacts with the synthetic fibril via a phosphoserine residue which results in mineral nucleation and growth.
Later amyloid fiber structures also seem to have some cytotoxic effect on cell cultures. Studies have shown that fibrils are the end product and not necessarily the most toxic form of amyloid proteins/peptides in general. A non-fibril forming peptide (1–19 residues of human amylin) is toxic like the full-length peptide but the respective segment of rat amylin is not. It was also demonstrated by solid-state NMR spectroscopy that the fragment 20-29 of the human-amylin fragments membranes.
Collagen alpha-1(XII) chain is a protein that in humans is encoded by the COL12A1 gene. This gene encodes the alpha chain of type XII collagen, a member of the FACIT (fibril-associated collagens with interrupted triple helices) collagen family. Type XII collagen is a homotrimer found in association with type I collagen, an association that is thought to modify the interactions between collagen I fibrils and the surrounding matrix. Alternatively spliced transcript variants encoding different isoforms have been identified.
Collagen alpha-1(XV) chain is a protein that in humans is encoded by the COL15A1 gene. This gene encodes the alpha chain of type XV collagen, a member of the FACIT collagen family (fibril-associated collagens with interrupted helices). Type XV collagen has a wide tissue distribution but the strongest expression is localized to basement membrane zones so it may function to adhere basement membranes to underlying connective tissue stroma. Mouse studies have shown that collagen XV deficiency is associated with muscle and microvessel deterioration.
There is now strong geneticCoelho, T., Carvalho, M., Saraiva, M.J., Alves, I., Almeida, M.R., and Costa, P.P. (1993). A strikingly benign evolution of FAP in an individual found to be a compound heterozygote for two TTR mutations: TTR MET 30 and TTR MET 119. J Rheumatol 20, 179. and pharmacologic data (see European Medicines Agency website for the Tafamidis clinical trial results) indicating that the process of amyloid fibril formation leads to the degeneration of post-mitotic tissue causing FAP and likely FAC and SSA.
Based on research using mice and studies of Ehlers-Danlos syndromes (EDS), which is characterized by hypermobility of the joints, and high levels of skin laxity, researcher found that tenascin X expression levels correlated with the number of present collagen fibrils. In humans, tenascin X is associated with EDS. Through their research, researcher confounded the original hypothesis that tenascin X interfered with collagen fibrillogenesis and suggest that it acts rather as a regulator of collagen fibrillogenesis. Data suggest tenascin is a regulator of collagen fibril spacing.
All ECM samples originate from mammalian tissues, such as dermis, pericardium, and small intestinal submucosa (SIS). After explantation from the source, the ECM biomaterial retains some characteristics of the original tissue. The ECM tissues can be harvested from varying stages in the developmental stages in mammalian species such as human, porcine, equine, and bovine. Although they are similarly composed of fibril collagen, the microstructure, specific composition (including presence of noncollageous protein and glycosaminoglycans and ratio of different types of collagen), physical dimensions and mechanical properties can differ.
Infection with FMV results in distinct double-membrane bodies or particles, called DMBs or DMPs, 90-200 nm in diameter in the cytosol of infected parenchyma cells. These double membrane-bound bodies are surrounded by a fibril matrix and found only in leaves showing mosaic symptoms at a macro level, never in the uninfected tissue used as a control. Some cultivars have also shown long, flexuous, rod-shaped, virus-like particles (LFPs) in tissues showing signs of necrosis. These are also not seen in uninfected control tissues.
These changes are thought to be due to the accumulation of glucosepane in tissue. It is proposed that this is due to a change in the fibril density caused by age-related differences in water retention. Computational studies using all-atom simulations revealed that glucosepane results in less tightly held helical structure in the collagen molecule and increase porosity to water. This was confirmed with water content measurement that showed higher content in Achilles and anterior tibias tendon tissue from older individuals compared to young people.
Inflammatory amyloidosis results from chronic inflammation with increased production of SAA1, which is a major precursor of amyloid A fibril deposit in various tissues. SAA1 has been extensively studied for its binding to HDL, with results suggesting a role in lipid metabolism. During the acute-phase response, elevated levels of SAA1 in the plasma displaces ApoA-I and becomes a major apolipoprotein of HDL. The exact biological consequence of HDL remodeling by SAA1 is still under investigation, using recently developed tools such as the Saa1 and Saa2 knockout mice.
