Sentences Generator
And
Your saved sentences

No sentences have been saved yet

275 Sentences With "complexed"

How to use complexed in a sentence? Find typical usage patterns (collocations)/phrases/context for "complexed" and check conjugation/comparative form for "complexed". Mastering all the usages of "complexed" from sentence examples published by news publications.

It is very complexed and we keep on doing that in order to improve the results.
Through these visceral tales of sex, money, violence and power, these two rappers weren't similar, but both shared a complexed relationship to the darkness of the streets, which what left them with careers that lasted under a decade.
Right now, the 73-person company is already working with landowners in Copenhagen (2 complexed of 100 units), Berlin (one complex of 50 units), Thailand (one complex of 50 units), and some smaller plots in Lisbon, Greece, Colombia, Italy and Ibiza.
Furthermore, SIRT3 and AceCS2 are found complexed with one another, suggesting a critical role for control of AceCS2 activity by SIRT3.
For different photosynthetic eukaryotes, the enzyme activity of complexed PRK may be enhanced as opposed to free PRK, and vice versa.
The complexed enzyme adds a single double bond between the C9 and C10 of long- chain acyl-CoAs from de-novo synthesis.
Copper (and silver) centers are often complexed with phenanthrolines, and activity is reported to increase with electron-rich substituents on the ligands.
Bronze statues are known to be degraded by certain species of yeast. Different yeasts from Brazilian gold mines bioaccumulate free and complexed silver ions.
Bagnall, p. 206 At pH about 1, polonium ions are readily hydrolyzed and complexed by acids such as oxalic acid, citric acid, and tartaric acid.
MCPs share similar structure and signalling mechanism. MCPs form dimers. Three dimers of MCP spontaneously form trimers. Trimers are complexed by CheA and CheW into hexagonal lattices.
Fast Sulphon Black is purple when complexed with copper, and turns green when titrated against EDTA, as the EDTA displaces it, being the better complexing agent due to the chelate effect.
The DAF-4 gene encodes for the only type II receptor of TGF-beta signaling pathway in the worm Caenorhabditis elegans, with the ligands Daf-7 or Dbl-1. When binds to the ligand Daf-7, Daf-4 complexed with the type I receptor Daf-1, and activated the Smad Protein Daf-8/14. By contrast, when binds to Dbl-1, Daf-4 complexed with the Sma-6 type I receptor, and activated the Sma-2/3/4.
The dianion [Fe(CO)4]2− is isoelectronic with Ni(CO)4. The iron center is tetrahedral, with Na+\---OCFe interactions. It is commonly used with dioxane complexed to the sodium cation.
Artemis is a nuclear protein that is involved in V(D)J recombination and DNA repair. The protein has endonuclease activity on 5' and 3' overhangs and hairpins when complexed with PRKDC.
Such nuclear accidents as this one are a potent source of biologically accumulating isotopes of transuranic elements such as curium and americium which are incorporated into bones, complexed into the Ca/PO4 hydroxide.
I-TASSER assembled and then aligned possible SNAP47 tertiary sequence with 5VOX, a Yeast V-ATPase, and a Ufd2 complexed with ubiquitin-like domain Rad23.. The TM scores respectively were 0.917 and 0.584.
An x-ray structure of SRII complexed with its transducer (HtrII) at 1.94 Å resolution is available (). Molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors have been reviewed.
In particular, the crystallized structure of 14-3-3ζ forms a cup-shaped dimer when complexed with CBY. The YWHAZ gene encodes two transcript variants which differ in the 5' UTR but produce the same protein.
A "TaxId" is the taxonomy ID number and links to the NCBI taxonomy browser, which provides more information about the species to which the protein belongs. Clicking on a species or isoform brings up a list of domains. For example, the "Hemoglobin, alpha-chain from Human (Homo sapiens)" protein has >190 solved protein structures, such as 2dn3 (complexed with cmo), and 2dn1 (complexed with hem, mbn, oxy). Clicking on the PDB numbers is supposed to display the structure of the molecule, but the links are currently broken (links work in pre-SCOP).
The RXR receptor itself is the second major target of obesogens next to the PPAR receptors. The PPARα receptor, when complexed with RXR and activated by the binding of a lipid, promotes peroxisome proliferation leading to increased fatty acid β-oxidation. Substances, such a xenobiotics that target and act as agonists of PPARα, typically act to reduce overall serum concentrations of lipids. In contrast, the PPARγ receptor, when complexed with RXR and activated by the binding of fatty acids or their derivatives, promotes lipid biosynthesis and storage of lipids is favored over fatty acid oxidation.
GHK binding constant 16 log 10 =16.44). It has been established that copper (II) redox activity is silenced when copper ions are complexed with the GHK tripeptide, which allows the delivery of non-toxic copper into the cell.
Theoretical work has suggested that even an unprotected protonated tertiary amine complexed with the sodium alkalide might be metastable under certain solvent conditions, though the barrier to reaction would be small and finding a suitable solvent might be difficult.
PSA exists in serum in the free (unbound) form and in a complex with alpha 1-antichymotrypsin; research has been conducted to see if measurements of complexed PSA are more specific and sensitive biomarkers for prostate cancer than other approaches.
It is inhibited by enzyme inhibitors that covalently bind the threonine.Sousa MC, Kessler BM, Overkleeft HS, McKay DB. (2002). Crystal structure of HslUV complexed with a vinyl sulfone inhibitor: corroboration of a proposed mechanism of allosteric activation of HslV by HslU.
Trichlorides of cobalt(III) complexed with various ligands, such as organic amines, can be quite stable. In particular, hexamminecobalt(III) chloride is the archetypal Werner complex and has uses in biological research. Another classical example is tris(ethylenediamine)cobalt(III) chloride .
Since then, other CCP domains have been solved either by NMR-spectroscopy (also relaxation studies, e.g. module 2 and 3 from CD55 (pdb:1nwv)) or by X-ray diffraction (also with co-crystallized partner, e.g. CR2 CCP modules complexed with C3d (pdb:1ghq)).
Increased levels of the p27Kip1 protein typically cause cells to arrest in the G1 phase of the cell cycle. Likewise, p27Kip1 is able to bind other Cdk proteins when complexed to cyclin subunits such as Cyclin E/Cdk2 and Cyclin A/Cdk2.
However, the epitopes (conformational epitopes) that are recognized by the B cell prior to their digestion may not be the same as that presented to the T helper cell. Additionally, a B cell may present different peptides complexed to different MHC-II molecules.
The scientists used injection of Cas9 protein complexed with the relevant sgRNAs and homology donors into human embryos. The scientists found homologous recombination-mediated alteration in HBB and G6PD. The scientists also noted the limitations of their study and called for further research.
The fast buck runs around a complexed set of events and interactions between different people out to find a hidden Indian treasure with different intentions, soon involving a ruthless criminal who is on the run after a homicide in an attempted robbery.
Gallium-67 citrate is produced by a cyclotron. Charged particle bombardment of enriched Zn-68 is used to produce gallium-67. The gallium-67 is then complexed with citric acid to form gallium citrate. The half life of gallium-67 is 78 hours.
ELMO1 has been shown to interact with Dock180 and HCK. ELMO1 directly interacts with the SH3 domain of HCK. The association between ELMO1 and HCK is dependent on polyproline interactions. When ELMO1 is complexed with DOCK180, Rac GTPase-dependent biological processes are activated.
The second class of enzymes includes those where the Mg2+ is complexed to nucleotide di- and tri- phosphates (ADP and ATP), and the chemical change involves phosphoryl transfer. Mg2+ may also serve in a structural maintenance role in these enzymes (e.g., enolase).
One such nuclease is Mre11 complexed with Rad50. Mutations of Mre11 can precipitate ataxia-telangiectasia-like disorder. V(D)J recombination involves opening stem-loops structures associated with double-strand breaks and subsequently joining both ends. The Artemis-DNAPKcs complex participates in this reaction.
Prolyloligopeptidase complexed with a peptideAn Oligopeptidase is an enzyme that cleaves peptides but not proteins. This property is due to its structure: the active site of this enzyme is located at the end of a narrow cavity which can only be reached by peptides.
Methionyl tRNAfMet transformylase complexed with initiator formylmethionyl tRNAfMet. Rendered from PDB 2FMT. In bacteria and organelles, the initiation of protein synthesis is signaled by the formation of formyl-methionyl-tRNA (tRNAfMet). This reaction is dependent on 10-formyltetrahydrofolate, and the enzyme methionyl- tRNA formyltransferase.
Michels, E.; Sheldrick, W.S.; Kreiter, C.G. Chem. Ber. 1985, 118, 964. (4)File:64Mech2.png Although notable work on [6+4] cycloadditions was reported by Rigby et al. in the late 1980s, the study of metal-complexed dienes with cycloheptatriene received comparatively little attention.
Calcium ions (yellow) are also shown. Based on the PyMOL rendering of PDB 1UEA. For simplicity, the other MMP-3 monomer complexed with its respective TIMP-1 is not shown. The catalytic domain of MMP-3 can be inhibited by tissue inhibitors of metalloproteinases (TIMPs).
Mutation of both interaction sites for DOCK180 on ELMO1 will lead to the disruption of the ELMO1-DOCK180 complex. ELMO1 complexed with both DOCK180 and CrkII leads to maximal efficiency of phagocytosis in the cell. This complex of molecules happens upstream of Rac during phagocytosis.
As of December 2015, 84% of the stockpiles had been destroyed. The crystal structure of soman complexed with acetylcholinesterase was determined by Millard et al. in 1999 by X-ray crystallography: 1som. Other solved acetylcholinesterase structures with soman bound to them include 2wfz, 2wg0 and 2wg1.
As 70% of myelodysplastic syndrome patients exhibit transfusion dependent anemia, diagnosis of MDS can also help indicate transfusion dependency. Diagnosis of it is complexed with great diversity of symptoms, and therefore most patients are only diagnosed with myelodysplastic syndromes when seeking clinical advice after experiencing symptoms of anemia.
A similar mechanism has been proposed by Janakiraman et al.Janakiraman, M. N., White, C. L., Laver, W. G., Air, G. M., & Luo, M. (1994). Structure of Influenza Virus Neuraminidase B/Lee/40 Complexed with Sialic Acid and a Dehydro Analog at 1.8-. ANG. Resolution: Implications for the Catalytic Mechanism.
People v. Hernandez (99 Phil. Reports 515, 1956): the Supreme Court, through then Associate Justice Concepcion, ruled that rebellion cannot be complexed with other crimes, such as murder and arson. Rebellion in itself would include and absorb the said crimes, thus granting the accused his right to bail.
HDAC3 can also be found complexed together with HDAC-related protein (HDRP). HDACs 1 and 3 have been found to mediate Rb-RbAp48 interactions which suggests that it functions in cell cycle progression. HDAC3 also shows involvement in stem cell self-renewal and a transcription independent role in mitosis.
RAPTA (ruthenium arene PTA) is a class of experimental cancer drugs. They consist of a central ruthenium(II) atom complexed to an arene group, chlorides, and 1,3,5-triaza-7-phosphaadamantane (PTA) forming an organoruthenium half-sandwich compound. Other related ruthenium anti-cancer drugs include NAMI-A and KP1019.
Hydridotetrakis(triphenylphosphine)rhodium(I) is the coordination complex with the formula HRh[P(C6H5)3]4. It consists of a Rh(I) center complexed to four triphenylphosphine (PPh3) ligands and one hydride. The molecule has idealized C3v symmetry. The compound is a homogeneous catalyst for hydrogenation and related reactions.
In cardiac muscle, emerin is also found complexed to beta-catenin at adherens junctions of intercalated discs, and cardiomyocytes from hearts lacking emerin showed beta-catenin redistribution as well as perturbed intercalated disc architecture and myocyte shape. This interaction appears to be regulated by glycogen synthase kinase 3 beta.
This is distinct from the fully oxidized Mo(VI) found complexed with molybdopterin in all other molybdenum-bearing enzymes, which perform a variety of crucial functions. The variety of crucial reactions catalyzed by these latter enzymes means that molybdenum is an essential element for all higher eukaryote organisms, including humans.
In the mouse-eared cress, two chains of catalytic ALS () is complexed with two regulatory small subunits (), VAT1 and At2g31810. Such an arrangement is widespread in both bacterial and eukaryotic ALS. The hetromeric structure was demonstrated in E. coli in 1984 and in eukaryotes (S. cerevisiae and Porphyra purpurea) in 1997.
SEB, a typical bacterial superantigen (PDB:3SEB). The β-grasp domain is shown in red, the β-barrel in green, the "disulfide loop" in yellow. SEC3 (yellow) complexed with an MHC class II molecule (green & cyan). The SAgs binds adjacent to the antigen presentation cleft (purple) in the MHC-II.
Structure of an Fe-TAML complex. Tetra-amido macrocyclic ligands (TAMLs) constitute a class of macrocyclic ligands. When complexed to metals, TAMLs are proposed as environmentally friendly catalysts. Although never commercialized, iron-TAML complexes catalyze the degradation of pesticides, effluent streams from paper mills, dibenzothiophenes from diesel fuels, and anthrax spores.
One example where nickel atoms form a square pyramid is a nickel hydride cluster complexed by triphenyl phosphine ligands and bonding a hydrogen atom on each edge. Another example has a square planar Ni4H4 shape in its core. Nickel bis(dimethylglyoximate), an insoluble red solid is important for gravimetric analysis.
Ana is a flight attendant who lives with Andrea, who believes it is his mother who in turn was separated from his father, Esteban; Elena and her sister, who suffered from polio as a child, being invalid and hooks on their legs, so grew complexed with feelings of hatred toward her.
In his few portraits, "Graphic Artist Sylvia Liiberg" 1981, is probably the most notable. In his ascetic nature paintings, artist is realizing his philosophical aspiration to show the great through small and complexed through ordinary. These simple compositions convey the overall notion of truth. Mari Nõmmela, Mõtteid Olav Maranist - Edasi, 14.12.
Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 2010; 465:747-51. The structure of HIV Tat bound to P-TEFb demonstrated that the viral protein forms extensive contacts with the cyclin T1 subunit (Figure 2).
The isolobal analogy does not guarantee these products are capable of being produced, but only proposes a possibility. Consider the molecule Fe(CO)3 complexed with cyclobutadiene. Fe(CO)3 is isolobal with CH+. Therefore, one can predict that CH+ will coordinate with cyclobutadiene in a similar fashion that Fe(CO)3 will.
In molluscs and crustaceans, copper is a constituent of the blood pigment hemocyanin, replaced by the iron-complexed hemoglobin in fish and other vertebrates. In humans, copper is found mainly in the liver, muscle, and bone. The adult body contains between 1.4 and 2.1 mg of copper per kilogram of body weight.
However, ionic conduction can occur, especially as the temperature increases. Materials exhibiting this property are used in batteries. A well-known ion conductive solid is β-alumina ("BASE"), a form of aluminium oxide. When this ceramic is complexed with a mobile ion, such as Na+, it behaves as so-called fast ion conductor.
Due to the large size of the Ca2+ ion, high coordination numbers are common, up to 24 in some intermetallic compounds such as CaZn13.Greenwood and Earnshaw, p. 115 Calcium is readily complexed by oxygen chelates such as EDTA and polyphosphates, which are useful in analytic chemistry and removing calcium ions from hard water.
These rRNA molecules differ in size in eukaryotes and are complexed with a large number of ribosomal proteins, the number and type of which can vary slightly between organisms. While the ribosome is the most commonly observed intracellular multiprotein complex in bacteria other large complexes do occur and can sometimes be seen using microscopy.
