Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"arginine" Definitions
  1. a crystalline basic amino acid C6H14N4O2 derived from guanidine
"arginine" Synonyms
Arg

1000 Sentences With "arginine"

How to use arginine in a sentence? Find typical usage patterns (collocations)/phrases/context for "arginine" and check conjugation/comparative form for "arginine". Mastering all the usages of "arginine" from sentence examples published by news publications.

Avoid arginine-rich foods Arginine is an amino acid that helps cold sores thrive.
Both lysine and arginine are abundant in meat, but in short supply in bamboo.
There's vitamin C and arginine, an amino acid that boosts immunity and clears skin—or so he claims.
The sausages are infused with ginseng, arginine and horny goat weed — three natural remedies believed to help with erectile dysfunction.
These protein-rich foods contain arginine, an amino acid that serves as a building block or precursor of nitric oxide.
Arginine and alanine are conditional and nonessential amino acids respectively, that are often used in supplements as a way to get more protein.
Those proteins are made up of seven amino acids: mostly alanine and glycine, with smaller amounts of glutamine, leucine, arginine, tyrosine, and serine for good measure.
It has mineral-rich spring water, six nourishing herbs, white birch sap with skin-boosting amino acids, and arginine to help encourage collagen production and elasticity.
He and his colleagues noted parallel changes in the genes for three digestive enzymes whose job is to liberate two particular amino acids, lysine and arginine, from proteins.
It is chemically complex, containing large quantities of sulphur-containing amino acids, particularly cysteine, but also tyrosine, histidine, lysine, and arginine, and the salts calcium carbonate and calcium phosphate.
"Cirtulline and arginine [Nitrosigine being a branding term] are traditionally implicated as a muscle blood flow enhancer via the production of nitric oxide, which is a potent vasodilator, meaning it relaxes the arterial blood vessels," Jo says.
Yoon points to studies that suggest one ingredient in Growth Factor Plus, an amino acid called arginine, can cause secretion of HGH when administered orally, but according to Cooke, in any case, HGH would not help adults grow taller because their growth plates have fused.
In enzymology, arginine kinase () is an enzyme that catalyzes the chemical reaction :ATP + L-arginine \rightleftharpoons ADP + Nω-phospho-L-arginine Thus, the two substrates of this enzyme are ATP and L-arginine, whereas its two products are ADP and Nω-phospho-L-arginine. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with a nitrogenous group as acceptor. The systematic name of this enzyme class is ATP:L-arginine Nω-phosphotransferase. Other names in common use include arginine phosphokinase, adenosine 5'-triphosphate: L-arginine phosphotransferase, adenosine 5'-triphosphate- arginine phosphotransferase, ATP:L-arginine N-phosphotransferasel ATP:L-arginine, and ω-N-phosphotransferase.
Other names in common use include arginine monooxygenase, arginine decarboxylase, arginine oxygenase (decarboxylating), and arginine decarboxy-oxidase. This enzyme participates in urea cycle and metabolism of amino groups. It has one cofactor: the flavin FAD.
In enzymology, an arginine N-succinyltransferase () is an enzyme that catalyzes the chemical reaction :succinyl-CoA + L-arginine \rightleftharpoons CoA + N2-succinyl-L-arginine Thus, the two substrates of this enzyme are succinyl-CoA and L-arginine, whereas its two products are CoA and N2-succinyl- L-arginine. This enzyme belongs to the family of transferases, specifically those acyltransferases transferring groups other than aminoacyl groups. The systematic name of this enzyme class is succinyl-CoA:L-arginine N2-succinyltransferase. Other names in common use include arginine succinyltransferase, AstA, arginine and ornithine N2-succinyltransferase, AOST, AST, and succinyl-CoA:L-arginine 2-N-succinyltransferase.
In enzymology, a NAD(P)+-protein-arginine ADP-ribosyltransferase () is an enzyme that catalyzes the chemical reaction using nicotinamide adenine dinucleotide :NAD+ \+ protein L-arginine \rightleftharpoons nicotinamide + Nomega-(ADP-D-ribosyl)-protein-L-arginine NADP+ \+ protein L-arginine \rightleftharpoons nicotinamide + Nomega-[(2'-phospho-ADP)-D-ribosyl]-protein- L-arginine as well as the corresponding reaction using nicotinamide adenine dinucleotide phosphate :NADP+ \+ protein L-arginine \rightleftharpoons nicotinamide + Nomega-(ADP-D-ribosyl)-protein-L-arginine NADP+ \+ protein L-arginine \rightleftharpoons nicotinamide + Nomega-[(2'-phospho- ADP)-D-ribosyl]-protein-L-arginine Thus, the two substrates of this enzyme are NAD+ (or NADP+) and protein L-arginine, whereas its two products are nicotinamide and Nomega-(ADP-D-ribosyl)-protein-L-arginine (or Nomega-[(2'-phospho-ADP)-D-ribosyl]-protein-L-arginine, respectively). This enzyme belongs to the family of glycosyltransferases, specifically the pentosyltransferases. The systematic name of this enzyme class is NAD(P)+:protein-L-arginine ADP-D-ribosyltransferase. Other names in common use include ADP-ribosyltransferase, mono(ADP-ribosyl)transferase, NAD+:L-arginine ADP-D-ribosyltransferase, NAD(P)+-arginine ADP-ribosyltransferase, and NAD(P)+:L-arginine ADP-D-ribosyltransferase.