In a study of enzymatically pre-treated nanocellulose fibrils in a suspension the size and size-distribution were established using cryo-TEM. The fibrils were found to be rather mono-dispersed mostly with a diameter of ca. 5 nm although occasionally thicker fibril bundles were present. By combining ultrasonication with an "oxidation pretreatment", cellulose microfibrils with a lateral dimension below 1 nm has been observed by AFM. The lower end of the thickness dimension is around 0.4 nm, which is related to the thickness of a cellulose monolayer sheet.
A better understanding of the mechanisms of collagen fibrillogenesis as well as an understanding of the regulators of the process would allow for a better understanding of diseases that affect collagen fibril formation and assembly such as Ehlers-Danlos syndromes (EDS). On a broader spectrum, an understanding of the processes that lie behind fibrillogenesis would allow for great advancements in the field of regenerative medicine. A greater understanding would lead to a potential future in which organs and tissue damaged through trauma could be regenerated using the basis of collagen fibrillogenesis.
There is also a strong correlation (with a correlation coefficient of 0.93) between the antiproliferative effects of taxifolin derivatives on murine skin fibroblasts and human breast cancer cells. Taxifolin has shown to have anti-proliferative effects on many types of cancer cells by inhibiting cancer cell lipogenesis. By inhibiting the fatty acid synthase in cancer cells, taxifolin is able to prevent the growth and spread of cancer cells. The capacity of taxifolin to stimulate fibril formation and promote stabilization of fibrillar forms of collagen can be used in medicine.
During deformation, the shear component of the applied stress causes the hydrogen bonds between fibrils to break and then reform after fibril adjustment. # Collagen fibrils stretch: Collagen fibrils can elastically stretch, resulting in fibrils re-orientating to align with the tensile direction. # Tensile opening of interfibillar gaps: Fibrils highly misoriented with the tensile direction can separate, creating an opening. # "Sympathetic" lamella rotation: A lamella is able to rotate away from the tensile direction if it is sandwiched between two lamellae that are reorienting themselves towards the tensile direction.
This bulge is the result of the creation of a false lumen due to the vast amount of blood seepage from the aortas and surrounding veins. In some cases it is not uncommon to see degeneration in the ascending and descending aorta and the atrioventricular and semilunar valves due to elastolysis or breakdown and loss of elastic fibers. These connective tissue malfunctions are traceable to mutations, and lack of genes encoding for important components such as collagens, and micro- fibril-associated glycoproteins. Breakdown among these connective layers eventually compromises the integrity of the aortic lumen.
Like most biopolymers, stress-strain relationships of fibrils tend to show a characteristic toe-heel region before a linear, elastic region. Unlike biopolymers, fibrils do not behave like homogeneous materials, as yield strength has been shown to vary with volume, indicating structural dependencies. Differences in structure between fibrils of different origin is typically determined by x-ray diffraction. A scanning electron microscope (SEM) can be used to observe specific details on larger fibril species such as the characteristic 67 nm bands in collagen, but often is not fine enough to determine the full structure.
However, PNNs have been found to localize with both amyloid plaques and neurofibrillary tangles. Since amyloid plaques have been implicated in the progression of Alzheimer's disease, this suggests that PNNs are either instrumental in their formation or are a reaction to their formation. In vitro studies have shown that CSPGs promote beta amyloid fibril formation. Since beta amyloid is a strong stimulant to CSPG production and CSPGs are inhibitory to neuronal growth and synaptic plasticity, this may lead to the decreased axon density and synaptic loss in Alzheimer's disease.
This occurs as the parasite seeks to take control of the metabolism of the cell, in order to survive and exploit the host cell's resources and reproduction. It provides the parasite with optimal growth conditions and protection from the host's immune response. The parasite proliferates within the host cell where its mass replaces most of the host cell's cytoplasm, with the rest being taken up by microvillus structures and rhizoids. Other structures may be present inside the infected host cell including vesicles, fat globules and bundles of fibril.