These enveloped viruses have a three-segmented negative-strand RNA genome. of approximately 13 kb in total length. The three segments are designated by their size, small (S), medium (M), and large (L) and are complexed with nucleoprotein to form three separate nucleocapsids. The 3' and 5' untranslated regions (UTR) are complementary and highly conserved.
M. Hodgson, D.; H. Labande, A.; Muthusamy, S. In Organic Reactions; John Wiley & Sons, Inc.: 2004. Subsequent 1,3-dipolar cycloaddition reaction occurs through a transient metal-complexed carbonyl ylide. Therefore, a persistent metallocarbene can influence the stereoselectivity and regioselectivity of the 1,3-dipolar cycloaddition reaction based on the stereochemistry and size of the metal ligands.
The classical and alternative complement pathways. C1q is the orange part of the C1 complex at the top of the image. It is assumed that the globular ends are the sites for multivalent attachment to the complement fixing sites in immune complexed immunoglobulin. Patients suffering from Lupus erythematosus often have deficient expression of C1q.
An Iodophor is a preparation containing iodine complexed with a solubilizing agent, such as a surfactant or povidone (forming povidone-iodine). The result is a water-soluble material that releases free iodine when in solution. Iodophors are prepared by mixing iodine with the solubilizing agent; heat can be used to speed up the reaction.
The silver-catalyzed HDDA reaction has also been used to synthesize organofluorine compounds by use of a fluorine-containing counterion.Wang, K.-P.; Yun, S. Y.; Mamidipalli, P.; Lee, D. Chem. Sci., 2013, 4, 3205 The metal-complexed aryne intermediate can be trapped by the counterion to produce aryl rings with fluoro, trifluoromethyl, or trifluoromethylthiol substituents.
The compound is encountered in nature in the form of complexes where the two inner hydrogen atoms are replaced by a divalent metal cation. When complexed with an iron(II) (ferrous) cation , the molecule is called heme. Hemes are prosthetic groups in some important proteins. These heme- containing proteins include hemoglobin, myoglobin, and cytochrome c.
90Y-DOTA-biotin consists of a radioactive substance (yttrium-90) complexed by a chelating agent (DOTA), which in turn is attached to the vitamin biotin via a chemical linker. It is used experimentally in pretargeted radioimmunotherapy. Animal studies have been conducted as well as clinical studies in humans. In pretargeted radioimmunotherapy, two or three medications are applied in succession.
Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. The structure of this domain complexed with CaM is known. This domain forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other.
The eukaryotic cell nucleus. Visible in this diagram are the ribosome-studded double membranes of the nuclear envelope, the DNA (complexed as chromatin), and the nucleolus. Within the cell nucleus is a viscous liquid called nucleoplasm, similar to the cytoplasm found outside the nucleus. A cross section of a nuclear pore on the surface of the nuclear envelope (1).
In 1994, Kagan and co-workers reported a NLE in asymmetric sulfide oxidation. The goodness of fit for the reaction data matched the ML4 model. This implied that a dimeric Titanium complexed with 4 DET ligands was the active catalytic species. In this case, the reaction rate would be significantly faster relative to ideal reaction kinetics.
The classical and alternative complement pathways. Activation of the C1 complex initiates the classical complement pathway. This occurs when C1q binds to antigen-antibody complexes. The antibodies IgM or certain subclasses of IgG complexed with antigens are able to initiate the complement system: a single pentameric IgM can initiate the pathway, while several monomeric IgG molecules are needed.
Borane dimethylsulfide (BMS) is a complexed borane reagent that is widely used for hydroborations. Diborane can be produced in situ by reduction BF3 with NaBH4 (see for Flavopiridol). Usually however, borane dimethylsulfide complex BH3S(CH3)2 (BMS) is used as a source of BH3.See Borane-dimethylsulfide complex It can be obtained in highly concentrated forms.
In organosulfur chemistry, 1,3-dithioles are a class of heterocycles based on the parent compound 1,3-dithiacyclopentene (also known as 1,3-dithiole). The ligand dmit2- is a 1,3-dithiole. Heating solutions of Na2dmit gives the isomeric disulfide, a 1,2-dithiole. Structure of the anion [Zn(dmit)2]2-, featuring two 1,3-dithiole-4,5-dithiolate ligands complexed to zinc.
The slow step in most instances is generation of carbene. A well-known reagent employed for alkene-to-cyclopropane reactions is Simmons-Smith reagent. This reagent is a system of copper, zinc, and iodine, where the active reagent is believed to be iodomethylzinc iodide. Reagent is complexed by hydroxy groups such that addition commonly happens syn to such group.
Other perchlorates include pervanadyl perchlorate, also known as dioxovanadium perchlorate, which contains VO2+ ions, vanadyl diperchlorate, oxovanadium perchlorate or vanadium(IV) perchlorate, and VO(ClO4)2, which dissolves in water. Vanadic perchlorate, also known as vanadium(III) perchlorate solution in water, is a green-tinged blue colour, significantly different to most other V(III) solutions, which are complexed.
The possibility of a PEP/pyruvate transporter has also been put forward. X-ray structures of PEPCK provide insight into the structure and the mechanism of PEPCK enzymatic activity. The mitochondrial isoform of chicken liver PEPCK complexed with Mn2+, Mn2+-phosphoenolpyruvate (PEP), and Mn2+-GDP provides information about its structure and how this enzyme catalyzes reactions. Delbaere et al.
The Bovine Mitochondrial F1-ATPase Complexed with the inhibitor protein If1 is commonly cited in the relevant literature. Examples of its use may be found in many cellular fundamental metabolic activities such as acidosis and alkalosis and respiratory gas exchange. The o in the Fo stands for oligomycin, because oligomycin is able to inhibit its function.
Intezaar () is a Pakistani Urdu-language family drama series, produced by A-Plus. The drama airs weekly on A-Plus Entertainment every Thursday on Prime time. It stars Anum Fayyaz, Mikaal Zulfiqar and Sana Javed in lead roles. Intezaar is a story which revolves around element of tragedy and romance intertwined together in a beautiful yet complexed manner.
Each of domains 2 and 4 can be folded in a stem and loop structure that mimics the anticodon arm of E. coli tRNA(Thr). Mutagenesis and biochemical experiments have shown that the two anticodon-like domains of the operator bind to the two tRNA(Thr) anticodon recognition sites (one per subunit) of the dimeric TARS in a quasi-symmetrical manner. The crystal structures of (i) TARS complexed with two tRNA(Thr) molecules, and (ii) TARS complexed with two isolated domains 2, have confirmed that TARS recognition is primarily governed by similar base-specific interactions between the anticodon loop of tRNA(Thr) and the loop of the operator domain 2. The same amino acids interact with the CGU anticodon sequence of tRNA(Thr) and the analogous residues in domain 2.
Radiation of methoxyvinyl protons in free enone and in enone complexed with monodentate Ti(IV) show s-cis and s-trans conformations, while radiation of the enone in a bidentate Ti(IV) complex showed predominantly s-trans conformers. In 2003, this group extended the allylation strategy using this bidentate catalyst to ketones.Kii, S., Maruoka, K., Chirality, 2003, 15, 68-70.
It was for many years erroneously presumed that antibodies detected in a VGKC assay were targeted against the channel itself. But the heterogeneous presentation of patients was difficult to explain. The original assays for the detection of VGKC antibodies used Iodine-125 labelled dendrotoxin and the relatively mild detergent 2% digitonin on mammalian brain homogenate, and VGKC with complexed proteins was extracted.
Mechanism of NF-κB action. In this figure, the NF-κB heterodimer consisting of Rel and p50 proteins is used as an example. While in an inactivated state, NF- κB is located in the cytosol complexed with the inhibitory protein IκBα. Through the intermediacy of integral membrane receptors, a variety of extracellular signals can activate the enzyme IκB kinase (IKK).
Cimetidine is reported to be a competitive and reversible inhibitor of several CYP450 enzymes, although mechanism-based (suicide) irreversible inhibition has also been identified for cimetidine's inhibition of CYP2D6. It reversibly inhibits CYP450 enzymes by binding directly with the complexed heme-iron of the active site via one of its imidazole ring nitrogen atoms, thereby blocking the oxidation of other drugs.
After molybdopterin is eventually complexed with molybdenum, the complete ligand is usually called molybdenum cofactor. Molybdopterin consists of a pyranopterin, a complex heterocycle featuring a pyran fused to a pterin ring. In addition, the pyran ring features two thiolates, which serve as ligands in molybdo- and tungstoenzymes. In some cases, the alkyl phosphate group is replaced by an alkyl diphosphate nucleotide.
RNA polymerase from Saccharomyces cerevisiae complexed with α-amanitin (in red). Despite the use of the term "polymerase," RNA polymerases are classified as a form of nucleotidyl transferase. A transferase is any one of a class of enzymes that enact the transfer of specific functional groups (e.g. a methyl or glycosyl group) from one molecule (called the donor) to another (called the acceptor).
The SP receptor promoter contains regions that are sensitive to cAMP, AP-1, AP-4, CEBPB, and epidermal growth factor. Because these regions are related to complexed signal transduction pathways mediated by cytokines, it has been proposed that cytokines and neurotropic factors can induce NK-1. Also, SP can induce the cytokines that are capable of inducing NK-1 transcription factors.
Once complexed to a metal ion, ammonia is not basic. This property is illustrated by the stability of some metal ammine complexes in strong acid solutions. When the M-NH3 bond is weak, the ammine ligand dissociates and protonation ensues. The behavior is illustrated by the non- reaction and reaction with [Co(NH3)6]3+ and [Ni(NH3)6]2+, respectively.
Use of fluorophores appended to macrocycles provides advantages over other techniques for selective and sensitive metal ion detection. Izatt demonstrated that certain 8-¬hydroxyquinoline derivatives attached to diazamacrocycles elicit a strong fluorescent response when complexed to selected closed-shell metal ions.Prodi, L. et al Characterization of 5-Chloro-8-Methoxyquinoline appended diaza 18-Crown-6 as a chemosensor for cadmium. Tetrahedron Lett.
Lewis acids such as zinc chloride, boron trifluoride, tin tetrachloride, aluminum chloride, etc. can act as catalysts of normal-demand Diels–Alder reactions by coordination to the dienophile. The complexed dienophile becomes more electrophilic and more reactive toward the diene, increasing the reaction rate and often improving the regio- and stereoselectivity as well. Lewis acid catalysis also enables Diels–Alder reactions to proceed at low temperatures, i.e.
Firstly, in the cell vacuoles where it is complexed with polyphenols. This caffeine probably is released into the mouth parts of insects, to discourage herbivory. Secondly, around the vascular bundles, where it probably inhibits pathogenic fungi from entering and colonizing the vascular bundles. Caffeine in nectar may improve the reproductive success of the pollen producing plants by enhancing the reward memory of pollinators such as honey bees.
Both consist of a Gd(III) ion complexed with a tetraazamacrocycle. At the N-10 position, a two-carbon chain links the gadolinium-tertaazamacrocycle complex to a molecule of galactose. The galactose is linked to the complex by a β-glycosidic bond at its C-1 position. The two forms of the contrast agent differ only in the location of a single methyl group.
Crystal structures of LPL complexed with GPIHBP1 have been reported.; ; LPL is composed of two distinct regions: the larger N-terminus domain that contains the lipolytic active site, and the smaller C-terminus domain. These two regions are attached by a peptide linker. The N-terminus domain has an α/β hydrolase fold, which is a globular structure containing a central β sheet surrounded by α helices.
There are two distinct classes of glycosylated receptors that can bind to neurotrophins. These two proteins are p75 (NTR), which binds to all neurotrophins, and subtypes of Trk, which are each specific for different neurotrophins. The reported structure above is a 2.6 Å-resolution crystal structure of neurotrophin-3 (NT-3) complexed to the ectodomain of glycosylated p75 (NRT), forming a symmetrical crystal structure.
Brown algaes also exsude phlorotannins in surrounding seawater. It has been proposed that phlorotannins are first sequestered in physodes under their polar, reactive form before being oxidized and complexed to the alginic acid of brown algal cell wall by a peroxidase. To this date (2012), not much is known about phlorotannins synthesis. The formation of physodes, vesicles containing phenolic compounds, have been investigated for many years.
Before the three- dimensional structure of complexed HLA-DO was elucidated by X-ray crystallography, its crystal structure was modeled after homology studies to classical MHC class II proteins. Following crystallization of the protein, HLA-DO was found to be conformationally similar to classical MHC class II protein, with alterations in the N-terminus. The structure of the free HLA-DO protein, however, remains to be elucidated.
Citronellol is used in perfumes and insect repellents, and as a mite attractant. Citronellol is a good mosquito repellent at short distances, but protection greatly lessens when the subject is slightly further from the source. When complexed with β-cyclodextrin, it has on average a 90-minute protection duration against mosquitoes. Citronellol is used as a raw material for the production of rose oxide.
Iron is absolutely required by all life forms, playing a critical role in a number of essential processes. Free iron, at least what would be readily available to a microbial pathogen, practically does not exist in animals. In vertebrates, the majority of iron is stored inside cells in complex with either ferritin or hemoglobin. Extracellular iron is found in body fluids complexed to either transferrin or lactoferrin.
Ran-specific binding protein 1 is an enzyme that in humans is encoded by the RANBP1 gene. Ran/TC4-binding protein, RanBP1, interacts specifically with GTP- charged RAN. RANBP1 encodes a 23-kD protein that binds to RAN complexed with GTP but not GDP. RANBP1 does not activate GTPase activity of RAN but does markedly increase GTP hydrolysis by the RanGTPase-activating protein (RANGAP1).
The periodatonickelates are a series of anions and salts of nickel complexed to the periodate anion. The diperiodatonickelates with nickel in the +4 oxidation state are powerful oxidising agents that are capable of oxidising bromate to perbromate. Sodium nickel periodate, NaNiIO6·0.5H2O and potassium nickel periodate, KNiIO6·0.5H2O were discovered in 1949 by P. Ray and B. Sarma. These double salts are coloured dark purple.
In the absence of the steroid hormone cortisol, GR resides in the cytosol complexed with several chaperone proteins including Hsp90 (see figure to the right). These chaperones maintain the GR in a state capable of binding hormone. A second role of Hsp90 is to bind immunophilins (e.g., FKBP52) that attach the GR complex to the dynein protein trafficking pathway, which translocates the activated receptor from the cytoplasm into the nucleus.
It is a subgroup of the macrolide antibiotics, and exhibits similar structural elements. Currently, the drug is available in many forms. Either "conventionally" complexed with sodium deoxycholate (ABD), as a cholesteryl sulfate complex (ABCD), as a lipid complex (ABLC), and as a liposomal formulation (LAMB). The latter formulations have been developed to improve tolerability and decrease toxicity, but may show considerably different pharmacokinetic characteristics compared to conventional amphotericin B.
Lithium-halogen exchange is a metathesis reaction between an organohalide and organolithium species. Gilman and Wittig independently discovered this method in the late 1930s. The mechanism of lithium-halogen exchange is still debated. One possible pathway involves a nucleophilic mechanism that generates a reversible “ate-complex” intermediate. Farnham and Calabrese were able to isolate “ate-complex” lithium bis(pentafluorophenyl) iodinate complexed with TMEDA and obtain an X-ray crystal structure.