The existence of arginine demethylases that could reverse arginine methylation is controversial.
In enzymology, an arginine racemase () is an enzyme that catalyzes the chemical reaction :L-arginine \rightleftharpoons D-arginine Hence, this enzyme has one substrate, L-arginine, and one product, D-arginine. This enzyme belongs to the family of isomerases, specifically those racemases and epimerases acting on amino acids and derivatives. The systematic name of this enzyme class is arginine racemase. This enzyme participates in 3 metabolic pathways: lysine degradation, D-glutamine and D-glutamate metabolism, and D-arginine and D-ornithine metabolism.
Arginine ethyl ester acts as a prodrug, the clivage of the ester by esterases yield arginine and ethanol.
Protein arginine methyltransferase 7 is a protein that in humans is encoded by the PRMT7 gene. Arginine methylation is an apparently irreversible protein modification catalyzed by arginine methyltransferases, such as PMT7, using S-adenosylmethionine (AdoMet) as the methyl donor. Arginine methylation is implicated in signal transduction, RNA transport, and RNA splicing.
Histone-arginine N-methyltransferase (, histone protein methylase I, nuclear protein (histone) N-methyltransferase, protein methylase I, S-adenosyl-L- methionine:histone-arginine omega-N-methyltransferase) is an enzyme with systematic name S-adenosyl-L-methionine:histone-arginine Nomega- methyltransferase. This enzyme catalyses the following chemical reaction : S-adenosyl-L-methionine + histone-arginine \rightleftharpoons S-adenosyl-L- homocysteine + histone-Nomega-methyl-arginine The enzyme forms the Nomega- monomethyl- and Nomega,Nomega'-dimethyl.
In enzymology, a N2-(2-carboxyethyl)arginine synthase () is an enzyme that catalyzes the chemical reaction :D-glyceraldehyde 3-phosphate + L-arginine \rightleftharpoons N2-(2-carboxyethyl)-L-arginine + phosphate Thus, the two substrates of this enzyme are D-glyceraldehyde 3-phosphate and L-arginine, whereas its two products are N2-(2-carboxyethyl)-L-arginine and phosphate. This enzyme belongs to the family of transferases, specifically those transferring aryl or alkyl groups other than methyl groups. The systematic name of this enzyme class is glyceraldehyde-3-phosphate:L-arginine N2-(2-hydroxy-3-oxopropyl) transferase (2-carboxyethyl-forming). Other names in common use include CEAS, N2-(2-carboxyethyl)arginine synthetase, CEA synthetase, glyceraldehyde-3-phosphate:L-arginine 2-N-(2-hydroxy-3-oxopropyl), and transferase (2-carboxyethyl-forming).
In enzymology, a tyrosine-arginine ligase () is an enzyme that catalyzes the chemical reaction :ATP + L-tyrosine + L-arginine \rightleftharpoons AMP + diphosphate + L-tyrosyl-L-arginine The 3 substrates of this enzyme are ATP, L-tyrosine, and L-arginine, whereas its 3 products are AMP, diphosphate, and L-tyrosyl-L-arginine. This enzyme belongs to the family of ligases, specifically those forming carbon-nitrogen bonds as acid-D-amino-acid ligases (peptide synthases). The systematic name of this enzyme class is L-tyrosine:L-arginine ligase (AMP-forming). Other names in common use include tyrosyl-arginine synthase, kyotorphin synthase, kyotorphin-synthesizing enzyme, and kyotorphin synthetase.
In enzymology, a [cytochrome c]-arginine N-methyltransferase () is an enzyme that catalyzes the chemical reaction :S-adenosyl-L-methionine + [cytochrome c]-arginine \rightleftharpoons S-adenosyl-L-homocysteine + [cytochrome c]-Nomega-methyl-arginine Thus, the two substrates of this enzyme are S-adenosyl methionine and cytochrome c-arginine, whereas its two products are S-adenosylhomocysteine and cytochrome c-Nomega-methyl-arginine. This enzyme belongs to the family of transferases, specifically those transferring one- carbon group methyltransferases. The systematic name of this enzyme class is S-adenosyl-L-methionine:[cytochrome c]-arginine Nomega-methyltransferase. Other names in common use include S-adenosyl-L-methionine:[cytochrome c]-arginine, and omega-N-methyltransferase.
Arginine methylation by type I and II PRMTs. Arginine can be methylated once (monomethylated arginine) or twice (dimethylated arginine). Methylation of arginine residues is catalyzed by three different classes of protein arginine methyltransferases (PRMTs): Type I PRMTs (PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, and PRMT8) attach two methyl groups to a single terminal nitrogen atom, producing asymmetric dimethylarginine (N G,N G-dimethylarginine). In contrast, type II PRMTs (PRMT5 and PRMT9) catalyze the formation of symmetric dimethylarginine with one methyl group on each terminal nitrogen (symmetric N G,N' G-dimethylarginine).
In enzymology, an arginine deiminase () is an enzyme that catalyzes the chemical reaction :L-arginine + H2O \rightleftharpoons L-citrulline + NH3 Thus, the two substrates of this enzyme are L-arginine and H2O, whereas its two products are L-citrulline and NH3. This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amidines. The systematic name of this enzyme class is L-arginine iminohydrolase. Other names in common use include arginine dihydrolase, citrulline iminase, and L-arginine deiminase.