Sulf1/2 expression resulted in more ECM (collagen fibril deposition) than control tumors, which may be another mechanism by which Sulfs slow down tumor growth. The authors also find Sulf1/2 specifically acts on HS-GAGs on the surface of tumor cells and not in the surrounding stroma, which consequently acts to block FGF-2/FGFR/HS ternary complex formation and inhibition of a downstream signal. Squamous cell head and neck carcinoma (SCCHN) has three cell lines lacking Sulf1 expression. Transfected-in Sulf1 expression reduces FGF-2 and HGF-mediated phosphorylation and activation of ERK and phosphatidylinositol 3'-kinase (PI3K)/Akt pathways.
The prefibrillar aggregates were shown to be able to disrupt the membrane. The cytotoxic-fibril hypothesis presents a clear target for drug development: inhibit the fibrillization process. Much early development work on lead compounds has focused on this inhibition; most are also reported to reduce neurotoxicity, but the toxic-oligomer theory would imply that prevention of oligomeric assembly is the more important process or that a better target lies upstream, for example in the inhibition of APP processing to amyloid beta. For example, apomorphine was seen to significantly improve memory function through the increased successful completion of the Morris Water Maze.
Lakhnaua Safeda: For the one, who loves the juicy syrupy fruit instead of the pulpy one, can find no better variety than this. A Few Rare Varieties: Munzar Aamin: The variety is generally produced by the end of the season and appears almost round in size instead of the regular shape of a mango. It can be relished both by sipping the juice and by cutting it into slices and chomping the thick pulpy fruit. Nazeer Pasand: These varieties of mangoes are not at all fibril and can be found by the time of the season when Dashehari starts disappearing from the market.
Thus, PPIB is essential for collagen biosynthesis and post-translational modification and affects fibril assembly, matrix cross-linking, and bone mineralization. In addition, it is associated with the secretory pathway and released in biological fluids. This protein can bind to cells derived from T- and B-lymphocytes, and may regulate cyclosporine A-mediated immunosuppression. In one experiment, the addition of PPIB into cell cultures in vitro induced chemotaxis and integrin-mediated adhesion of T cells to the extracellular matrix (ECM), suggesting that it might function in innate immunity by recruiting T cells into infected tissue in vivo.
A diagram of the structure of a myofibril (consisting of many myofilaments in parallel, and sarcomeres in series Sliding filament model of muscle contraction A myofibril (also known as a muscle fibril) is a basic rod-like unit of a muscle cell. Muscles are composed of tubular cells called myocytes, known as muscle fibres in striated muscle, and these cells in turn contain many chains of myofibrils. They are created during embryonic development in a process known as myogenesis. Myofibrils are composed of long proteins including actin, myosin, and titin, and other proteins that hold them together.
In general, amyloid polymerization (aggregation or non-covalent polymerization) is sequence-sensitive, that is mutations in the sequence can induce or prevent self-assembly. For example, humans produce amylin, an amyloidogenic peptide associated with type II diabetes, but in rats and mice prolines are substituted in critical locations and amyloidogenesis does not occur. Studies comparing synthetic to recombinant β amyloid peptide in assays measuring rate of fibrillation, fibril homogeneity, and cellular toxicity showed that recombinant β amyloid peptide has a faster fibrillation rate and greater toxicity than synthetic β amyloid peptide. There are multiple classes of amyloid-forming polypeptide sequences.
AP makes up 14% of the dry mass of amyloid deposits and is thought to be an important contributor to the pathogenesis of a related group of diseases called the Amyloidoses. These conditions are characterised by the ordered aggregation of normal globular proteins and peptides into insoluble fibres which disrupt tissue architecture and are associated with cell death. AP is thought to decorate and stabilise aggregates by preventing proteolytic cleavage and hence inhibiting fibril removal via the normal protein scavenging mechanisms. This association is utilised in the routine clinical diagnostic technique of SAP scintigraphy whereby radio- labelled protein is injected into patients to locate areas of amyloid deposition.
For example, using AFM–based nanoindentation it has been shown that a single collagen fibril is a heterogeneous material along its axial direction with significantly different mechanical properties in its gap and overlap regions, correlating with its different molecular organizations in these two regions. Collagen fibrils/aggregates are arranged in different combinations and concentrations in various tissues to provide varying tissue properties. In bone, entire collagen triple helices lie in a parallel, staggered array. 40 nm gaps between the ends of the tropocollagen subunits (approximately equal to the gap region) probably serve as nucleation sites for the deposition of long, hard, fine crystals of the mineral component, which is hydroxylapatite (approximately) Ca10(OH)2(PO4)6.