It is therefore the first member of the final common pathway or thrombin pathway. It acts by cleaving prothrombin in two places (an arg-thr and then an arg-ile bond), which yields the active thrombin. This process is optimized when factor Xa is complexed with activated co-factor V in the prothrombinase complex. Factor Xa is inactivated by protein Z-dependent protease inhibitor (ZPI), a serine protease inhibitor (serpin).
Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism such as DNA replication, transcription, translation, cell cycle, development, and apoptosis. In order to exhibit specificity control over catalysis, hetero- oligomers are formed so the catalytic subunits are complexed with regulatory subunits. This helps direct their action towards the cellular substrate. This is the function of the B56 domain.
Inclusions are considered to be nonliving components of the cell that do not possess metabolic activity and are not bounded by membranes. The most common inclusions are glycogen, lipid droplets, crystals, and pigments. Volutin granules are cytoplasmic inclusions of complexed inorganic polyphosphate. These granules are called metachromatic granules due to their displaying the metachromatic effect; they appear red or blue when stained with the blue dyes methylene blue or toluidine blue.
X-ray crystallography is not common for nucleic acids alone, since neither DNA nor RNA readily form crystals. This is due to the greater degree of intrinsic disorder and dynamism in nucleic acid structures and the negatively charged (deoxy)ribose-phosphate backbones, which repel each other in close proximity. Therefore, crystallized nucleic acids tend to be complexed with a protein of interest to provide structural order and neutralize the negative charge.
Although there are numerous benefits in using the SQT approach, drawbacks in its use have been identified. The major limitations include: lack of statistical criteria development within the framework, large database requirements, difficulties in chemical mixture application, and data interpretation can be laboratory intensive (Chapman 1989). The SQT does not evidently consider the bioavailability of complexed or sediment-associated contaminants (FDEP 1994).[Florida Department of Environmental Protection. 1994.
This behaviour is parallel with that observed for the corresponding metallo-porphyrins. The cadmium-texaphyrin derivative has shown in vitro photodynamic activity against human leukemia cells and Gram positive (Staphylococcus) and Gram negative (Escherichia coli) bacteria. Although follow-up studies have been limited with this photosensitiser due to the toxicity of the complexed cadmium ion. A zinc-metallated seco-porphyrazine has a high quantum singlet oxygen yield (ΦΔ 0.74).
Antigen presentation stimulates immature T cells to become either mature "cytotoxic" CD8+ cells or mature "helper" CD4+ cells. An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen complexed with major histocompatibility complexes (MHCs) on their surfaces; this process is known as antigen presentation. T cells may recognize these complexes using their T cell receptors (TCRs). APCs process antigens and present them to T-cells.
Increased basement membrane stiffness due to its glycation can also trigger Endo180-dependent invasion of prostate epithelial cells and this bio-mechanical mechanism is associated with poor prostate cancer survival. It has been suggested that stabilization of the Endo180-CD147 epithelial-mesenchymal transition suppressor complex and targeting of the non-complexed form of Endo180 in invasive cells could have therapeutic benefit in the prevention of cancer progression and metastasis.
Enantioselective benzylic functionalization methods use the complexed chromium tri(carbonyl) moiety essentially as a chiral auxiliary.Uemura, M.; Hayashi, Y.; Hayashi, Y. Tetrahedron: Asymmetry, 1993, 4, 2291. Approach of the functionalizing reagent anti to the ----chromium tri(carbonyl) fragment leads to a single diastereomer of the product complex. After removal of the chromium group with lightMishchenko, O. G.; Klementeva, S. V.; Maslennikov, S. V.; Artemov, A. N.; Spirina, I. V. Rus.
GPR182 (or G protein-coupled receptor 182) is a human gene (and associated protein) which is an orphan G-protein coupled receptor. When this gene was first cloned, it was proposed to encode an adrenomedullin receptor. However, when the corresponding protein was expressed, it was found not to respond to adrenomedullin (ADM). It was subsequently shown that a different GPCR, CALCRL when complexed with RAMP2 can function as an ADM receptor.
Volutin granules are an intracytoplasmic storage form of complexed inorganic polyphosphate, the production of which is used as one of the identifying criteria when attempting to isolate Corynebacterium diphtheriae on Löffler's medium. Polyphosphate granules display the metachromatic effect, appearing red when stained with methylene blue. They can also be found in the cytoplasm of Saccharomyces, a genus of ascomycete fungi.Willey, J. M., Sherwood, L. M. and Woolverton, C. J. (2011).
NPH insulin has the advantage that it can be mixed with an insulin that has a faster onset to complement its longer lasting action, which is the primary reason NPH remains on the market today, because manufacturers sell a variety of premixed insulin formulations. Eventually all animal insulins made by Novo Nordisk were replaced by synthetic, recombinant 'human' insulin. Synthetic 'human' insulin is also complexed with protamine to form NPH.
In the hippocampus, ApoER2 is complexed with NMDA receptors through the PSD-95 adapter protein. When reelin binds ApoER2, it initiates tyrosine phosphorylation of NMDA receptors. This occurs through Dab-1 activation of Src family kinases, which have been shown to play a role in regulating synaptic plasticity. VLDLR also acts as a receptor coupled to ApoER2 as it does during development, but its role is not well understood.
Histone acetyltransferase KAT7 is an enzyme that in humans is encoded by the KAT7 gene. It specifically acetylates H4 histones at the lysine12 residue (H4K12) and is necessary for origin licensing and DNA replication. KAT7 associates with origins of replication during G1 phase of the cell cycle through complexing with CDT1. Geminin is thought to inhibit the acetyltransferase activity of KAT7 when KAT7 and CDT1 are complexed together.
According to CFSSP, the secondary structure of C1orf94 shows alpha Helix, extended strands, beta turns, and Random coils. Both Tertiary structures predicted by Phyre2 and the SWISS model show that C1orf94 is a monomer. According to I-TASSER the closest protein structures and Identified structural analogs to C1orf94 are 3IXZ (Pig gastric H+/K+-ATPase complexed with aluminum fluoride) and 3B8E (Crystal structure of the sodium-potassium pump).
Ribosomes are the organelles that catalyse mRNA-directed protein synthesis in all organisms. The codons of the mRNA are exposed on the ribosome to allow tRNA binding. This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF- Tu) and GTP.
Crystallographic structure of afimoxifene (carbon = white, oxygen = red, nitrogen = blue) complexed with ligand binding domain of estrogen receptor alpha (ERα) (cyan ribbon).; Tamoxifen acts as a selective estrogen receptor modulator (SERM), or as a partial agonist of the estrogen receptors (ERs). It has mixed estrogenic and antiestrogenic activity, with its profile of effects differing by tissue. For instance, tamoxifen has predominantly antiestrogenic effects in the breasts but predominantly estrogenic effects in the uterus and liver.
Zinc–bromine batteries from different manufacturers have energy densities ranging from 34.4 to 54 W·h/kg. The predominantly aqueous electrolyte is composed of zinc bromide salt dissolved in water. During charge, metallic zinc is plated from the electrolyte solution onto the negative electrode surfaces in the cell stacks. Bromide is converted to bromine at the positive electrode surface and is stored in a safe, chemically complexed organic phase in the electrolyte tank.
4-Aminobutyrate aminotransferase (ABAT) is responsible for catabolism of gamma-aminobutyric acid (GABA), an important, mostly inhibitory neurotransmitter in the central nervous system, into succinic semialdehyde. The active enzyme is a homodimer of 50-kD subunits complexed to pyridoxal-5-phosphate. The protein sequence is over 95% similar to the pig protein. ABAT in liver and brain is controlled by 2 codominant alleles with a frequency in a Caucasian population of 0.56 and 0.44.
Crystallographic structure of polyneuridine aldehyde esterase from Rauvolfia serpentina (rainbow colored, N-terminus = blue, C-terminus = red). The enzyme is complexed with its product 16-epi-vellosimine that is depicted as a space- filling model (carbon = white, oxygen = red, nitrogen = blue).; The mechanism of hydrolysis performed by polyneuridine-aldehyde esterase is not known. It has been suggested that the enzyme utilizes a catalytic triad composed of Ser-87, Asp-216 and His-244.
In 2007, a Ge(II) based dication was reported by Rupar, Staroverov, Ragogna and Baines in which a Ge(II) unit is coordinated by three bulky N-heterocyclic carbene ligands. Later in 2008, Rupar, Staroverov and Baines isolated a weakly coordinate Ge(II) dication using cryptand[2.2.2], also the first example of a non-metallic mononuclear dication complexed with a cryptand. In this report, a Ge(II) cation is encapsulated within [2.2.
Wet etching of GaAs industrially uses an oxidizing agent such as hydrogen peroxide or bromine water, and the same strategy has been described in a patent relating to processing scrap components containing GaAs where the is complexed with a hydroxamic acid ("HA"), for example:"Oxidative dissolution of gallium arsenide and separation of gallium from arsenic" J. P. Coleman and B. F. Monzyk (1988) :GaAs + + "HA" → "GaA" complex + + 4 This reaction produces arsenic acid.
However, they are not omnipresent; for example, they have not been found in Escherichia coli. , more than 300,000 distinct CYP proteins are known. CYPs are, in general, the terminal oxidase enzymes in electron transfer chains, broadly categorized as P450-containing systems. The term "P450" is derived from the spectrophotometric peak at the wavelength of the absorption maximum of the enzyme (450 nm) when it is in the reduced state and complexed with carbon monoxide.
The first step required is the hypotonic lysis of the cells of interest to isolate the nuclei. The nuclei are then centrifuged, washed in a buffer solution, complexed with lectin-coated magnetic beads. The Lectin-Nuclei complex is then resuspended with an antibody targeted at the protein of interest. The antibody and nuclei are then incubated in the buffer for approximately 2 hours before the nuclei are washed in buffer to remove unbound antibodies.
Potassium cyclooctatetraenide is formed by the reaction of cyclooctatetraene with potassium metal: :2 K + C8H8 → K2C8H8 The reaction entails 2-electron reduction of the polyene and is accompanied by a color change from colorless to brown. The structure of K2(diglyme)C8H8 has been characterized by X-ray crystallography of the derivatives with diglyme complexed to the potassium cations. The C8H8 unit is planar with an average C-C distance of 1.40 A.
Magnesium ions are normally complexed to the phosphate groups the nucleotide substrates of PGK. It is known that in the absence of magnesium, no enzyme activity occurs. The bivalent metal assists the enzyme ligands in shielding the bound phosphate group's negative charges, allowing the nucleophilic attack to occur; this charge-stabilization is a typical characteristic of phosphotransfer reaction. It is theorized that the ion may also encourage domain closure when PGK has bound both substrates.
Like phenyllithium, adducts of the compound with PMDTA have been crystallized. While phenyllithium forms a monomeric adduct with PMDTA, phenylsodium exists as a dimer, reflecting the larger radium of sodium. Complexes of phenylsodium and magnesium alkoxides, especially magnesium 2-ethoxyethoxide Mg(OCH2CH2OEt)2, are soluble in benzene. The complex is formed by the reaction: : NaPh + Mg(OCH2CH2OEt)2 -> Na2MgPh2(OCH2CH2OEt)2 Although the phenylsodium is complexed, it maintains its phenylation and metalation ability.
When complexed with the SF1 protein, TDF acts as a transcription factor that causes upregulation of other transcription factors, most importantly SOX9. Its expression causes the development of primary sex cords, which later develop into seminiferous tubules. These cords form in the central part of the yet-undifferentiated gonad, turning it into a testis. The now- induced Leydig cells of the testis then start secreting testosterone, while the Sertoli cells produce anti-Müllerian hormone.
Unsaturated monomers are those having carbon–carbon double bonds. In general, the term "unsaturated" refers to the presence of one or more double (or triple) bonds and the ability to "saturate" the molecule by addition of H2. Some examples of unsaturated monomers include: acrylic acid, acrylamide, acryloyl chloride, and methyl methacrylate. Research suggests that unsaturated monomers that are coordinatively complexed together may be important in the process of enantioselective cyclopropanation of synthetic fibers.
Alternative means of assimilating iron are surface reduction, lowering of pH, utilization of heme, or extraction of protein-complexed metal. Recent data suggest that iron-chelating molecules with similar properties to siderophores, were produced by marine bacteria under phosphate limiting growth condition. In nature phosphate binds to different type of iron minerals, and therefore it was hypothesized that bacteria can use siderophore-like molecules to dissolve such complex in order to access the phosphate.
RXR heterodimerizes with subfamily 1 nuclear receptors including CAR, FXR, LXR, PPAR, PXR, RAR, TR, and VDR. As with other type II nuclear receptors, the RXR heterodimer in the absence of ligand is bound to hormone response elements complexed with corepressor protein. Binding of agonist ligands to RXR results in dissociation of corepressor and recruitment of coactivator protein, which, in turn, promotes transcription of the downstream target gene into mRNA and eventually protein.
Not all the calcium in the diet can be readily absorbed from the gut. The calcium that is most readily absorbed is found in dairy products (72%), vegetables (7%), grains (5%), legumes (4%), fruit (3%), protein (3%). The calcium contained in vegetable matter is often complexed with phytates, oxalates, citrate and other organic acids, such as the long-chained fatty acids (e.g. palmitic acid), with which calcium binds to form insoluble calcium soaps.
Schematic diagram of the translocation of the glucocorticoid receptor (GR) from the cytoplasm into the nucleus assisted by Hsp90 (90). In the cytoplasm, GR is complexed with Hsp90 and the immunophilin FKBP51 (51). Binding of hormone to GR causes a conformational change in the complex, which results in exchange of FKBP51 for FKBP52 (52). FKBP52 in turn binds the dynein (dyn) motor protein that attaches to the cytoskeleton and transports the GR complex into the nucleus.
Chain Bar roundabout. Chain Bar Roundabout from above. The southerly junction with the M62 is known as the Chain Bar Interchange and features free-flowing sliproads from the Manchester direction M62 traffic to Bradford, but not the Leeds direction, which has to use the complexed traffic-light controlled roundabout. In late 2007 there was a 2+ lane added leading from the M606 southbound straight on to the M62 eastbound without having to stop at Chain Bar Interchange.
Crystallographic structure of the human κ-opioid receptor homo dimer () imbedded in a cartoon representation of a lipid bilayer. Each protomer is individually rainbow colored (N-terminus = blue, C-terminus = red). The receptor is complexed with the ligand JDTic that is depicted as a space- filling model (carbon = white, oxygen = red, nitrogen = blue).; A GPCR oligomer is a protein complex that consists of a small number ( oligoi "a few", méros "part, piece, component") of G protein-coupled receptors (GPCRs).
Two variants of HDAC10 have been found, both having slight differences in length. HDAC6 is the only HDAC to be shown to act on tubulin, acting as a tubulin deacetylase which helps in the regulation of microtubule- dependent cell motility. It is mostly found in the cytoplasm but has been known to be found in the nucleus, complexed together with HDAC11. HDAC10 has been seen to act on HDACs 1, 2, 3 (or SMRT), 4, 5 and 7.
The Supreme Court, through then Associate Justice Roberto Concepcion, ruled that rebellion cannot be complexed with other crimes, such as murder and arson. Rebellion in itself would include and absorb the said crimes, thus granting the accused his right to bail. Murder and arson are crimes inherent and concomitant when rebellion is taking place. Rebellion in the Revised Penal Code constitutes one single crime and that there is no reason to complex it with other crimes.