In molecular biology, the arginine repressor (ArgR) is a repressor of prokaryotic arginine deiminase pathways. The arginine dihydrolase (AD) pathway is found in many prokaryotes and some eukaryotes, an example of the latter being Giardia lamblia (Giardia intestinalis). The three-enzyme anaerobic pathway breaks down L-arginine to form 1 mol of ATP, carbon dioxide and ammonia. In some bacteria, the first enzyme, arginine deiminase, can account for up to 10% of total cell protein.
This enzyme participates in arginine and proline metabolism. This enzyme is widely expressed in bacteria, including streptococcus and actinomyces. The bacterial arginine deiminase expression could be regulated by various environmental factors. Recently, a new enzyme that catalyzes the chemical reaction :L-arginine + 2H2O \rightleftharpoons L-ornithine + 2NH3 \+ CO2 was identified in cyanobacteria which should be named as arginine dihydrolase.
In carbohydrates, electrostatic and ion pairing are the dominant mechanisms for molecular interactions. Modern computational approaches in salt bridge formation in protein demonstrate that the favorable arginine-arginine pairing (i.e. conserved arginine) is due to reduction in electrostatic repulsion.
Arginase (, arginine amidinase, canavanase, L-arginase, arginine transamidinase) is a manganese-containing enzyme. The reaction catalyzed by this enzyme is: arginine + H2O → ornithine + urea. It is the final enzyme of the urea cycle. It is ubiquitous to all domains of life.
Arginine was first isolated in 1886 from yellow lupin seedlings by the German chemist Ernst Schulze and his assistant Ernst Steiger. He named it from the Greek árgyros (ἄργυρος) meaning "silver" due to the silver-white appearance of arginine nitrate crystals. In 1897, Schulze and Ernst Winterstein (1865–1949) determined the structure of arginine. The structure for arginine is presented on p. 2882.
Cryptobacterium curtum is asaccharolytic and unreactive in many of the conventional biochemical tests. Instead, it is able to degrade arginine and other amino acids found in oral cavities by using the arginine deiminase pathway. This bacterium is able to degrade arginine and produce substantial amounts of citrulline, ornithine and ammonia. Arginine and citrulline support the growth and reproduction of C. curtum.
While all PRMT enzymes catalyze the methylation of arginine residues in proteins, PRMT1 is unique in that is catalyzes the formation of asymmetrically dimethylated arginine as opposed to the PRMT2 that catalyzes the formation of symmetrically dimethylated arginine. Individual PRMT utilize S-adenosyl-L- methionine (SAM) as the methyl donor and catalyze methyl group transfer to the ω-nitrogen of an arginine residue.
In enzymology, a [myelin basic protein]-arginine N-methyltransferase () is an enzyme that catalyzes the chemical reaction :S-adenosyl-L-methionine + [myelin basic protein]-arginine \rightleftharpoons S-adenosyl-L-homocysteine + [myelin basic protein]-Nomega-methyl-arginine Thus, the two substrates of this enzyme are S-adenosyl methionine and myelin basic protein-arginine, whereas its two products are S-adenosylhomocysteine and myelin basic protein-Nomega-methyl- arginine. This enzyme belongs to the family of transferases, specifically those transferring one-carbon group methyltransferases. The systematic name of this enzyme class is S-adenosyl-L-methionine:[myelin-basic-protein]-arginine Nomega-methyltransferase. Other names in common use include myelin basic protein methylase I, protein methylase I, S-adenosyl-L-methionine:[myelin- basic-protein]-arginine, and omega-N-methyltransferase.
2-oxoglutarate/L-arginine monooxygenase/decarboxylase (succinate-forming) (, ethylene-forming enzyme, EFE) is an enzyme with systematic name L-arginine,2-oxoglutarate:oxygen oxidoreductase (succinate-forming). This enzyme catalyses the following chemical reaction : 2-oxoglutarate + L-arginine + O2 \rightleftharpoons succinate + CO2 \+ guanidine + (S)-1-pyrroline-5-carboxylate + H2O (overall reaction) :(1a) 2-oxoglutarate + L-arginine + O2 \rightleftharpoons succinate + CO2 \+ L-hydroxyarginine :(1b) L-hydroxyarginine \rightleftharpoons guanidine + (S)-1-pyrroline-5-carboxylate + H2O 2-oxoglutarate/L-arginine monooxygenase/decarboxylase catalyses two cycles of the ethylene-forming reaction.
In enzymology, a D-benzoylarginine-4-nitroanilide amidase () is an enzyme that catalyzes the chemical reaction :N-benzoyl-D-arginine-4-nitroanilide + H2O \rightleftharpoons N-benzoyl-D-arginine + 4-nitroaniline Thus, the two substrates of this enzyme are N-benzoyl-D-arginine-4-nitroanilide and H2O, whereas its two products are N-benzoyl-D-arginine and 4-nitroaniline. This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amides. The systematic name of this enzyme class is N-benzoyl-D-arginine-4-nitroanilide amidohydrolase. Other names in common use include benzoyl-D-arginine arylamidase, and D-BAPA-ase.
TNPO3 is a nuclear import receptor for serine/arginine-rich (SR) proteins, including Serine/arginine-rich splicing factor 1, which are essential precursor-mRNA splicing factors.