Amyloidosis is a general term for a protein misfolding syndrome that involves the deposition of a low molecular weight beta-pleated sheet-containing protein in extracellular tissues. These proteins normally circulate in the blood but may undergo conformational changes that cause them to auto-aggregate along their beta-pleated sheets to become insoluble and form fibril deposits in and outside of the circulation. These deposits disrupt tissue architecture and, in the case of light chains, directly injure cells, thereby causing potentially cataclysmic organ failures. There are 31 types of circulating proteins that can become misfolded and lead to distinctly different types of amyloidosis; among these, myeloma proteins, particularly free light chains, are the predominant cause of the disease.
Due to the high conformational flexvoribility seen between residues 114-125 (part of the unstructured N-terminus chain) and the high β-strand propensity of helix II, only moderate changes in the environmental conditions or interactions might be sufficient to induce misfolding of PrPc and subsequent fibril formation. Other studies of NMR structures of PrPc showed that these residues (~108–189) contain most of the folded domain including both β-strands, the first two α-helices, and the loop/turn regions connecting them, but not the helix III. Small changes within the loop/turn structures of PrPc itself could be important in the conversion as well. In another study, Riek et al.
Lewis observed that the connective tissue fibrils resulted from the cytoplasmic transformations of the cells. In her studies of explanted tissue cultures, Lewis noted that the cells choose to migrate away from the tissue sample and divide as individual cells, resulting in loss of the tissue’s characteristic appearance. However, she also made the distinction that the cells do not become more embryonic like Champy and others claimed, but instead lose their differentiated appearance as a tissue. This spreading of the cells and lack of characteristic tissue form caused fibril development in many tissue cultures to be lacking; however, there were a few cultures where connective tissue fibers did develop, and their progression could be tracked.
Type I collagen is the most abundant structural macromolecule within the vertebrate body and also represents the most abundant collagen found within various collagen fibrils There are immense differences in the types of collagen fibrils that exist within the body. For instance, fibrils within the tendon vary in width and are banded into aggregates that form fibril bundles that resist forces of tension within one dimension. Similarly, fibrils that form the translucent corneal stromal matrix form orthogonal sheets and withstand the force of traction in two dimensions. These two structurally different collagen fibrils are speculated to be formed from the same molecules with type I collagen being the primary collagen found within both structures.
A postulated solution to the problem of denaturation, is that newly formed collagen gets stored in vacuoles. The storage vacuoles also contain molecular aggregates that provide the required thermal stability to allow for fibrillogenesis to occur within the body. In the body, fibrillar collagens have over 50 known binding partners. The cell accounts for the variety of binding partners through the localization of the fibrillogenesis process to the plasma membrane in order to maintain control of which molecules bind to each other and further ensure both fibril diversity and assemblies of certain collagen fibrils in different tissues Kader, Hill, and Canty-Larid published a plausible mechanism for the formation of collagen fibrils.
It is not completely clear whether the aggregates are the cause or merely a reflection of the loss of protein homeostasis, the balance between synthesis, folding, aggregation and protein turnover. Recently the European Medicines Agency approved the use of Tafamidis or Vyndaqel (a kinetic stabilizer of tetrameric transthyretin) for the treatment of transthyretin amyloid diseases. This suggests that the process of amyloid fibril formation (and not the fibrils themselves) causes the degeneration of post-mitotic tissue in human amyloid diseases. Misfolding and excessive degradation instead of folding and function leads to a number of proteopathy diseases such as antitrypsin-associated emphysema, cystic fibrosis and the lysosomal storage diseases, where loss of function is the origin of the disorder.