"The biosynthesis of C5-C25 terpenoid compounds". Nat. Prod. Rep. 16', 97-130 Crystal structures of recombinant tobacco 5-epi-aristolochene synthase (TEAS), alone and also complexed with two FPP analogues have been reported and analyzed to suggest the following mechanism of biosynthesis.Starks C.M.; Back K.; Chappell J.; Noel J.P.; (1997) Structural Basis for Cyclic Terpene Biosynthesis by Tobacco 5-Epi- Aristolochene Synthase. Science 277, 1815-1820 The E,E-farnesyl cation undergoes cyclization to form the germacryl cation.
It has been the perfect cure in this case. The active component responsible for the tumoricidal activity was found in 2000 and found to be a complex of alpha- lactalbumin and oleic acid. Endogenous human alpha-lactalbumin is complexed with a calcium ion and serves as a cofactor in lactose synthesis, but has no tumoricidal properties. The alpha-lactalbumin must be partially unfolded to allow for release of the calcium ion and replacement with an oleic acid molecule.
Configuration management is for most of time dealing with the system that is large, complexed, has a long life duration (more than 10 years) and involve more people. The key issues for engineering support are to coordinate the participants and to provide each engineer an environment, also called a workspace where they can work independently in the task duration. The former one refers the cooperative work support and the latter one is mostly called workspace support.
Further processing is needed to generate the 18S RNA, 5.8S and 28S RNA molecules. In eukaryotes, the RNA-modifying enzymes are brought to their respective recognition sites by interaction with guide RNAs, which bind these specific sequences. These guide RNAs belong to the class of small nucleolar RNAs (snoRNAs) which are complexed with proteins and exist as small-nucleolar- ribonucleoproteins (snoRNPs). Once the rRNA subunits are processed, they are ready to be assembled into larger ribosomal subunits.
PEPR1 and PEPR2 share a unique structural component because they contain extracellular leucine-rich repeat motifs (LRR motifs). Studies have been conducted to discover the structure of PEPR1 or PEPR2, sometimes in complex with certain proteins and in specific environments. When complexed with AtPep1, it forms a crystalline structure in which the units contain two copies of PEPR1 and AtPep1 and are not symmetrical. In this complex, PEPR1 does not oligomerize as some other protein receptors would.
It is involved in the trafficking of proteins to the plasma membrane and can be expressed on the cell surface as a receptor. Many of the transported proteins are cell surface receptors in signal transduction pathways and ion channels. P11 facilitates nociception, Ca2+ uptake, and cell polarization. Complexed with the annexin II, p11 binds receptor and channel proteins and guides them to the cell surface, resulting in increased membrane localization and consequent magnified functional expression of these proteins.
Another study done by Barlow et al. in 2014 traced the evolution of the five adaptor protein (AP) complexed in fungi, but also provided some insight onto Fonticula alba. The adaptor proteins investigated work in vesicular transport in eukaryotes, particularly in cargo- selection and coat-protein recruitment. The study found that F. alba had all five adaptor protein complexes present in its genome, whereas the kingdom Fungi only retained the first three adaptor protein complexes (Barlow et al.
Borane dimethylsulfide (BMS) is a complexed borane reagent that is used for hydroborations and reductions. The advantages of BMS over other borane reagents, such as borane-tetrahydrofuran, are its increased stability and higher solubility. BMS is commercially available at much higher concentrations than its tetrahydrofuran counterpart (10 M neat) and does not require sodium borohydride as a stabilizer, which could result in undesired side reactions. In contrast, borane·THF requires sodium borohydride to inhibit reduction of THF to tributyl borate.
Microdialysis may also be used to separate nanoparticles from the solutions in which they were formed. In such a separation, the eluate will consist of non- complexed reactants and components. Ultrafiltration membrane manufacturers, such as Sartorius, commonly produce and offer MWCO's of 2k, 5k, 10k, 30k, 50k, 100k and 1,000k. Devices offered range from laboratory focused centrifugal devices (100ul to 100ml) to laboratory and bioprocessing relevant tangential flow filtration (TFF) devices (50ml to hundreds of litres).
PI3Ks have also been implicated in long-term potentiation (LTP). Whether they are required for the expression or the induction of LTP is still debated. In mouse hippocampal CA1 neurons, certain PI3Ks are complexed with AMPA receptors and compartmentalized at the postsynaptic density of glutamatergic synapses. PI3Ks are phosphorylated upon NMDA receptor-dependent CaMKII activity, and it then facilitates the insertion of AMPA-R GluR1 subunits into the plasma membrane. This suggests that PI3Ks are required for the expression of LTP.
By an IUPAC definition, solvation is an interaction of a solute with the solvent, which leads to stabilization of the solute species in the solution. In the solvated state, an ion in a solution is surrounded or complexed by solvent molecules. Solvated species can often be described by coordination number, and the complex stability constants. The concept of the solvation interaction can also be applied to an insoluble material, for example, solvation of functional groups on a surface of ion-exchange resin.
After the processed antigen (peptide) is complexed to the MHC molecule, they both migrate together to the cell membrane, where they are exhibited (elaborated) as a complex that can be recognized by the CD 4+ (T helper cell) – a type of white blood cell.There are many types of white blood cells. The common way of classifying them is according to their appearance under the light microscope after they are stained by chemical dyes. But with advancing technology newer methods of classification has emerged.
Iodine has been recognized as an effective broad-spectrum bactericide, and is also effective against yeasts, molds, fungi, viruses, and protozoans. Drawbacks to its use in the form of aqueous solutions include irritation at the site of application, toxicity, and the staining of surrounding tissues. These deficiencies were overcome by the discovery and use of PVP-I, in which the iodine is carried in a complexed form and the concentration of free iodine is very low. The product thus serves as an iodophor.
Roseobacter clade uptakes trace metal. Generally, larger Roseobacter genomes have greater trace metal uptake versatility and greater plasticity, which might lead to phylogenetically similar genomes having greatly differed capabilities. The acquisition of both organically complexed and inorganic metals of Roseobacter strains can go through multiple diverse pathways, which indicates that roseobacters are able to adapt to and occupy a range of trace metal niches in the marine environment. It also means that the availability of trace metal resources may influence Roseobacter genome diversification.
Orc1/Cdc6 paralogs are two-domain proteins and are composed of a AAA+ ATPase module fused to a C-terminal winged-helix fold. DNA-complexed structures of Orc1/Cdc6 revealed that ORBs are bound by an Orc1/Cdc6 monomer despite the presence of inverted repeat sequences within ORB elements. Both the ATPase and winged- helix regions interact with the DNA duplex but contact the palindromic ORB repeat sequence asymmetrically, which orients Orc1/Cdc6 in a specific direction on the repeat.
Increasing computing power allows Rosetta@home to sample more regions of conformation space (the possible shapes a protein can assume), which, according to Levinthal's paradox, is predicted to increase exponentially with protein length. Rosetta@home is also used in protein–protein docking prediction, which determines the structure of multiple complexed proteins, or quaternary structure. This type of protein interaction affects many cellular functions, including antigen–antibody and enzyme–inhibitor binding and cellular import and export. Determining these interactions is critical for drug design.
The three IL-2 receptor chains span the cell membrane and extend into the cell, thereby delivering biochemical signals to the cell interior. The alpha chain does not participate in signaling, but the beta chain is complexed with an enzyme called Janus kinase 1 (JAK1), that is capable of adding phosphate groups to molecules. Similarly the gamma chain complexes with another tyrosine kinase called JAK3. These enzymes are activated by IL-2 binding to the external domains of the IL-2R.
In the absence of hormone, the glucocorticoid receptor (GR) resides in the cytosol complexed with a variety of proteins including heat shock protein 90 (hsp90), the heat shock protein 70 (hsp70) and the protein FKBP52 (FK506-binding protein 52). The endogenous glucocorticoid hormone cortisol diffuses through the cell membrane into the cytoplasm and binds to the glucocorticoid receptor (GR) resulting in release of the heat shock proteins. The resulting activated form GR has two principal mechanisms of action, transactivation and transrepression, described below.
In 1967, Charles Pedersen, who was a chemist working at DuPont, discovered a simple method of synthesizing a crown ether when he was trying to prepare a complexing agent for divalent cations. His strategy entailed linking two catecholate groups through one hydroxyl on each molecule. This linking defines a polydentate ligand that could partially envelop the cation and, by ionization of the phenolic hydroxyls, neutralize the bound dication. He was surprised to isolate a by-product that strongly complexed potassium cations.
When Sm(III) is complexed with (pentamethylcyclopentadiene) to give the compound , this trivalent species has been shown to have the same reducing reactivity of the Sm(II) derivative.Evans, William J. The Expansion of Divalent Organolanthanide Reduction Chemistry Via New Molecular Divalent Complexes and Sterically Induced Reduction Reactivity of Trivalent Complexes. Journal of Organometallic Chemistry 647 (2002) 2-11. Sm+2 vs Sm+3 Reductions The top reaction is the Sm(III) derivative and the bottom involves the Sm(II) derivative.
In chemistry, a sterically induced reduction happens when an oxidized metal behaves as, and exhibits similar reducing properties to, the more reduced form of the metal. This effect is mainly caused by the surrounding ligands that are complexed to the metal and it is the ligands that are involved in the reduction chemistry instead of the metal due to electronic destabilization by being significantly distanced from the metal. Sterically induced reductions commonly involve metals found in the lanthanoid and actinoid series.
Degradation of nuclear DNA into nucleosomal units is one of the hallmarks of apoptotic cell death. It occurs in response to various apoptotic stimuli in a wide variety of cell types. Molecular characterization of this process identified a specific DNase (CAD, caspase-activated DNase) that cleaves chromosomal DNA in a caspase-dependent manner. CAD is synthesized with the help of ICAD (inhibitor of CAD), which works as a specific chaperone for CAD and is found complexed with ICAD in proliferating cells.
Judge Mauro Ponticelli has been raised by his older sister Marta. However, Marta has been having mental problems and fantasizing about committing suicide, which concerns him greatly. Mauro himself is very busy with his job and is in turn complexed by his life to the limits of hermitism. Marta seems to recover when Mauro introduces her to Giovanni Sciabola, a young brilliant actor with a criminal record: the two turn friends and Giovanni takes Marta out with him very often.
Type II receptors, in contrast to type I, are retained in the nucleus regardless of the ligand binding status and in addition bind as hetero-dimers (usually with RXR) to DNA. In the absence of ligand, type II nuclear receptors are often complexed with corepressor proteins. Ligand binding to the nuclear receptor causes dissociation of corepressor and recruitment of coactivator proteins. Additional proteins including RNA polymerase are then recruited to the NR/DNA complex that transcribe DNA into messenger RNA.
Ferroverdin refers to three different coordination compounds that were first isolated in 1955 by Chain, Tonolo, and Carilli. It consists of three p-vinylphenyl-3-nitroso-4-hydroxybenzoate ligands complexed with a ferrous ion. Ferroverdin is a green pigment produced in the mycelium of species of Streptomyces. It is claimed to be the “first stable ferrous compound to be found in nature.” There are three types of ferroverdin: A, B, and C. In ferroverdin A, both R groups are hydrogens.
Iron pentacarbonyl is a homoleptic metal carbonyl, where carbon monoxide is the only ligand complexed with a metal. Other examples include octahedral Cr(CO)6 and tetrahedral Ni(CO)4. Most metal carbonyls have 18 valence electrons, and Fe(CO)5 fits this pattern with 8 valence electrons on Fe and five pairs of electrons provided by the CO ligands. Reflecting its symmetrical structure and charge neutrality, Fe(CO)5 is volatile; it is one of the most frequently encountered liquid metal complexes.
In 1968 the Museum of Design acquired the former home of the textile manufacturer Julian Bloch and moved part of its Applied Art collection into it. Renamed the Museum Bellerive, the building housed the collection of glass, ceramic, wood, metal and textiles until 2017, when the museum was closed. Its collection was moved to a new location at Toni Areal, a building complexed opened in 2014 which is shared with the University of the Arts and the University of Applied Sciences.
One of the advantages of DNA vaccines is that they are able to induce cytotoxic T lymphocytes (CTL) without the inherent risk associated with live vaccines. CTL responses can be raised against immunodominant and immunorecessive CTL epitopes, as well as subdominant CTL epitopes, in a manner that appears to mimic natural infection. This may prove to be a useful tool in assessing CTL epitopes and their role in providing immunity. Cytotoxic T-cells recognise small peptides (8-10 amino acids) complexed to MHC class I molecules.
In the 1960s, scientists developed the concept of chelating a metal ion prior to feeding the element to the animal. They believed that this would create a neutral compound, protecting the mineral from being complexed with insoluble salts within the stomach, which would render the metal unavailable for absorption. Amino acids, being effective metal binders, were chosen as the prospective ligands, and research was conducted on the metal–amino acid combinations. The research supported that the metal–amino acid chelates were able to enhance mineral absorption.
MBL in the blood is complexed with (bound to) another protein, a serine protease called MASP (MBL-associated serine protease). There are three MASPs: MASP-1, MASP-2 and MASP-3, which have protease domains. There are also sMAP (also called MAp19) and MAp44, which do not have protease domains and are thought to be regulatory molecules of MASPs. MASPs also form complexes with ficolins, which are similar to MBL functionally and structurally with the exception that ficolins recognize their targets through fibrinogen-like domains, unlike MBL.
Zinc and copper cationic derivatives have been investigated. The positively charged zinc complexed PC is less photodynamically active than its neutral counterpart in vitro against V-79 cells. Water-soluble cationic porphyrins bearing nitrophenyl, aminophenyl, hydroxyphenyl and/or pyridiniumyl functional groups exhibit varying cytotoxicity to cancer cells in vitro, depending on the nature of the metal ion (Mn, Fe, Zn, Ni) and on the number and type of functional groups. The manganese pyridiniumyl derivative has shown the highest photodynamic activity, while the nickel analogue is photoinactive.
Duan MR, Nan J, Liang YH, Mao P, Lu L, Li L, Wei C, Lai L, Li Y and Su XD (2007) DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res. 35:1145-1154 From these two studies it appears that the conserved WRKYGQK signature amino acid sequence enters the major groove of the DNA to bind to the W-Box. Recently, the first structural determination of the WRKY domain complexed with a W-Box was reported.
As a derivative of EDTA, dexrazoxane chelates iron and thus reduces the number of metal ions complexed with anthracycline and, consequently, decrease the formation of superoxide radicals. The exact chelation mechanism is unknown, but it has been postulated that dexrazoxane can be converted into ring-opened form intracellularly and interfere with iron-mediated free radical generation that is in part thought to be responsible for anthryacycline induced cardiomyopathy. It was speculated that dexrazoxane could be used for further investigation to synthesize new antimalarial drugs.
Secondly, the ICAT technology was used to differentiate between partially purified or purified macromolecular complexes such as large RNA polymerase II pre-initiation complex and the proteins complexed with yeast transcription factor. Thirdly, ICAT labeling was recently combined with chromatin isolation to identify and quantify chromatin-associated proteins. Finally ICAT reagents are useful for proteomic profiling of cellular organelles and specific cellular fractions. Another quantitative approach is the accurate mass and time (AMT) tag approach developed by Richard D. Smith and coworkers at Pacific Northwest National Laboratory.
The structure of a protease (TEV protease) complexed with its peptide substrate in black with catalytic residues in red.() A protease (also called a peptidase or proteinase) is an enzyme that catalyzes (increases the rate of) proteolysis, the breakdown of proteins into smaller polypeptides or single amino acids. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in many biological functions, including digestion of ingested proteins, protein catabolism (breakdown of old proteins), and cell signalling.