In enzymology, a D-nopaline dehydrogenase () is an enzyme that catalyzes the chemical reaction :N2-(D-1,3-dicarboxypropyl)-L-arginine + NADP+ \+ H2O \rightleftharpoons L-arginine + 2-oxoglutarate + NADPH + H+ The 3 substrates of this enzyme are N2-(D-1,3-dicarboxypropyl)-L-arginine, NADP+, and H2O, whereas its 4 products are L-arginine, 2-oxoglutarate, NADPH, and H+. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donors with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is N2-(D-1,3-dicarboxypropyl)-L-arginine:NADP+ oxidoreductase (L-arginine-forming). Other names in common use include D-nopaline synthase, nopaline dehydrogenase, nopaline synthase, NOS, 2-N-(D-1,3-dicarboxypropyl)-L-arginine:NADP+ oxidoreductase, and (L-arginine- forming). This enzyme participates in arginine and proline metabolism.
In interactions of proteins with nucleic acids, arginine residues are important hydrogen bond donors for the phosphate backbone — many arginine- methylated proteins have been found to interact with DNA or RNA. Enzymes that facilitate histone acetylation as well as histones themselves can be arginine methylated. Arginine methylation affects the interactions between proteins and has been implicated in a variety of cellular processes, including protein trafficking, signal transduction and transcriptional regulation. In epigenetics, arginine methylation of histones H3 and H4 is associated with a more accessible chromatin structure and thus higher levels of transcription.
Protein methylation typically takes place on arginine or lysine amino acid residues in the protein sequence. Arginine can be methylated once (monomethylated arginine) or twice, with either both methyl groups on one terminal nitrogen (asymmetric dimethylarginine) or one on both nitrogens (symmetric dimethylarginine), by protein arginine methyltransferases (PRMTs). Lysine can be methylated once, twice, or three times by lysine methyltransferases. Protein methylation has been most studied in the histones.
Generally, the role of the arginine finger in catalysis is to function in transition state stabilization to allow water to perform a nucleophilic attack to cleave off a number of phosphate groups. However, there are exceptions, and arginine fingers can assist in other roles. Additionally, arginine fingers may be attached to different subunits or other proteins in a multiprotein complex. Arginine fingers sometimes interact with guanidinium during their role in catalysis.
A lack of argininosuccinate synthetase expression has been observed in several types of cancer cells, including pancreatic cancer, liver cancer, and melanoma. For example, defects in ASS have been seen in 87% of pancreatic cancers. Cancer cells are therefore unable to synthesize enough arginine for cellular processes and so must rely on dietary arginine. Depletion of plasma arginine using arginine deiminase has been shown to lead to regression of tumours in mice.
The surface protein residues of the homodimer consume protons, leading to the formation of active decamers which further increase proton consumption via the decarboxylation reaction. Arginine decarboxylase works in tandem with arginine decarboxylase antiporters (AdiC), another component of AR3, that exchange the extracellular arginine substrate for the intracellular by-product of decarboxylation.
Arginine synthesis also utilizes negative feedback as well as repression through a repressor encoded by the gene argR. The gene product of argR, ArgR an aporepressor, and arginine as a corepressor affect the operon of arginine biosynthesis. The degree of repression is determined by the concentrations of the repressor protein and corepressor level.
350px What was said above of the chemistry of lysine methylation also applies to arginine methylation, and some protein domains—e.g., Tudor domains—can be specific for methyl arginine instead of methyl lysine. Arginine is known to be mono- or di-methylated, and methylation can be symmetric or asymmetric, potentially with different meanings.
In enzymology, a (carboxyethyl)arginine beta-lactam-synthase () is an enzyme that catalyzes the chemical reaction :ATP + L-N-(2-carboxyethyl)arginine \rightleftharpoons AMP + diphosphate + deoxyamidinoproclavaminate Thus, the two substrates of this enzyme are ATP and L-N2-(2-carboxyethyl)arginine, whereas its 3 products are AMP, diphosphate, and deoxyamidinoproclavaminate. This enzyme belongs to the family of ligases, specifically the cyclo-ligases, which form carbon-nitrogen bonds. The systematic name of this enzyme class is L-N2-(2-carboxyethyl)arginine cyclo-ligase (AMP-forming). This enzyme is also called L-2-N-(2-carboxyethyl)arginine cyclo-ligase (AMP-forming).
In enzymology, a protein-arginine deiminase () is an enzyme that catalyzes a form of post translational modification called arginine de-imination or citrullination: :protein L-arginine + H2O \rightleftharpoons protein L-citrulline + NH3 Thus, the two substrates of this enzyme are protein L-arginine and H2O, whereas its two products are protein L-citrulline and NH3. This enzyme belongs to the family of hydrolases, those acting on carbon- nitrogen bonds other than peptide bonds, specifically in linear amidines. The systematic name of this enzyme class is protein-L-arginine iminohydrolase. This enzyme is also called peptidylarginine deiminase.
This then condenses with the arginine side chain to yield glucosepane in nucleophilic addition-elimination reactions of the nitrogens of arginine and the electrophilic carbonyls on the ring, eliminating two waters.
Cats are unusually dependent on a constant supply of the amino acid arginine, and a diet lacking arginine causes marked weight loss and can be rapidly fatal. Arginine is an essential additive in cat food because cats have low levels of the enzymes which are responsible for the synthesis of ornithine and citrulline in the small intestine (specifically, for pyrroline-5-carboxylate production). Citrulline would typically go on to the kidneys to make arginine, but because cats have a deficiency in the enzymes that make it, citrulline is not produced in adequate quantities to make arginine. Arginine is essential in the urea cycle in order to convert the toxic component ammonia into urea that can then be excreted in the urine.