TTR misfolding and aggregation is known to be associated with the amyloid diseases senile systemic amyloidosis (SSA), familial amyloid polyneuropathy (FAP), and familial amyloid cardiomyopathy (FAC). TTR tetramer dissociation is known to be rate-limiting for amyloid fibril formation. However, the monomer also must partially denature in order for TTR to be mis-assembly competent, leading to a variety of aggregate structures, including amyloid fibrils. While wild type TTR can dissociate, misfold, and aggregate, leading to SSA, point mutations within TTR are known to destabilize the tetramer composed of mutant and wild-type TTR subunits, facilitating more facile dissociation and/or misfolding and amyloidogenesis. A replacement of valine by methionine at position 30 (TTR V30M) is the mutation most commonly associated with FAP.
Zonula occludens-1 ZO-1, also known as Tight junction protein-1 is a 220-kD peripheral membrane protein that is encoded by the TJP1 gene in humans. It belongs to the family of zona occludens proteins (ZO-1, ZO-2, and ZO-3), which are tight junction-associated proteins and of which, ZO-1 is the first to be cloned. It was first isolated in 1986 by Stevenson and Goodenough using a monoclonal antibody raised in rodent liver to recognise a 225-kD polypeptide in whole liver homogenates and in tight junction-enriched membrane fractions. It has a role as a scaffold protein which cross-links and anchors Tight Junction (TJ) strand proteins, which are fibril-like structures within the lipid bilayer, to the actin cytoskeleton.
The collagen in tendons are held together with proteoglycan (a compound consisting of a protein bonded to glycosaminoglycan groups, present especially in connective tissue) components including decorin and, in compressed regions of tendon, aggrecan, which are capable of binding to the collagen fibrils at specific locations. The proteoglycans are interwoven with the collagen fibrils their glycosaminoglycan (GAG) side chains have multiple interactions with the surface of the fibrils showing that the proteoglycans are important structurally in the interconnection of the fibrils. The major GAG components of the tendon are dermatan sulfate and chondroitin sulfate, which associate with collagen and are involved in the fibril assembly process during tendon development. Dermatan sulfate is thought to be responsible for forming associations between fibrils, while chondroitin sulfate is thought to be more involved with occupying volume between the fibrils to keep them separated and help withstand deformation.
He also delivered a series of three lectures on the flight muscles of insects at the University of London during March 1954Brochure for series of special lectures, 1,2,3 March 1954; Basser Library, Australian Academy of Science, Manuscript Collection, MS076 Oscar Tiegs returned to his area of doctoral studies for what was to be his last research, an exhaustive study of the flight muscles of insects and other arthropod muscles published in 1955. This analysis of the comparative myology and evolution of wide range of insect's flight muscles showed how such muscles evolved structurally at a histological level. He showed that the histogenesis of muscle in orthoptera (butterflies, moths, etc.) and simpler insects by the repeated division of rudimentary muscle fibres, but in higher orders of insect, free individual myoblasts applicate to young muscle fibres laying down a new fibril, contributing sarcoplasm and nuclei. In 1956 Oscar Tiegs was awarded the Clarke Medal by the Royal Society of New South Wales, although the Australian Academy of Science has him listed, incorrectly, as receiving this award in 1928.
Kelly received his Ph.D. in organic chemistry from the University of North Carolina at Chapel Hill (1986) and performed post-doctoral research at The Rockefeller University (1986–89). He is former Dean of Graduate Studies (2000-2008) and Vice President of Academic Affairs (2000-2006) and co-Chairman of Molecular Medicine and the Lita Annenberg Hazen Professor of Chemistry within the Skaggs Institute of Chemical Biology at The Scripps Research Institute in La Jolla, California. His research focuses on understanding protein folding, misfolding and aggregation and on developing both chemical and biological strategies to ameliorate diseases caused by protein misfolding and/or aggregation.Faculty biography, Scripps, Retrieved April 2, 2018 Kelly has cofounded three biotechnology companies, FoldRx Pharmaceuticals with Susan Lindquist in 2003, Proteostasis Therapeutics, Inc. with Andrew Dillin and Richard Morimoto in 2010, and Misfolding Diagnostics in 2012. His lab began looking for ways to inhibit transthyretin fibril formation in the 1990s. Tafamidis was eventually discovered by Kelly's team using a structure-based drug design strategy; the structure was first published in 2003. In 2003 Kelly co-founded FoldRx with Susan Lindquist of MIT and the Whitehead Institute and FoldRx developed tafamidis up through submitting an application for marketing approval in Europe in early 2010.

No results under this filter, show 110 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.