The aryl hydrocarbon receptor (AhR) is involved in the induction of several enzymes that participate in xenobiotic metabolism. The ligand-free, cytosolic form of the aryl hydrocarbon receptor is complexed to heat shock protein 90. Binding of ligand, which includes dioxin and polycyclic aromatic hydrocarbons, results in translocation of the ligand-binding subunit only into the nucleus. Induction of enzymes involved in xenobiotic metabolism occurs through binding of the ligand-bound AhR to xenobiotic responsive elements in the promoters of genes for these enzymes.
HaeIII methyltransferase convalently complexed to DNA HaeIII methyltransferase (right) binds to DNA where it methylates (adds a methy group to) it. human interferon beta Human interferon beta (left) is released by lymphocytes in response to pathogens to trigger the immune system. chorismate mutase Chorismate mutase (right) catalyzes (speeds up) the production of the amino acids phenylalanine and tyrosine. fructose-1,6-bisphosphatase Fructose-1,6-bisphosphatase (left) and its inhibitor MB06322 (CS-917) were studied by Lipscomb's group in a collaboration, which included Metabasis Therapeutics, Inc.
The macromolecules which the PZP has been shown to bind include those associated with pregnancy, such as the placenta growth factor, glycodelin, and the vascular endothelial growth factor. It has been stated that more compact, transformed conformations of PZP occur as a result of thioester bond cleavage of the PZP resulting from interaction with small amine molecules or proteases. The mechanisms of how these transformed PZPs, complexed with proteases, act as ligands for LRP are still enigmatic. It has been demonstrated that PZP has plasmin-binding capabilities.
Sortilin is a member of the Vps10p sorting receptor family. Crystallization studies of the protein reveal that, when complexed with the ligand neurotensin, the Vps10 ectodomain of sortilin forms a ten-bladed beta- propeller structure with an inner tunnel that contains multiple ligand binding sites. To prevent premature ligand binding during its synthesis, the precursor protein of sortilin contains a 44-amino acid pro-peptide that serves as a chaperone for the Vps10p domain. In addition, two hydrophobic loops have been detected in this domain and act to anchor the protein in the cell membrane.
Shown in the figure to the right is the predicted tertiary structure of protein C17orf53. This predicted tertiary structure has been found to be 92.7% similar to 3IXZ, also known as Pig gastric H+/K+-ATPase complexed with aluminium fluoride, which is an ATP proton pump involved in creating a proton gradient across the gastric membrane. Furthermore, the tertiary structure of C17orf53 has also been shown to be 90.6% similar to that of 3B8EC, a sodium potassium pump. These findings support the prediction that C17orf53 is a protein involved in transportation mechanisms.
When the Lewis base is an amine, adducts are also formed. Thus OsO4 can be stored in the form of osmeth, in which OsO4 is complexed with hexamine. Osmeth can be dissolved in tetrahydrofuran (THF) and diluted in an aqueous buffer solution to make a dilute (0.25%) working solution of OsO4. With tert-BuNH2, the imido derivative is produced: :OsO4 \+ Me3CNH2 → OsO3(NCMe3) + H2O Similarly, with NH3 one obtains the nitrido complex: :OsO4 \+ NH3 \+ KOH → K[Os(N)O3] + 2 H2O The [Os(N)O3]− anion is isoelectronic and isostructural with OsO4.
MHC is the tissue-antigen that allows the immune system (more specifically T cells) to bind to, recognize, and tolerate itself (autorecognition). MHC is also the chaperone for intracellular peptides that are complexed with MHCs and presented to T cell receptors (TCRs) as potential foreign antigens. MHC interacts with TCR and its co-receptors to optimize binding conditions for the TCR-antigen interaction, in terms of antigen binding affinity and specificity, and signal transduction effectiveness. Essentially, the MHC-peptide complex is a complex of auto-antigen/allo- antigen.
Specht 2014, p.1 While spirulina is accepted as safe to consume,FDA 2002 edible algal vaccines remain under basic research with unconfirmed safety and efficacy as of 2018.Specht 2014, p.3 In 2003, the first documented algal-based vaccine antigen was reported, consisting of a foot-and-mouth disease antigen complexed with the cholera toxin subunit B, which delivered the antigen to digestion mucosal surfaces in mice. The vaccine was grown in C. reinhardtii algae and provided oral vaccination in mice, but was hindered by low vaccine antigen expression levels.Specht 2014, p.
Beta-alumina solid electrolyte (BASE) is a fast ion conductor material used as a membrane in several types of molten salt electrochemical cell. Currently there is no known substitute available. β-Alumina (beta prime-prime alumina) is an isomorphic form of aluminium oxide (Al2O3), a hard polycrystalline ceramic, which, when prepared as an electrolyte, is complexed with a mobile ion, such as Na+, K+, Li+, Ag+, H+, Pb2+, Sr2+ or Ba2+ depending on the application. Beta-alumina is a good conductor of its mobile ion yet allows no non-ionic (i.e.
Calcium ions may be complexed by proteins through binding the carboxyl groups of glutamic acid or aspartic acid residues; through interacting with phosphorylated serine, tyrosine, or threonine residues; or by being chelated by γ-carboxylated amino acid residues. Trypsin, a digestive enzyme, uses the first method; osteocalcin, a bone matrix protein, uses the third. Some other bone matrix proteins such as osteopontin and bone sialoprotein use both the first and the second. Direct activation of enzymes by binding calcium is common; some other enzymes are activated by noncovalent association with direct calcium-binding enzymes.
OGT cleaves Host Cell Factor C1, at one or more of 6 repeating 26 amino acid sequences. The TPR domain of OGT binds to the carboxyl terminal portion of an HCF1 proteolytic repeat so that the cleavage region is in the glycosyltransferase active site above uridine-diphosphate-GlcNAc The large proportion of OGT complexed with HCF1 is necessary for HCF1 cleavage, and HCFC1 is required for OGT stabilization in the nucleus. HCF1 regulates OGT stability using a post- transcriptional mechanism, however the mechanism of the interaction with HCFC1 is still unknown.
Cytochrome P450 camphor 5-monooxygenase is a bacterial enzyme originally from Pseudomonas putida, which catalyzes a critical step in the metabolism of camphor. In 1987, Cytochrome P450cam was the first cytochrome P450 three- dimensional protein structure solved by X-ray crystallography. It is a heterotrimeric protein derived from the products of three genes: a cytochrome P450 enzyme (encoded by the CamC gene from the CYP family CYP101), a Putidaredoxin (encoded by the CamB gene) complexed with cofactors 2Fe-2S, a NADH-dependent Putidaredoxin reductase (encoded by the CamA gene).
Besides using two transition metal catalysts, synergistic catalysis can also be carried out by utilizing one transition metal catalyst in combination with an organocatalyst. Here the synergistic α-allylation of aldehydes was accomplished by utilizing a transition metal complex in combination with a chiral amine catalyst. In 2013, Carreira and co-workers reported a highly enantio- and diastereoselective α-allylation of branched aldehydes. They used chiral primary amines and iridium catalysts complexed with chiral ligands to afford the product with two newly formed stereocenters at the α and β position.
TGF-β is secreted by many cell types, including macrophages, in a latent form in which it is complexed with two other polypeptides, latent TGF-beta binding protein (LTBP) and latency- associated peptide (LAP). Serum proteinases such as plasmin catalyze the release of active TGF-β from the complex. This often occurs on the surface of macrophages where the latent TGF-β complex is bound to CD36 via its ligand, thrombospondin-1 (TSP-1). Inflammatory stimuli that activate macrophages enhance the release of active TGF-β by promoting the activation of plasmin.
Growth-hormone binding protein (blue) in a one-to-one ratio with modified growth hormone (green). Source: PDB 1HWH The clearance rate, or the rate at which the carrier protein is broken down, for GHBP alone is much faster than when it is bound to its ligand. Additionally, current literature provides evidence that the carrier-protein prolongs the half-life of growth hormone through its binding with the ligand. One purpose of GHBP can be inferred: to maintain the level of GH in the blood, as roughly half of its concentration is complexed with GHBP.
The principal substrate of physiologic importance of glucokinase is glucose, and the most important product is glucose-6-phosphate (G6P). The other necessary substrate, from which the phosphate is derived, is adenosine triphosphate (ATP), which is converted to adenosine diphosphate (ADP) when the phosphate is removed. The reaction catalyzed by glucokinase is: Action of glucokinase on glucose ATP participates in the reaction in a form complexed to magnesium (Mg) as a cofactor. Furthermore, under certain conditions, glucokinase, like other hexokinases, can induce phosphorylation of other hexoses (6 carbon sugars) and similar molecules.
8-oxo-dG complexed with OGG1 likely has a major role in facilitating thousands of rapid demethylations of methylated cytosines in CpG sites during formation of memory and further demethylations (over a period of weeks) during memory consolidation. As shown in 2016 by Halder et al. using mice, and in 2017 by Duke et al. using rats, when contextual fear conditioning is applied to the rodents, causing an especially strong long-term memory to form, within hours there are thousands of methylations and demethylations in the hippocampus brain region neurons.
SmB has an alternatively spliced variant, SmB', and a very similar protein, SmN, replaces SmB'/B in certain (mostly neural) tissues. SmD was later discovered to be a mixture of three proteins, which were named SmD1, SmD2 and SmD3. These nine proteins (SmB, SmB', SmN, SmD1, SmD2, SmD3, SmE, SmF and SmG) became known as the Sm core proteins, or simply Sm proteins. The snRNAs are complexed with the Sm core proteins and with other proteins to form particles in the cell's nucleus called small nuclear ribonucleoproteins, or snRNPs.
Another well characterized set of mutations is the Q151M complex found in multi-drug resistant HIV which decreases reverse transcriptase's efficiency at incorporating NRTIs, but does not affect natural nucleotide incorporation. The complex includes Q151M mutation along with A62V, V75I, F77L, and F116Y. A virus with Q151M alone is intermediately resistant to zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), stavudine (d4T), and slightly resistant to abacavir (ABC). A virus with Q151M complexed with the other four mutations becomes highly resistant to the above drugs, and is additionally resistant to lamivudine (3TC) and emtricitabine (FTC).
Release of the APPsα ectodomain has neurotrophic effects that counteract apoptotic signaling and promote synapse formation, processes that are upregulated when ADAM10 is overexpressed. Alpha secretase activity has also been observed to be upregulated in response to the signaling peptide PACAP. Related alpha-secretases, including ADAM10, have also been implicated in similar maturation events for other transmembrane proteins such as MHC class I proteins. Recent evidence suggests that some such proteins are first processed to ectodomains by alpha secretases and subsequently cleaved by another Alzheimer's-associated protease complex, gamma secretase in its presenilin-complexed form.
Crystallographic structure of malate synthase enzyme (left) and expand view of the active site (right) complexed with its product, malate, and a coordinating magnesium cation.; Malate synthases fall into two major families, isoforms A and G. Isoform G is monomeric with a size of about 80-kD and found exclusively in bacteria. Isoform A is about 65 kD per subunit and can form homomultimers in eukaryotes. This enzyme contains a central TIM barrel sandwiched between an N-terminal alpha-helical clasp and an alpha/beta domain stemming from two insertions into the TIM barrel sequence.
The poly(A)-binding protein (PAB or PABP), which is found complexed to the 3' poly(A) tail of eukaryotic mRNA, is required for poly(A) shortening and translation initiation. In humans, the PABPs comprise a small nuclear isoform and a conserved gene family of other poly(A)-binding proteins.[supplied by OMIM] PABPC1 is usually diffused within the nucleus and concentrated at sites of high mRNA concentration such as stress granules, processing bodies, and locations of high transcriptional activity. PABPC1 is also associated with nonsense-mediated mRNA decay (NMD).
In cardiac muscle, N-cadherin is found at intercalated disc structures which provide end-on cell–cell connections that facilitate mechanical and electrical coupling between adjacent cardiomyocytes. Within intercalated discs are three types of junctions: adherens junctions, desmosomes and gap junctions; N-cadherin is an essential component in adherens junctions, which enables cell–cell adhesion and force transmission across the sarcolemma. N-cadherin complexed to catenins has been described as a master regulator of intercalated disc function. N-cadherin appears at cell–cell junctions prior to gap junction formation, and is critical for normal myofibrillogenesis.
Furthermore, during the time window between the start and stop, or approximately 5 half-lives of the intermediate state, the direction of the electric field gradient must not change. In liquids, therefore, no interference frequency can be measured as a result of the frequent collisions, unless the probe is complexed in large molecules, such as in proteins. The samples with proteins or peptides are usually frozen to improve the measurement. The most studied materials with PAC are solids such as semiconductors, metals, insulators, and various types of functional materials.
The protein encoded by this gene is a member of the immunophilin protein family, which play a role in immunoregulation and basic cellular processes involving protein folding and trafficking. This encoded protein is a cis-trans prolyl isomerase that binds to the immunosuppressants FK506 and rapamycin. It has high structural and functional similarity to FK506-binding protein 1A (FKBP1A), but unlike FKBP1A, this protein does not have immunosuppressant activity when complexed with FK506. It interacts with interferon regulatory factor-4 and plays an important role in immunoregulatory gene expression in B and T lymphocytes.
Crystallographic structure of cytochrome P450 from the bacteria S. coelicolor (rainbow colored cartoon, N-terminus = blue, C-terminus = red) complexed with heme cofactor (magenta spheres) and two molecules of its endogenous substrate epi-isozizaene as orange and cyan spheres respectively. The orange-colored substrate resides in the monooxygenase site while the cyan-colored substrate occupies the substrate entrance site. An unoccupied moonlighting terpene synthase site is designated by the orange arrow. Protein moonlighting (or gene sharing) is a phenomenon by which a protein can perform more than one function.
Structural basis for the mechanism of nuclear receptor agonist and antagonist action. The structures shown here are of the ligand binding domain (LBD) of the estrogen receptor (green cartoon diagram) complexed with either the agonist diethylstilbestrol (top, ) or antagonist 4-hydroxytamoxifen (bottom, ). The ligands are depicted as space filling spheres (white = carbon, red = oxygen). When an agonist is bound to a nuclear receptor, the C-terminal alpha helix of the LDB (H12; light blue) is positioned such that a coactivator protein (red) can bind to the surface of the LBD.
E-64 possesses a trans-epoxysuccinic acid group coupled to a modified dipeptide. The covalent attachment of E-64 to the active site cysteine occurs via nucleophillic attack from the thiol group of the cysteine on C2 of the epoxide. Early studies suggested that the amino-4-guanidinobutane bound in the S3' subsite and the leucyl group in the S2' subsite, however published crystal structures of E-64 complexed with papain indicated that E-64 binds via the S subsites. Mechanism of irreversible inhibition of cysteine peptidases by E-64.
With stronger complexation, lower activity of the free metal ion is observed. One consequence of the lower reactivity of complexed metals compared to the same concentration of free metal is that the chelation tends to stabilize metals in the aqueous solution instead of in solids. Concentrations of the trace metals cadmium, copper, molybdenum, manganese, rhenium, uranium and vanadium in sediments record the redox history of the oceans. Within aquatic environments, cadmium(II) can either be in the form CdCl+(aq) in oxic waters or CdS(s) in a reduced environment.
Cartoon diagram of the ligand binding domain of Rev-ErbA beta (rainbow colored, N-terminus = blue, C-terminus = red) complexed with heme (space- filling model, carbon atoms = white, nitrogen = blue, oxygen = red, iron = magenta) based on the crystallographic coordinates. Rev-erbβ is similar to Rev-erbα in its protein structure and function as a transcriptional repressor. The crystal structure of an unliganded Rev-erbβ ligand-binding domain (LBD) has been resolved (see figure to the right) and shows an extremely small ligand-binding pocket. However, Rev-erbβ has been shown to interact with heme, which appears important for its function.