Type I and II PRMTs both generate N G-monomethylarginine intermediates; PRMT7, the only known type III PRMT, produces only monomethylated arginine. Arginine-methylation usually occurs at glycine and arginine-rich regions referred to as "GAR motifs", which is likely due to the enhanced flexibility of these regions that enables insertion of arginine into the PRMT active site. Nevertheless, PRMTs with non-GAR consensus sequences exist. PRMTs are present in the nucleus as well as in the cytoplasm.
Arginine fingers are also present in Ras GTPases, where they help cleave GTP to turn Ras off. Ras is a GTPase which functions in signal transduction to regulate cell growth and division. In addition to being positively charged, which helps arginine fingers function as a catalyst, the arginine finger in Ras displaces solvent molecules and creates an optional charge distribution. Like those of dUPTases, the arginine fingers of Ras GTPases are assisted by a magnesium ion.
Citrulline is made from ornithine and carbamoyl phosphate in one of the central reactions in the urea cycle. It is also produced from arginine as a byproduct of the reaction catalyzed by NOS family (NOS; EC 1.14.13.39). It is made from arginine by the enzyme trichohyalin at the inner root sheath and medulla of hair follicles. Arginine is first oxidized into N-hydroxyl-arginine, which is then further oxidized to citrulline concomitant with release of nitric oxide.
Tidiacic is a hepatoprotective drug. It is a component of tidiacic arginine. Tidiacic arginine (trade name Tiadilon) is a 1:1 combination of the amino acid arginine and tidiacic (thiazolidine-2,4-dicarboxylic acid), which acts as a sulfur donor. In France, its indications and use have been described as "identical to those of silymarin".
Desmopressin (1-deamino-8-D-arginine vasopressin) is a man-made form of the normal human hormone arginine vasopressin (the antidiuretic hormone, or ADH), a peptide containing nine amino acids. Compared to vasopressin, desmopressin's first amino acid has been deaminated, and the arginine at the eighth position is in the dextro rather than the levo form (see stereochemistry).
Ornithine carbamoyltransferase (OTCase) catalyses the conversion of ornithine and carbamoyl phosphate to citrulline. In mammals this enzyme participates in the urea cycle and is located in the mitochondrial matrix. In prokaryotes and eukaryotic microorganisms it is involved in the biosynthesis of arginine. In some bacterial species it is also involved in the degradation of arginine (the arginine deaminase pathway).
This enzyme participates in 6 metabolic pathways: lysine degradation, arginine and proline metabolism, phenylalanine metabolism, D-arginine and D-ornithine metabolism, D-alanine metabolism, and peptidoglycan biosynthesis. It employs one cofactor, pyridoxal phosphate.
Serine/arginine-rich splicing factor 7 (SRSF7) also known as splicing factor, arginine/serine-rich 7 (SFRS7) or splicing factor 9G8 is a protein that in humans is encoded by the SRSF7 gene.
Most prokaryotic arginine deiminase pathways are under the control of a repressor gene, termed ArgR. This is a negative regulator, and will only release the arginine deiminase operon for expression in the presence of arginine. The crystal structure of apo-ArgR from Bacillus stearothermophilus has been determined to 2.5A by means of X-ray crystallography. The protein exists as a hexamer of identical subunits, and is shown to have six DNA-binding domains, clustered around a central oligomeric core when bound to arginine.
Protein arginine N-methyltransferase 1 is an enzyme that in humans is encoded by the PRMT1 gene. The HRMT1L2 gene encodes a protein arginine methyltransferase that functions as a histone methyltransferase specific for histone H4.
C1QTNF1 has been shown to interact with Arginine vasopressin receptor 2.
Arginine vasopressin receptor 2 has been shown to interact with C1QTNF1.
The mechanism of arginine decarboxylase is analogous to other deaminating and decarboxylating PLP enzymes in its use of a Schiff base intermediate. Initially, Lys386 residue is displaced in a transamination reaction by the L-arginine substate, forming an arginine Schiff base with the PLP cofactor. Decarboxylation of arginine carboxylate group then occurs, where it is hypothesized that the C-C bond broken is perpendicular to the PLP pyridine ring. The pyridine nitrogen group acts as an electron-withdrawing group that facilitates the C-C bond breaking.
Furthermore, multiple arginine finger residues can all point towards the same point, thus focusing their effect. Mutations affecting the arginine fingers of Ras lead to trouble catalyzing GTP by factors of around two to five orders of magnitude. Thus, as Ras is an oncogene and is activated and deactivated by the hydrolysis of GTP, mutations in Ras's arginine finger residues can lead to cancer. Glutamate also plays a role near arginine fingers and is stabilized by the arginines' backbone chain carboxyl groups, which are known as knuckles.
Histone methyltransferases (HMT) are histone-modifying enzymes (e.g., histone- lysine N-methyltransferases and histone-arginine N-methyltransferases), that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The attachment of methyl groups occurs predominantly at specific lysine or arginine residues on histones H3 and H4. Two major types of histone methyltranferases exist, lysine-specific (which can be SET (Su(var)3-9, Enhancer of Zeste, Trithorax) domain containing or non-SET domain containing) and arginine-specific.