The p27Kip1 gene has a DNA sequence similar to other members of the "Cip/Kip" family which include the p21Cip1/Waf1 and p57Kip2 genes. In addition to this structural similarity the "Cip/Kip" proteins share the functional characteristic of being able to bind several different classes of Cyclin and Cdk molecules. For example, p27Kip1 binds to cyclin D either alone, or when complexed to its catalytic subunit CDK4. In doing so p27Kip1 inhibits the catalytic activity of Cdk4, which means that it prevents Cdk4 from adding phosphate residues to its principal substrate, the retinoblastoma (pRb) protein.
Mn-SOD is the type of SOD present in eukaryotic mitochondria, and also in most bacteria (this fact is in keeping with the bacterial-origin theory of mitochondria). The Mn-SOD enzyme is probably one of the most ancient, for nearly all organisms living in the presence of oxygen use it to deal with the toxic effects of superoxide (), formed from the 1-electron reduction of dioxygen. The exceptions, which are all bacteria, include Lactobacillus plantarum and related lactobacilli, which use a different nonenzymatic mechanism with manganese (Mn2+) ions complexed with polyphosphate, suggesting a path of evolution for this function in aerobic life.
Intestinal tissue-specific actions of fexaramine were suggested to be a possible new approach for the treatment of obesity and metabolic syndrome. However it cannot be determined from these preliminary results in mice whether FXR agonism with fexaramine will produce weight loss in humans. There are no clinical trials of fexaramine planned in humans and therapy with such FXR agonists for obesity is only a theoretical approach. Crystallographic structure of the ligand binding domain of the farnesoid X receptor (rainbow colored cartoon, N-terminus = blue, C-terminus = red) complexed with fexaramine depicted as spheres (carbon = white, oxygen = red, nitrogen = blue).
RLI-15 is an fusion protein consisting of the NH2-terminal (amino acids 1–77, sushi+) cytokine- binding domain of IL-15Rα coupled to IL-15 via a 20-amino acid flexible linker. This fusion protein, referred to as protein receptor-linker-IL-15 (RLI) acts as an IL-15 superagonists that has an increased serum half-life and biological activity similar to complexed IL-15/IL-15Rα-Fc. RLI demonstrated a strong anti-tumor effect in two different tumor models. RLI15 is being produced and tested by Cytune Pharma affiliated company of Sotio which renamed it to SO-C101.
Monomeric LPS is then transferred to MD-2 pre-complexed with TLR4 on macrophages and monocytes. This leads to release of pro-inflammatory cytokines and nitric oxide, which may lead ultimately to septic shock depending on the strength of response. Vascular endothelial cells also express TLR4 and MD-2 and so respond to LPS directly, as well as via cytokines and nitric oxide. Bronchial epithelial cells and colonic epithelial cells also express TLR4, but as they do not express MD-2 they rely on LPS precomplexed with serum MD-2 in order to signal to LPS.
Since, Kost also proposed a novel approach for a glucose flux continuous biosensor and noninvasive detection of amniotic fluid for prenatal testing. Additional applications studied by Kost are the use of ultrasound for on-demand targeted delivery of drugs from liposomes, combined ultrasonic and enzymatic debridement of necrotic eschars and the use of ultrasound for more efficient cancer gene therapy. Nowadays, he study gene therapy approach for the treatment of psoriasis. The focus in these studies is on the effect of ultrasound on transport through tissues of no viral carriers developed by Kost complexed with miRNA.
Writer (and future National Artist for Literature) Amado V. Hernandez, himself a labor leader, was arrested on January 26 for various rebellious activities with the CLO. Upon his arrest, he was charged in the criminal information of “Rebellion with Murder, Arson and Robbery”. Five years after his arrest, Hernandez asked for bail with the court where his case was pending, but was denied on the basis of the nature of the offense (if the crime was complexed, the penalty for the most serious crime shall be imposed). Thus, he filed a petition to the Supreme Court.
The polyphosphonates used in industry differ greatly from natural phosphonates such as 2-aminoethylphosphonic acid, because they are much larger, carry a high negative charge and are complexed with metals. Biodegradation tests with sludge from municipal sewage treatment plants with HEDP and NTMP showed no indication for any degradation. An investigation of HEDP, NTMP, EDTMP and DTPMP in standard biodegradation tests also failed to identify any biodegradation. It was noted, however, that in some tests due to the high sludge to phosphonate ratio, removal of the test substance from solution observed as loss of DOC was observed.
The arenium ion is no longer an aromatic species; however it is relatively stable due to delocalization: the positive charge is delocalized over 3 carbon atoms by the pi system, as depicted on the following resonance structures: :Arenium ion resonance structures A complexed electrophile can contribute to the stability of arenium ions. A benzenium ion can be isolated as a stable compound when benzene is protonated by the carborane superacid H(CB11H(CH3)5Br6). The benzenium salt is crystalline with thermal stability up to 150 °C. Bond lengths deduced from X-ray crystallography are consistent with a cyclohexadienyl cation structure.
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a method for genome editing that contains a guide RNA complexed with a Cas9 protein. The guide RNA can be engineered to match a desired DNA sequence through simple complementary base pairing, as opposed to the time-consuming assembly of constructs required by zinc-fingers or TALENs. The coupled Cas9 will cause a double stranded break in the DNA. Following the same principle as zinc-fingers and TALENs, the attempts to repair these double stranded breaks often result in frameshift mutations that result in an nonfunctional gene.
Crystallographic structure of a Streptomyces-derived tyrosinase in complex with a so-called "caddie protein"; In all models, only the tyrosinase molecule is shown, copper atoms are shown in green and the molecular surface is shown in red. In models D and E, histidine amino acids are shown as a blue line representation. From model E, each copper atom within the active site is indeed complexed with three histidine residues, forming a type 3 copper center. From models C and D, the active site for this protein can be seen to sit within a pillus formed on the molecular surface of the molecule.
This allows the assembly of a transcriptional initiation complex, up-regulating transcription of the associated gene. When 8-oxo-dG is formed in a guanine rich, potential G-quadruplex-forming sequence (PQS) in the coding strand of a promoter, active OGG1 excises the 8-oxo-dG and generates an apurinic/apyrimidinic site (AP site). The AP site enables melting of the duplex to unmask the PQS, adopting a G-quadruplex fold (G4 structure/motif) that has a regulatory role in transcription activation. When 8-oxo-dG is complexed with active OGG1 it may then recruit chromatin remodelers to modulate gene expression.
Acetone causes the precipitation of the hydrous solid salt, which is green. At 490K it slowly decomposes to nitrogen and nickel metal powder, losing a half of the nitrogen in four hours. Nickel azide is complexed by one azo group when dissolved in water, but in other solvents, the nickel atom can have up to four azo groups attached. Nickel azide forms a dihydrate: Ni(N3)2 and a basic salt called nickel hydroxy azide Ni(OH)N3. Nickel amide, Ni(NH2)2 is a deep red compound that contains Ni6 clusters surrounded by 12 NH2 groups.
The HDDA reaction can also be used as a method of C-H activation, where a pendant alkane C-H bond traps a metal- complexed aryne intermediate. Lee and co-workers observed that transition metal catalysts induced an HDDA reaction of tetraynes that was intramolecularly trapped by a pendant, sp3 C-H bond. Primary, secondary, and tertiary C-H bonds were all reactive trapping partners, with silver salts being the most effective catalysts. Deuterium labelling experiments suggest that the (sp3) C-H bond breaking and (sp2) C-H bond forming reactions occur in a concerted fashion.
The packaging of eukaryotic DNA into chromatin presents a barrier to all DNA-based processes that require recruitment of enzymes to their sites of action. To allow the critical cellular process of DNA repair, the chromatin must be relaxed. DDB2, in its heterodimeric complex with DDB1, and further complexed with the ubiquitin ligase protein CUL4A and with PARP1 rapidly associates with UV- induced damage within chromatin, with half-maximum association completed in 40 seconds. The PARP1 protein, attached to both DDB1 and DDB2, then PARylates (creates a poly-ADP ribose chain) on DDB2 that attracts the DNA remodeling protein ALC1.
The proportion also increases with concentration of the solution and can be over a half. The sulfate complex rapidly exchanges with water at a rate of over 10,000,000 per second, so that NMR cannot detect the difference that results from a complexed and noncomplexed indium ion. An indium sulfate water solution is quite acidic with a 0.14 mol/liter solution having a pH of 1.85. If the pH rises above 3.4 then a precipitate will form. The Raman spectrum of the solution shows lines at 650, 1000 and 1125 cm−1 due to a sulfur–oxygen bonds in sulfate bound to indium.
Currently, different studies have focused on the development of new bioinspired repellents against mosquitos using as a start point the DEET structure complexed with AgamOBP1 A 2013 study suggests that mosquitoes can at least temporarily overcome or adapt to the repellent effect of DEET after an initial exposure, representing a non-genetic behavioral change. This observation, if verified, has significant implications for how repellent effectiveness should be assessed. A 2019 study indicated that neurons on the tarsi (feet) of Aedes aegypti mosquitoes respond to DEET, and this response repels mosquitoes upon contact. This data indicates DEET functions as a contact repellent.
As opposed to in normal, healthy cells, where these chaperomes are abundant and functional on their own, in cancer cells, changes in the interactions between chaperomes lead to the formation of a network of chaperomes, co-chaperomes, and related co-factors. What has been found is that this strengthened network amongst chaperomes is a mechanism for survival for cancer cells when adapting to stress including hypoxia and heat. The small molecule Hsp90 inhibitor, PU-H71, has been found to have a preferential binding to Hsp90 when it is in the highly integrated complexed form that is the epichaperome.
Molybdopterin synthase (, MPT synthase) is an enzyme required to synthesize molybdopterin (MPT) from precursor Z (now known as cyclic pyranopterin monophosphate). Molydopterin is subsequently complexed with molybdenum to form molybdenum cofactor (MoCo). MPT synthase catalyses the following chemical reaction: :precursor Z + 2 [molybdopterin-synthase sulfur-carrier protein]-Gly-NH-CH2-C(O)SH + H2O \rightleftharpoons molybdopterin + 2 molybdopterin-synthase sulfur-carrier protein Molybdopterin synthase is heterodimeric and coded for by the MOCS2 gene. Genetic deficiencies of enzymes such as MPT synthase, which are involved in MoCo biosynthesis, lead to MoCo deficiency, a rare disease that results in severe neurological abnormalities.
Phosphinooxazolines are able to influence both the enantioselectivity and regioselectivity of a range of metal catalysed reactions. In reactions involving symmetric transition states these properties work in concert to induce asymmetry and thus promote the formation of a single product. Enantioselectivity is controlled by the chirality of the ligand which is normally located on the oxazoline ring, however the P-centre may also be stereogenic. Regioselectivity is controlled by variety of steric and electronic factors the most important of which being a form of trans effect, in which atoms complexed trans to the P‑atom become more electrophilic than ones located trans to the N‑atom.
This leads to the acceptance of incorrect aa-tRNAs, causing the ribosome to synthesize proteins with wrong amino acids placed throughout (roughly every 1 in 500). The non-functional, mistranslated proteins misfold and aggregate, eventually leading to death of the bacterium. A secondary mechanism has been proposed based on crystal structures of gentamicin in a secondary binding site at helix 69 of the 23S rRNA, which interacts with helix 44 and proteins that recognize stop codons. At this secondary site, gentamicin is believed to preclude interactions of the ribosome with ribosome recycling factors, causing the two subunits of the ribosome to stay complexed even after translation completes.
An epitope comes in contact with a very small region (of 15–22 amino acids) of the antibody molecule; this region is known as the paratope. In the immune system, membrane-bound antibodies are the B-cell receptor (BCR). Also, while the T-cell receptor is not biochemically classified as an antibody, it serves a similar function in that it specifically binds to epitopes complexed with major histocompatibility complex (MHC) molecules.The major histocompatibility complex is a gene region on the DNA that codes for the synthesis of Major histocompatibility class I molecule, Major histocompatibility class II molecule and other proteins involved in the function of complement system (MHC class III).
CRISPR-Cas9 CRISPR gene editing is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo (in living organisms). The technique is considered highly significant in biotechnology and medicine as it allows for the genomes to be edited in vivo with extremely high precision, cheaply and with ease.
In mammals talin-1 is ubiquitously expressed; talin-1 is found complexed to integrins and localized to intercalated discs of cardiac muscle and to costamere structures of both skeletal and cardiac muscles, in correspondence with the I-band and M-line. Talin-1 is also found at focal adhesions of smooth muscle cells and non- muscle cells. In undifferentiated cultures of myoblasts, talin-1 expression is perinuclear, and then progresses to a cytoplasmic distribution followed by a sarcomlemmal, costameric-like pattern by day 15 of differentiation. Homozygous disruption of TLN1 in mice is embryonic lethal, demonstrating that talin-1 is required for normal embryogenesis.
DnaG (DNA primase) is an essential enzyme involved in the DNA replication fork Organic mechanism of oligonucleotide synthesis of ribonucleic acid (RNA) in the 5' to 3' direction DnaG catalyzes the synthesis of oligonucleotides in five discrete steps: template binding, nucleoside triphosphate (NTP) binding, initiation, extension to form a primer, and primer transfer to DNA polymerase III. DnaG performs this catalysis near the replication fork that is formed by DnaB helicase during DNA replication. DnaG must be complexed with DnaB in order for it to catalyze the formation of the oligonucleotide primers. The mechanism for primer synthesis by primases involves two NTP binding sites on the primase protein (DnaG).
Co-precipitated proteins would thus also be detected in this assay. It’s now acknowledged that most VGKC antibodies are instead directed towards associated/complexed proteins. In a particular study of 96 patients with VGKC antibodies detected with the radioimmunoprecipitation assay, only 3 (3%) had antibodies towards the Kv1 subunit of the VGKC channel, 55 (57%) had antibodies against Leucine-rich, glioma Inactivated 1 (LGI1), 19 had antibodies reacting with Contactin-associated protein 2 (CASPR 2), 5 had antibodies against Contactin-2 and 18 (19%) had antibodies with unknown specificity. Of the patients with Contactin-2 antibodies, 4/5 had antibodies against other antigens as well.
The retinoic acid receptor (RAR) is a type of nuclear receptor which can also act as a transcription factor that is activated by both all-trans retinoic acid and 9-cis retinoic acid. There are three retinoic acid receptors (RAR), RAR-alpha, RAR-beta, and RAR-gamma, encoded by the , , genes, respectively. Each receptor isoform has ten splice variants: four for alpha, four for beta, and two for gamma. As with other type II nuclear receptors, RAR heterodimerizes with RXR and in the absence of ligand, the RAR/RXR dimer binds to hormone response elements known as retinoic acid response elements (RAREs) complexed with corepressor protein.
Tabtoxin resistance protein (TTR) is an enzyme that catalyzes the acetylation of tabtoxin rendering tabtoxin-producing pathogens tolerant to their own phytotoxins. According to the structure based detoxification mechanism of TTR, three site- directed mutants Y141F, D130N and Y141F-D130N were constructed and overexpressed in E. coli. The products were then purified and their properties were analyzed by CD and DLS. The crystal structure of TTR complexed with its natural cofactor, acetyl coenzyme A (AcCoA), to 1.55 Å resolution. The binary complex forms a characteristic “V” shape for substrate binding and contains the four motifs conserved in the GCN5-related N-acetyltransferase (GNAT) superfamily, which also includes the histone acetyltransferases (HATs).
The CD family of co- receptors are a well-studied group of extracellular receptors found in immunological cells.Bobbitt, K.R., Justement, L.B. 2000. Regulation of MHC class II signal transduction by the B cell coreceptors CD19 and CD22. The CD receptor family typically act as co-receptors, illustrated by the classic example of CD4 acting as a co-receptor to the T cell receptor (TCR) to bind major histocompatibility complex II (MHC-II).Wang, J., Meihers, R., Xiong, Y., Lui, J., Sakihama, T., Zhang, R., Joachimiak, A., Reinherz, E.L. 2001. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule. Proc.
Crystallographic structure of glutamate racemase from the bacteria S. pyogenes (rainbow colored cartoon, N-terminus = blue, C-terminus = red) complexed with the inhibitor gamma-2-naphthylmethyl-D-glutamate (magenta spheres; carbon = white, oxygen = red, nitrogen = blue) that occupies the active site.; Glutamate racemase is known to use its active site to undergo racemization and participate in the cell wall biosynthesis pathway of bacteria. Based on homology to other racemases and epimerases, glutamate racemase is thought to employ two active site cysteine residues as acid/base catalysts. Surprisingly however, substituting either of the two residues with serine did not appreciable change the rate of the reaction significantly; the kcat value remained within .
Regulation of these different processes is performed by distinct PP1 holoenzymes that facilitate the complexation of the PP1 catalytic subunit to various regulatory subunits. Potential inhibitors include a variety of naturally occurring toxins including okadaic acid, a diarrhetic shellfish poison, strong tumor promoter, and microcystin. Microcystin is a liver toxin produced by blue-green algae and contains a cyclic heptapeptide structure that interacts with three distinct regions of the surface of the catalytic subunit of PP1. The structure of MCLR does not change when complexed with PP1, but the catalytic subunit of PP1 does in order to avoid steric effects of Tyr 276 of PP1 and Mdha side chain of MCLR.
The calcium cycle links ionic and non ionic calcium together in both marine and terrestrial environments and is essential for the functioning of all living organisms. In animals, calcium enables neurons to transmit signals by opening voltage gated channels that allow neurotransmitters to reach the next cell, bone formation and development and kidney function, whilst being maintained by hormones that ensure calcium homeostasis is reached. In plants, calcium promotes enzyme activity and ensures cell wall function, providing stability to plants. It also enables crustaceans to form shells and corals to exist, as calcium provides structure, rigidity and strength to structures when complexed (combined) to other atoms.
The blocking of nuclear translocation occurs via phosphorylation of PER at the nuclear localization signal, which masks the signal and prevents nuclear entry. However, this CK1ε-mediated constraint to the cytoplasm can be overcome when the PER protein complex is bound to CRY. CK1ε has been shown to phosphorylate CRY when both CK1ε and CRY are complexed with PER in vitro, but the functional significance of this remains undetermined. CK1ε may also have a role in positive feedback; the transcription factor BMAL1 is a CK1ε substrate in vitro, and increased CK1ε activity has been shown to positively regulate transcription of genes under the influence of BMAL1-dependent circadian gene promoters.
Citrate is a chelator which binds to certain transition metals and radioactive actinides. Stable complexes such as bidentate, tridentate (ligands with more than one atom bound) and polynuclear complexes (with several radioactive atoms) can be formed with citrate and radionuclides, which receive a microbial action. Anaerobically, Desulfovibrio desulfuricans and species of the genera Shewanella and Clostridium are able to reduce bidentate complexes of uranyl- citrate (VI) to uranyl-citrate (IV) and make them precipitate, despite not being able to degrade metabolically complexed citrate at the end of the process. In denitrifying and aerobic conditions, however, it has been determined that it is not possible to reduce or degrade these uranium complexes.
PDB Code: 1DFM. Crystal Structure of BglII complexed with DNA at a resolution of 1.5Å Although restriction endonucleases show little sequence similarity, crystal structures reveal that they all share a highly similar α/β core consisting of a six-stranded β-sheet flanked by five α-helices, two of which mediate dimerization. This core carries the active site (catalytic center) and the residues that contact DNA in the major groove. BglII is unique in that its α/β core is augmented by a β-sandwich subdomain that has several projections that extend outward to grip the DNA, allowing BglII to completely encircle the DNA molecule.
In addition to the advances being made in global structure determination via crystallography, the early 1990s also saw the implementation of NMR as a powerful technique in RNA structural biology. Coincident with the large-scale ribozyme structures being solved crystallographically, a number of structures of small RNAs and RNAs complexed with drugs and peptides were solved using NMR. In addition, NMR was now being used to investigate and supplement crystal structures, as exemplified by the determination of an isolated tetraloop-receptor motif structure published in 1997. Investigations such as this enabled a more precise characterization of the base pairing and base stacking interactions which stabilized the global folds of large RNA molecules.
Cobalt chelatase () is an enzyme that catalyzes the chemical reaction :ATP + hydrogenobyrinic acid a,c-diamide + Co2+ \+ H2O \rightleftharpoons ADP + phosphate + cob(II)yrinic acid a,c-diamide + H+ The four substrates of this enzyme are ATP, hydrogenobyrinic acid a,c-diamide, Co2+, and H2O; its four products are ADP, phosphate, cob(II)yrinic acid a,c-diamide, and H+. The aerobic cobalt chelatase (aerobic cobalamin biosynthesis pathway) consists of three subunits, CobT, CobN () and CobS (). The macrocycle of vitamin B12 can be complexed with metal via the ATP-dependent reactions in the aerobic pathway (e.g., in Pseudomonas denitrificans) or via ATP-independent reactions of sirohydrochlorin in the anaerobic pathway (e.g., in Salmonella typhimurium).
It was, in fact, possible to observe these cations by 1H NMR at 10 °C when generated using d-trifluoroacetic acid. Later, Richard E. Connor and Nicholas were able to isolate salts of such cations 3 as stable, dark red solids by treatment of the Co2(CO)6-complexed propargyl alcohols with excess fluoroantimonic acid or tetrafluoroboric acid etherate. The reason that these complexes are so remarkably stable is due to significant delocalization of the cationic charge onto the Co2(CO)6 moiety. Experimental evidence for the charge delocalization shows an increase in the IR absorption frequencies of the C-O ligands present in the cations compared to those in the parent alcohols.
At the center of the virion structure is the nucleocapsid, which is composed of a series of viral proteins attached to an 18–19 kb linear, negative-sense RNA without 3′-polyadenylation or 5′-capping (see following); the RNA is helically wound and complexed with the NP, VP35, VP30, and L proteins; this helix has a diameter of 80 nm. The overall shape of the virions after purification and visualization (e.g., by ultracentrifugation and electron microscopy, respectively) varies considerably; simple cylinders are far less prevalent than structures showing reversed direction, branches, and loops (e.g., U-, shepherd's crook-, 9-, or eye bolt-shapes, or other or circular/coiled appearances), the origin of which may be in the laboratory techniques applied.
This leads to the incorporation of amino acids into the growing polypeptide chain in accordance with the genetic information. Incoming amino acid monomers enter the ribosomal A site in the form of aminoacyl-tRNAs complexed with elongation factor Tu (EF- Tu) and GTP. The growing polypeptide chain, situated in the P site as peptidyl-tRNA, is then transferred to aminoacyl-tRNA and the new peptidyl- tRNA, extended by one residue, is translocated to the P site with the aid the elongation factor G (EF-G) and GTP as the deacylated tRNA is released from the ribosome through one or more exit sites. About 2/3 of the mass of the ribosome consists of RNA and 1/3 of protein.
The benzopyranoquinoline A 276575, an example of a SEGRA with a more corticosteroid-like structure Both non-selective glucocorticoids and selective glucocorticoid receptor agonists work by binding to and activating the glucocorticoid receptor (GR). In contrast to glucocorticoids, which activate the GR to work through (at least) two signal transduction pathways, SEGRAMs activate the GR in such a way that it only operates through one of the two main possible pathways. In the absence of glucocorticoids, the GR resides in the cytosol in an inactive state complexed with heat shock proteins (HSPs) and immunophilins. Binding of glucocorticoids to the GR activates the receptor by causing a conformational change in the GR and thus a dissociation of the bound HSPs.
When TIM is not complexed with PER, another protein, doubletime, or DBT, phosphorylates PER, targeting it for degradation. In mammals, an analogous transcription-translation negative feedback loop is observed. Translated from the three mammalian homologs of drosophila-per, one of three PER proteins (PER1, PER2, and PER3) dimerizes via its PAS domain with one of two cryptochrome proteins (CRY1 and CRY2) to form a negative element of the clock. This PER/CRY complex moves into the nucleus upon phosphorylation by CK1-epsilon (casein kinase 1 epsilon) and inhibits the CLK/BMAL1 heterodimer, the transcription factor that is bound to the E-boxes of the three per and two cry promoters by basic helix-loop-helix (BHLH) DNA- binding domains.
In contrast to most fresh-water sources, iron levels in surface sea-water are extremely low (1 nM to 1 μM in the upper 200 m) and much lower than those of V, Cr, Co, Ni, Cu and Zn. Virtually all this iron is in the iron(III) state and complexed to organic ligands. These low levels of iron limit the primary production of phytoplankton and have led to the Iron Hypothesis where it was proposed that an influx of iron would promote phytoplankton growth and thereby reduce atmospheric CO2. This hypothesis has been tested on more than 10 different occasions and in all cases, massive blooms resulted. However, the blooms persisted for variable periods of time.
Then again he tells her how she taught him swimming and that how much he was scared to even dip his feet in the water but she encouraged him to go deeper and caught him when he was frightened. All these days in the previous month of September when Eylül was staying at Tek's place, she never told her friends about him. It is because she herself is complexed to tell people of her class about the man she has fallen in love with. Eylül does love Tek but is not brave to confess it to the whole world as she fears that she will be made fun having fallen in love with a shaggy man like Tek.
Tris((1-benzyl-4-triazolyl)methyl)amine (TBTA) is a tertiary amine containing the 1,2,3-triazole moiety. When used as a ligand, complexed to copper(I), it allows for quantitative, regioselective formal Huisgen 1,3-dipolar cycloadditions between alkynes and azides, in a variety of aqueous and organic solvents. It is believed that the ligand promotes catalysis through the stabilization of the copper(I)-oxidation state, while still allowing for the catalytic cycle of the CuAAC reaction to proceed. Single crystal X-ray diffraction of the Cu(I) complex of tris((1-benzyl-4-triazolyl)methyl)amine revealed an unusual dinuclear dication with one triazole unit bridging two metal centers, and is an effective catalyst for the 'click' cycloaddition reaction.
The first atomic structures of the ribosome complexed with tRNA and mRNA molecules were solved by using X-ray crystallography by two groups independently, at 2.8 Å and at 3.7 Å. These structures allow one to see the details of interactions of the Thermus thermophilus ribosome with mRNA and with tRNAs bound at classical ribosomal sites. Interactions of the ribosome with long mRNAs containing Shine-Dalgarno sequences were visualized soon after that at 4.5–5.5 Å resolution. In 2011, the first complete atomic structure of the eukaryotic 80S ribosome from the yeast Saccharomyces cerevisiae was obtained by crystallography. The model reveals the architecture of eukaryote- specific elements and their interaction with the universally conserved core.
In adult striated muscle cells, alpha-7 integrin (complexed to beta-1 integrin) is localized to Z-discs and costamere structures, bound to the four and one half LIM domain proteins, FHL1 and FHL2. It has been demonstrated that alpha-7 integrin can be mono-ADP-ribosylated on the cell surface in skeletal muscle cells; however, the functional significance of this modification has not been investigated. Insights into the function of alpha-7 integrin have come from studies employing mouse transgenesis. A mouse expressing a null allele of the ITGA7 gene are viable, suggesting that alpha-7 integrin is not essential for normal myogenesis; however, these mice develop a phenotype that resembles muscular dystrophy.
IDA sensor for anions such as citrate or phosphate ions have been developed whereby these ions can displace a fluorescent indicator in an indicator-host complex. The so-called UT taste chip (University of Texas) is a prototype electronic tongue and combines supramolecular chemistry with charge-coupled devices based on silicon wafers and immobilized receptor molecules. Most examples of chemosensors for ions, such as those of alkali metal ions (Li+, Na+, K+, etc.) and alkali earth metal ions (Mg2+, Ca2+, etc.) are designed so that the excited state of the fluorophore component of the chemosensor is quenched by an electron transfer when the sensor is not complexed to these ions. No emission is thus observed, and the sensor is sometimes referred to as being 'switched off'.
Cyanide is mainly produced for the mining of gold and silver: It helps dissolve these metals and their ores. In the cyanide process, finely ground high-grade ore is mixed with the cyanide (at a ratio of about 1:500 parts NaCN to ore); low-grade ores are stacked into heaps and sprayed with a cyanide solution (at a ratio of about 1:1000 parts NaCN to ore). The precious metals are complexed by the cyanide anions to form soluble derivatives, e.g., [Au(CN)2]− and [Ag(CN)2]−. ::4 Au + 8 NaCN + O2 \+ 2 H2O → 4 Na[Au(CN)2] + 4 NaOH Silver is less "noble" than gold and often occurs as the sulfide, in which case redox is not invoked (no O2 is required).
Steps of a macrophage ingesting a pathogen After recognizing an antigen, an antigen- presenting cell such as the macrophage or B lymphocyte engulfs it completely by a process called phagocytosis. The engulfed particle, along with some material surrounding it, forms the endocytic vesicle (the phagosome), which fuses with lysosomes. Within the lysosome, the antigen is broken down into smaller pieces called peptides by proteases (enzymes that degrade larger proteins). The individual peptides are then complexed with major histocompatibility complex class II (MHC class II) molecules located in the lysosome – this method of "handling" the antigen is known as the exogenous or endocytic pathway of antigen processing in contrast to the endogenous or cytosolic pathway, which complexes the abnormal proteins produced within the cell (e.g.
Much of the humus in most soils has persisted for more than 100 years, rather than having been decomposed into CO2, and can be regarded as stable; this organic matter has been protected from decomposition by microbial or enzyme action because it is hidden (occluded) inside small aggregates of soil particles, or tightly sorbed or complexed to clays. Most humus that is not protected in this way is decomposed within 10 years and can be regarded as less stable or more labile. Stable humus contributes few plant-available nutrients in soil, but it helps maintain its physical structure. A very stable form of humus is formed from the slow oxidation of soil carbon after the incorporation of finely powdered charcoal into the topsoil.
Blotter paper containing 25C-NBOMe Anecdotal reports from human users suggest 25C-NBOMe to be an active hallucinogen at a dose of as little as 200-500 µg insufflated and 300-600 µg buccally (with threshold doses even lower), making it only half to a third the potency of LSD.2C-C-NBOMe Dose - erowid NBOMe-substituted compounds have a diminished absorption rate passing through mucus membranes, but generally remain inactive when taken orally. Buccal, sublingual or insufflated routes of administration are all viable options. Absorption rate buccally and sublingually can be increased when complexed with HPBCD complexing sugar, however the most efficient is nasal administration, which shortens the duration while increasing intensity, but has been attributed to several overdoses due to improper dosing.