AhrC endodes an arginine repressor protein which represses synthesis of arginine biosynthetic enzymes and activates arginine catabolic enzymes via regulation of the rocABC and rocDEF operons. In addition to acting as a sRNA, SR1 also encodes a small peptide, SR1P. SR1P binds to glyceraldehyde-3-phosphate dehydrogenase (GapA) and stabilises the gapA operon mRNAs. SR1 expression is regulated by CcpA and CcpN.
KIAA0895 is a lysine and arginine semi- enriched protein. KIAA0895 is semi-enriched in positively charged lysine and arginine groups, and positively and negatively charged lysine, arginine, glutamic acid and aspartic acid groups. However, KIAA0895 is semi-depleted in non-polar alanine, glycine and proline groups. The charge distribution analysis shows that there are no negative or mixed charge clusters.
There are three different types of protein arginine methyltransferases (PRMTs) and three types of methylation that can occur at arginine residues on histone tails. The first type of PRMTs (PRMT1, PRMT3, CARM1⧸PRMT4, and Rmt1⧸Hmt1) produce monomethylarginine and asymmetric dimethylarginine (Rme2a). The second type (JBP1⧸PRMT5) produces monomethyl or symmetric dimethylarginine (Rme2s). The third type (PRMT7) produces only monomethylated arginine.
Arginine and proline metabolism is one of the central pathways for the biosynthesis of the amino acids arginine and proline from glutamate. The pathways linking arginine, glutamate, and proline are bidirectional. Thus, the net utilization or production of these amino acids is highly dependent on cell type and developmental stage. Altered proline metabolism has been linked to metastasis formation in breast cancer.
In enzymology, an arginine-tRNA ligase () is an enzyme that catalyzes the chemical reaction :ATP + L-arginine + tRNAArg \rightleftharpoons AMP + diphosphate + L-arginyl-tRNAArg The 3 substrates of this enzyme are ATP, L-arginine, and tRNA(Arg), whereas its 3 products are AMP, diphosphate, and L-arginyl-tRNA(Arg). This enzyme belongs to the family of ligases, to be specific those forming carbon-oxygen bonds in aminoacyl-tRNA and related compounds. The systematic name of this enzyme class is L-arginine:tRNAArg ligase (AMP-forming). Other names in common use include arginyl-tRNA synthetase, arginyl-transfer ribonucleate synthetase, arginyl-transfer RNA synthetase, arginyl transfer ribonucleic acid synthetase, arginine-tRNA synthetase, and arginine translase.
In enzymology, a N-succinylarginine dihydrolase () is an enzyme that catalyzes the chemical reaction :N2-succinyl-L-arginine + 2 H2O \rightleftharpoons N2-succinyl-L-ornithine + 2 NH3 \+ CO2 Thus, the two substrates of this enzyme are N2-succinyl-L-arginine and H2O, whereas its 3 products are N2-succinyl-L- ornithine, NH3, and CO2. This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amidines. The systematic name of this enzyme class is N2-succinyl-L- arginine iminohydrolase (decarboxylating). Other names in common use include N2-succinylarginine dihydrolase, arginine succinylhydrolase, SADH, AruB, AstB, and 2-N-succinyl-L-arginine iminohydrolase (decarboxylating).
Because wolf milk contains more arginine than can be found in puppy milk substitutes, an arginine supplement is needed when feeding pups below the weaning age. Failure to do so can result in the pups developing cataracts.
Three enzymes are involved in the process; including arginine deaminase (ADI), ornithine carbamoyltransferase (OTC), and carbamate kinase (CK). A fourth protein located at the cell membrane acts as transporter, allowing the antiporter exchange between arginine and ornithine.
Citrullination is distinct from the formation of the free amino acid citrulline as part of the urea cycle or as a byproduct of enzymes of the nitric oxide synthase family. Enzymes called arginine deiminases (ADIs) catalyze the deimination of free arginine, while protein arginine deiminases or peptidylarginine deiminases (PADs) replace the primary ketimine group (=NH) by a ketone group (=O). Arginine is positively charged at a neutral pH, whereas citrulline has no net charge. This increases the hydrophobicity of the protein, which can lead to changes in protein folding, affecting the structure and function.
The transformation of citrulline into argininosuccinate is the rate-limiting step in arginine synthesis. The activity of argininosuccinate synthetase in arginine synthesis occurs largely in at the outer mitochondrial membrane of periportal liver cells as part of the urea cycle, with some activity occurring in cortical kidney cells.{ Genetic defects that cause incorrect localization of argininosuccinate synthetase to the outer mitochondrial membrane cause type II citrullinemia. In fetuses and infants, arginine is also produced via argininosuccinate synthetase activity in intestinal cells, presumably to supplement the low level of arginine found in mother's milk.
These three Sm proteins have repeated arginine-glycine motifs in the C-terminal ends of SmD1, SmD3 and SmB, and the arginine side chains are symmetrically dimethylated to ω-NG, NG'-dimethyl-arginine. It has been suggested that pICln, which occurs in all three precursor complexes but is absent in the mature snRNPs, acts as a specialized chaperone, preventing premature assembly of Sm proteins.