Eukaryotic ATP-dependent DNA ligases have related catalytic region that contains three domains, a DNA binding domain, an adenylation domain and an oligonucleotide / oligosaccharide binding-fold domain. When these enzymes engage a nick in duplex DNA, these domains encircle the DNA duplex with each one making contact with the DNA. The structure of the catalytic region of DNA ligase III complexed with a nicked DNA has been determined by X-ray crystallography and is remarkably similar to that formed by the catalytic region of human DNA ligase I bound to nicked DNA. A unique feature of the DNA ligases encoded by the LIG3 gene is an N-terminal zinc finger that resembles the two zinc fingers at the N-terminus of poly (ADP-ribose) polymerase 1 (PARP1).
In terms of domain architecture, all of the enzymes are built upon a common PLC-δ backbone, wherein each family displays similarities, as well as obvious distinctions, that contribute to unique regulatory properties within the cell. Because it is the only family found expressed in lower eukaryotic organisms such as yeast and slime molds, it is considered the prototypical PLC isoform. The other family members more than likely evolved from PLC-δ as their domain architecture and mechanism of activation were expanded. Although a full crystal structure has not been obtained, high-resolution X-ray crystallography has yielded the molecular structure of the N-terminal PH domain complexed with its product IP3, as well as the remainder of the enzyme with the PH domain ablated.
In Chlamydomonas reinhardtii, chloroplast PRK and G3PDH exist as a bi-enzyme complex of 2 molecules of dimeric PRK and 2 molecules of tetrameric G3PDH thorough association by an Arg 64 residue, which may potentially transfer information between the two enzymes as well. Multi-enzyme complexes are likely to have more intricate regulatory mechanisms, and studies have already probed such processes. For example, it has been shown that PRK- glyceraldehyde 3-phosphate dehydrogenase complexes in Scenedesmus obliquus only dissociate to release activated forms of its constituent enzymes in the presence of NADPH, dithiothreitol (DTT), and thioredoxin. Another topic of interest has been to compare the relative levels of PRK activity for when it is complexed to when it is not.
During his years in Birmingham and Edinburgh, John Berry Haycraft had been actively engaged in research and published papers on the coagulation of blood, and in 1884, he discovered that the leech secreted a powerful anticoagulant, which he named hirudin, although it was not isolated until the 1950s, nor its structure fully determined until 1976. Full length hirudin is made up of 65 amino acids. These amino acids are organized into a compact N-terminal domain containing three disulfide bonds and a C-terminal domain that is completely disordered when the protein is un-complexed in solution. Amino acid residues 1-3 form a parallel beta-strand with residues 214-217 of thrombin, the nitrogen atom of residue 1 making a hydrogen bond with the Ser-195 O gamma atom of the catalytic site.
In alkali solution in the presence of OH− ion various zinc hydroxychloride anions are present in solution, e.g. Zn(OH)3Cl2−, Zn(OH)2, ZnOH, and Zn5(OH)8Cl2·H2O (simonkolleite) precipitates. When ammonia is bubbled through a solution of zinc chloride, the hydroxide does not precipitate, instead compounds containing complexed ammonia (ammines) are produced, Zn(NH3)4Cl2·H2O and on concentration ZnCl2(NH3)2. The former contains the Zn(NH3)62+ ion , and the latter is molecular with a distorted tetrahedral geometry. The species in aqueous solution have been investigated and show that Zn(NH3)42+ is the main species present with Zn(NH3)3Cl+ also present at lower NH3:Zn ratio. Aqueous zinc chloride reacts with zinc oxide to form an amorphous cement that was first investigated in the 1855 by Stanislas Sorel.
There is only one > way and that is to recognise her complete equality of status with her > fellows and to do so frankly, freely and unreservedly ... While one > understands and sympathises with French fears, one cannot, but feel for > Germany in the prison of inferiority in which she still remains sixteen > years after the conclusion of the war. The continuance of the Versailles > status is becoming an offence to the conscience of Europe and a danger to > future peace ... Fair play, sportsmanship—indeed every standard of private > and public life—calls for frank revision of the situation. Indeed ordinary > prudence makes it imperative. Let us break these bonds and set the > complexed-obsessed soul free in a decent human way and Europe will reap a > rich reward in tranquility, security and returning prosperity.
Should ISA concentrations within the disposal facility exceed 10−5 mol L−1 (2 × 10−5 mol L−1 in the case of Th(IV)), it was reported that the sorption onto calcite would be significantly affected such that the radionuclides studied would no longer be sorbed to the cement and instead be complexed by ISA. The effect of cellulose degradation products on radionuclide solubility and sorption is the subject of a study from 2013. Cellulose degradation product leachates were first produced by contacting cellulose sources (wood, rad wipes or cotton wool) with calcium hydroxide (pH 12.7) under anaerobic conditions. Analysis of the leachates across 1 000 days suggested that the primary product of the degradation was ISA, although a range of other organic compounds were formed and varied across cellulose source.
In the absence of L-histidine and divalent metal ions or both, HutP does not bind to the hut mRNA, thus allowing the formation of a stem loop terminator structure within the nucleotide sequence located between the hutP and structural genes. HutP is a 16.2 kDa protein consisting of 148 amino acid residues. HutP also exists in five other Bacillus species, including B. anthracis, B. cereus, B. halodurans, B. thuringiensis, and Geobacillus kautophilus, with 60% sequence identity. Thirumananseri Kumarevel solved the crystal structure of the HutP protein in the apo-form, binary complex (complexed with divalent metal ions or L-histidine), ternary complex (HutP-metal ions-L-histidine) and quaternary complexes (HutP-L-histidine-metal ions-RNA) and elegantly revealed the snapshots of metal-ion mediated anti- termination mechanism for the first time.
Here she identified the human red blood cell protein complement-receptor 1 (CR1) as the binding partner for the Plasmodium falciparum (the major human malaria) invasion protein Rh4. Her further work in the same lab found the binding sites on the CR1 peptide for Rh4, and proved that phosphorylation of the cytoplasmic tails of Rh4 and other invasion proteins (sections of surface membrane proteins inside the cell) were essential for the malaria parasite to be able to penetrate red blood cells. In 2018, Tham's lab proved that the P. vivax reticulocyte-binding protein binds the human transferrin receptor 1 protein in order to invade early red blood cells (reticulocytes). The same year, following on from this work, Tham's lab published a cryo-EM structure of the two proteins complexed together.
7,8-didemethyl-8-hydroxy-5-deazariboflavin synthase (, FO synthase) and 5-amino-6-(D-ribitylamino)uracil—L-tyrosine 4-hydroxyphenyl transferase () are two enzymes always complexed together to achieve synthesis of FO, a precursor to Coenzyme F420. Their systematic names are 5-amino-5-(4-hydroxybenzyl)-6-(D-ribitylimino)-5,6-dihydrouracil ammonia-lyase (7,8-didemethyl-8-hydroxy-5-deazariboflavin-forming) and 5-amino-6-(D-ribitylamino)uracil:L-tyrosine, 4-hydroxyphenyl transferase respectively. The enzymes catalyse the following chemical reactions: : (2.5.1.147) 5-amino-6-(D-ribitylamino)uracil + L-tyrosine + S-adenosyl-L- methionine = 5-amino-5-(4-hydroxybenzyl)-6-(D-ribitylimino)-5,6-dihydrouracil + 2-iminoacetate + L-methionine + 5'-deoxyadenosin : (4.3.1.32) 5-amino-5-(4-hydroxybenzyl)-6-(D-ribitylimino)-5,6-dihydrouracil + S-adenosyl- L-methionine = 7,8-didemethyl-8-hydroxy-5-deazariboflavin + NH3 \+ L-methionine + 5'-deoxyadenosine Enzyme 2.5.
During synthesis of class II MHC in the endoplasmic reticulum, the α and β chains are produced and complexed with a special polypeptide known as the invariant chain. The nascent MHC class II protein in the rough ER has its peptide-binding cleft blocked by the invariant chain (Ii; a trimer) to prevent it from binding cellular peptides or peptides from the endogenous pathway (such as those that would be loaded onto class I MHC). The invariant chain also facilitates the export of class II MHC from the ER to the golgi, followed by fusion with a late endosome containing endocytosed, degraded proteins. The invariant chain is then broken down in stages by proteases called cathepsins, leaving only a small fragment known as CLIP which maintains blockage of the peptide binding cleft on the MHC molecule.
In a major battle on July 24, Al-Qaeda and Saddam Loyalist forces sustained heavy casualties when they launched complexed attacks on every American outpost throughout the city. The main target throughout the campaign was the Ramadi Government Center which was garrisoned by U.S. Marines of Kilo Company, 3rd Battalion, 8th Marines who had sandbagged and barricaded the building, along with two combat outposts (India Co. 3/8 and Lima Co. 3/8) that the enemy thought to be understrengthed in which they could capture the Americans and kill all inside. Both combat outposts engaged in a 5-6 hour defensive fight, a barrage of mortars, reinforcements could not reach the Government Center and the two outposts because the enemy set up ambushes to block reinforcements. Regardless, Marines continued to fight and hold their positions and repulsed the attack.
The notation for these dendrimers are in the form of Gx-R, where x is generation of the dendrimer and R is the terminal group of the dendrimer (in most cases R= -OH or -NH2) When metal ions are introduced to a dendrimer in aqueous solution they form a complex with the tertiary amines of the dendrimer notated as Gx-R(Mp+)n, where Mp+ refers to the metal ions used and n refers to the average number of metal ions complexed within each dendrimer. After a complex has formed, a reducing agent such as sodium borohydride is introduced in a high molar excess and the metal ions are reduced to their zerovalent form and come together within the dendrimer to form the DEN notated as Gx-R(Mn) where M is the zerovalent metal used and n is the number of metal atoms.
The Artemis protein has single-strand-specific 5' to 3' exonuclease activity, but it can also complex with the 469 kDa DNA-dependent protein kinase (DNA-PKcs) to gain endonuclease activity on hairpins and the 5' and 3' overhangs; the DNA-PKcs phosphorylates Artemis to give it this new function. During V(D)J recombination, the RAG complex (made up of RAG-1 and RAG-2 complexed with HMG1 or HMG2) binds to two recombination signal sequences (RSSs); the complex associates with each other, bringing the strands together, creating a loop which contains all the DNA between the two RSSs. Some of this DNA is then deleted, and the RAG complex then induce a nick precisely at the 5' end of the heptamer. This creates a 3' OH group which acts as a nucleophile in a transesterification attack on the antiparallel strand, yielding a DNA hairpin (two hairpins, as the RAG complex dimer binds to two strands).
Effects on ryanodine receptors specifically were also rescued by a potent Ca2+/calmodulin-dependent protein kinase II inhibitor, suggesting that inhibition of Ca2+/calmodulin- dependent protein kinase II may also be a potential treatment strategy. These mice also display several electrophysiological abnormalities, including bradycardia, variable heart rate, long QT intervals, catecholaminergic polymorphic ventricular tachycardia, syncope, and sudden cardiac death. Mechanistic explanations underlying these effects were explained in a later study conducted in the ankyrin-B (-/+) mice, which showed that reduction of ankyrin-B alters the transport of sodium and calcium and enhances the coupled openings of ryanodine receptors, which results in a higher frequency of calcium sparks and waves of calcium. It is now becoming clear that ankyrin-B exists in a biomolecular complex with the sodium potassium ATPase, sodium calcium exchanger and inositol triphosphate receptor which is localized in T-tubules within discrete microdomains of cardiomyocytes that are distinct from dyads formed by dihydropyridine receptors complexed to ryanodine receptors.
Size-exclusion chromatography and circular dichroism indicated that human Naa10 consists of a compact globular region comprising two thirds of the protein and a flexible unstructured C-terminus. X-ray crystal structure of the 100 kD holo-NatA (Naa10/Naa15) complex from S. pombe showed that Naa10 adopts a typical GNAT fold containing a N-terminal α1–loop–α2 segment that features one large hydrophobic interface and exhibits interactions with its auxiliary subunit Naa15, a central acetyl CoA-binding region, and C-terminal segments that are similar to the corresponding regions in Naa50, another Nα-acetyltransferase. The X-ray crystal structure of archaeal T. volcanium Naa10 has also been reported, revealing multiple distinct modes of acetyl-Co binding involving the loops between β4 and α3, including the P-loop. Non-complexed (Naa15 unbound) Naa10 adopts a different fold: Leu22 and Tyr26 shift out of the active site of Naa10, and Glu24 (important for substrate binding and catalysis of NatA) is repositioned by ~5 Å, resulting in a conformation that allows for the acetylation of a different subset of substrates.
Additional malformation included reduced trabeculation, cytoskeletal dissaray and cardiac wall rupture. Further studies demonstrated that plakophilin-2 coordinate with E-cadherin is required to properly localize RhoA early in actin cytoskeletal rearrangement in order to properly couple the assembly of adherens junctions to the translocation of desmosome precursors in newly formed cell-cell junctions. Plakophilin-2 over time has shown to be more than components of cell-cell junctions; rather the plakophilins are emerging as versatile scaffolds for various signaling pathways that more globally modulate diverse cellular activities. Plakophilin-2 has shown to localize to nuclei, in addition to desmosomal plaques in the cytoplasm. Studies have shown that plakkophillin-2 is found in the nucleoplasm, complexed in the RNA polymerase III holoenzyme with the largest subunit of RNA polymerase III, termed RPC155. There are data to support molecular crosstalk between plakophilin-2 and proteins involved in mechanical junctions in cardiomyocytes, including connexin 43, the major component of cardiac gap junctions; the voltage-gated sodium channel Na(V)1.5 and its interacting subunit, ankyrin G; and the K(ATP).
The crystal structure of phase 3 is triclinic with space group P\bar 1 and z = 2. The solid consists polymeric aquohydroxo cations, in the form of double chains of magnesium atoms surrounded and bridged by the oxygen atoms in hydroxy groups and complexed water molecules. These linear cations are interleaved and neutralized by chloride anions and some unbound water molecules, yielding the general formula []n+ ·n · n. The structure of phase 5 is believed to be similar, with generic formula []n+·n · n(4-x). The anhydrous forms of phase 3 and phase 5 have the same structure as : namely, layers of magnesium cations, each sandwiched between two layers of hydroxy or chloride anions. Phase 5 crystals form as long needles consisting of rolled-up sheets.B. Tooper and L. Cartz (1966): "Structure and Formation of Magnesium Oxychloride Sorel Cements". Nature, volume 211, pages 64–66. The Raman spectrum of phase 3 has peaks at 3639 and 3657 cm−1, whereas phase 5 has peaks at 3608 and 3691 cm−1, and brucite has a peak at 3650 cm−1.
The concept that individuals might have a "metabolic profile" that could be reflected in the makeup of their biological fluids was introduced by Roger Williams in the late 1940s, who used paper chromatography to suggest characteristic metabolic patterns in urine and saliva were associated with diseases such as schizophrenia. However, it was only through technological advancements in the 1960s and 1970s that it became feasible to quantitatively (as opposed to qualitatively) measure metabolic profiles. The term "metabolic profile" was introduced by Horning, et al. in 1971 after they demonstrated that gas chromatography-mass spectrometry (GC-MS) could be used to measure compounds present in human urine and tissue extracts.Van der greef and Smilde, J Chemomet, (2005) 19:376-386 The Horning group, along with that of Linus Pauling and Arthur B. Robinson led the development of GC-MS methods to monitor the metabolites present in urine through the 1970s. Concurrently, NMR spectroscopy, which was discovered in the 1940s, was also undergoing rapid advances. In 1974, Seeley et al. demonstrated the utility of using NMR to detect metabolites in unmodified biological samples. This first study on muscle highlighted the value of NMR in that it was determined that 90% of cellular ATP is complexed with magnesium.

No results under this filter, show 275 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.