Arginine is a conditionally essential amino acid in humans and rodents, as it may be required depending on the health status or lifecycle of the individual. For example, while healthy adults can supply their own requirement for arginine, immature and rapidly growing individuals require arginine in their diet, and it is also essential under physiological stress, for example during recovery from burns, injury, and sepsis, or when the small intestine and kidneys, which are the major sites of arginine biosynthesis, have been damaged. It is, however, an essential amino acid for birds, as they do not have a urea cycle. For some carnivores, for example cats, dogs and ferrets, arginine is essential, because after a meal, their highly efficient protein catabolism produces large quantities of ammonia which need to be processed through the urea cycle, and if not enough arginine is present, the resulting ammonia toxicity can be lethal.
This enzyme participates in arginine and proline metabolism and glyoxylate and dicarboxylate metabolism.
This enzyme participates in arginine and proline metabolism. It employs one cofactor, FAD.
This enzyme participates in arginine and proline biosynthesis. It employs one cofactor, NAD+.
Some members of the family probably catalyze arginine/ornithine or citruline/ornithine antiport.
There is also a conserved basic arginine within the middle of the sequence.
This is not a problem in practice, because meat contains sufficient arginine to avoid this situation. Animal sources of arginine include meat, dairy products, and eggs, and plant sources include seeds of all types, for example grains, beans, and nuts.
Both the aspartic acid and arginine active site residues are highly conserved among galactokinases. The likely galactokinase mechanism. The aspartate residue is stabilized in its anionic form by a nearby arginine residue. Crystal structure of galactokinase active site from Lactococcus lactis.
Researches will, however, have to show the indication of the use and their safety. The smDTIs where derived using a peptidomimetic design with either P1 residue from arginine itself (e.g. argatroban) or arginine-like substrates such as benzamidine (e.g. NAPAP).
Nitric-oxide synthase (NAD(P)H-dependent) (, nitric oxide synthetase, NO synthase) is an enzyme with systematic name L-arginine,NAD(P)H:oxygen oxidoreductase (nitric-oxide-forming). This enzyme catalyses the following chemical reaction : 2 L-arginine + 3 NAD(P)H + 3 H+ \+ 4 O2 \rightleftharpoons 2 L-citrulline + 2 nitric oxide + 3 NAD(P)+ + 4 H2O (overall reaction) :(1a) 2 L-arginine + 2 NAD(P)H + 2 H+ \+ 2 O2 \rightleftharpoons 2 N-omega-hydroxy-L- arginine + 2 NAD(P)+ \+ 2 H2O :(1b) 2 N-omega-hydroxy-L-arginine + NAD(P)H + H+ \+ 2 O2 \rightleftharpoons 2 L-citrulline + 2 nitric oxide + NAD(P)+ \+ 2 H2O Nitric-oxide synthase (NAD(P)H-dependent) binds heme (iron protoporphyrin IX) and tetrahydrobiopterin.
In Senecio species, biosynthesis of senecionine starts from L-arginine or L-ornithine. Because plants don't have decarboxylase enzyme for L-ornithine, it must be first converted into L-arginine. Arginine can then be readily converted to putrescine and spermidine. Next, in an NAD+-dependent reaction catalyzed by homospermidine synthase (HSS), an aminopropyl group from putrescine is transferred to spermidine to form homospermidine, releasing 1,3-diaminopropane (see biosynthesis scheme).
Aminopeptidase B (, arylamidase II, arginine aminopeptidase, arginyl aminopeptidase, Cl—activated arginine aminopeptidase, cytosol aminopeptidase IV, L-arginine aminopeptidase) is an enzyme. This enzyme catalyses the following chemical reaction : Release of N-terminal Arg and Lys from oligopeptides when P1' is not Pro. Also acts on arylamides of Arg and Lys This enzyme from mammalian tissues is activated by chloride ions and low concentrations of thiol compounds. An inhibitor is bestatin (ubenimex).
Gingipain R (, Arg-gingipain, gingipain-1, argingipain, Arg-gingivain-55 proteinase, Arg-gingivain-70 proteinase, Arg-gingivain-75 proteinase, arginine-specific cysteine protease, arginine-specific gingipain, arginine- specific gingivain, RGP-1, RGP) is an enzyme. This enzyme catalyses the following chemical reaction: : Hydrolysis of proteins and small molecule substrates, with a preference for Arg in P1 (position 1) This enzyme is secreted endopeptidase from the bacterium Porphyromonas gingivalis.
The other four times, the arginine comes from a tail region of the histone.
If bufotalin is esterified with suberyl arginine, the bufotalin-like steroid bufotoxin is obtained.
Ciraparantag consists of two L-arginine units connected with a piperazine containing linker chain.
In fact the ethyl ester in Arginine ethyl ester is bound to the hydrogen side of the molecule, protecting it from hydrolization by the enzyme arginase, which in fact attaches to arginine on this side, until the ester is cleaved by esterases enzymes. The ester also confers lipophylicity to this form of arginine, base arginine is hydrophilic, allowing it to passively penetrate cells membranes, ie. it doesn't need the specific transporter to cross lipid membranes, in so allowing maximum tissue distribution. Many pharmaceutical compounds are attached to an ethyl ester for the very same purpose of enhancing tissues distribution.
The activity of malate-aspartate shuttle is modulated by arginine methylation of malate dehydrogenase 1 (MDH1). Protein arginine N-methyltransferase CARM1 methylates and inhibits MDH1 by disrupting its dimerization, which represses malate- aspartate shuttle and inhibits mitochondria respiration of pancreatic cancer cells.
Arginine hydrochloride is used to treat refractory metabolic alkalosis. The arginine ions can enter cells and displace potassium out of the cells, causing hyperkalemia. Calcineurin inhibitors such as cyclosporine, tacrolimus, diazoxide, and minoxidil can cause hyperkalemia. Box jellyfish venom can also cause hyperkalemia.
Aberrant growth signals also increase smARF expression. ARF is a highly basic (pI>12) and hydrophobic protein. Its basic nature is attributed to its arginine content; more than 20% of its amino acids are arginine, and it contains little or no lysine.
This enzyme is also called creatinine hydrolase. This enzyme participates in arginine and proline metabolism.
Argininosuccinate synthetase is involved in the synthesis of creatine, polyamines, arginine, urea, and nitric oxide.
The differences in methylation patterns of PRMTs arise from restrictions in the arginine binding pocket.
Arginine phosphorylation in many Gram-positive bacteria marks proteins for degradation by a Clp protease.
Protein-arginine deiminase type-2 is an enzyme that in humans is encoded by the PADI2 gene. This gene encodes a member of the peptidyl arginine deiminase family of enzymes, which catalyze the post-translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions. The family members have distinct substrate specificities and tissue-specific expression patterns. The type II enzyme is the most widely expressed family member.
For example, if the arginine of the arginine finger is substituted by lysine, possibly due to a missense mutation, the αR364K mutant results. In the αR364K mutant, the ability of ATP synthase to hydrolyze ATP is decreased around a thousandfold compared to the wild type.
A guanidine moiety also appears in larger organic molecules, including on the side chain of arginine.
Arginine-rich, mutated in early-stage tumors (ARMET), arginine-rich protein (ARP), or mesencephalic astrocyte-derived neurotrophic factor (MANF) is a protein that in humans is encoded by the MANF housekeeping gene. This gene encodes a highly conserved protein whose function is known. The protein was initially thought to be longer at the N-terminus and to contain an arginine- rich region but transcribed evidence indicates a smaller open reading frame that does not encode the arginine tract. The presence of a specific mutation changing the previously numbered codon 50 from ATG to AGG, or deletion of that codon, has been reported in a variety of solid tumors.
CARM1 (coactivator-associated arginine methyltransferase 1), also known as PRMT4 (protein arginine N-methyltransferase 4), is an enzyme () encoded by the gene found in human beings, as well as many other mammals. It has a polypeptide (L) chain type that is 348 residues long, and is made up of alpha helices and beta sheets. Its main function includes catalyzing the transfer of a methyl group from S-Adenosyl methionine to the side chain nitrogens of arginine residues within proteins to form methylated arginine derivatives and S-Adenosyl-L-homocysteine. CARM1 is a secondary coactivator through its association with p160 family (SRC-1, GRIP1, AIB) of coactivators.
One mutation in patients with argininosuccinic aciduria occurs when glutamine 286 is mutated to arginine. The enzyme now has a positively charged arginine in place of a neutrally charged glutamine and studies suggest this change may sterically and/or electrostatically hinder a conformational change necessary for catalysis.
Splicing factor, arginine/serine-rich 12 is a protein that in humans is encoded by the SFRS12 gene. SFRS12 belongs to the superfamily of serine/arginine-rich (SR) splicing factors. It modulates splice site selection by regulating the activities of other SR proteins (Barnard et al., 2002).
Arginine alpha-ketoglutarate (AAKG) is a salt of the amino acid arginine and alpha-ketoglutaric acid. It is marketed as a bodybuilding supplement. Peer- reviewed studies have found no increase in muscle protein synthesis or improvement in muscle strength from use of AAKG as a dietary supplement.
The detached tentacles secrete a noxious substance and continue to writhe after they are severed which may distract aggressors. It was originally thought that the energy for swimming was supplied aerobically through respiration with little input from anaerobic glycolysis and arginine phosphate. Further study showed that this was not the case. There was a high level of arginine kinase and certain other enzymes in the adductor muscles which was indicative of the conversion of arginine phosphate for energy production.
Based on sequence analysis, SR proteins are suspected to be intrinsically disordered proteins resulting in an unstructured RS domain. Eight unphosphorylated repeats of arginine and serine in the RS domain take a helical form with arginine on the outside to reduce charge and in a phosphorylated state, the eight repeats of arginine and serine form a 'claw' shape. SR proteins can have more than one RRM domain. The second RRM domain is called the RNA recognition motif homolog (RRMH).
These helicases surround DNA as a ring of six or eight subunits with the ATP binding pocket lying between adjacent subunits. The first subunit provides the A and B motifs, and the arginine residue of the second subunit functions as a trans-acting arginine finger sensor for ATP binding and hydrolysis status. The arginine finger lies after the C motif but in three dimensions it is often embedded in a cluster of positively charged amino acids.
Sun S., Toney, M.D. (1998) Evidence for a Two-Base Mechanism Involving Tyrosine-265 from Arginine-219 Mutants of Alanine Racemase Biochemistry 38, 4058-4065 The arginine intermediate has much more free energy, is more unstable, than the acidic residue mutants. The destabilization of the intermediate promotes specificity of the reaction,.Rubinstein, A., Major, D. T. (2010) Understanding Catalytic Specificity in Alanine Racemase from Quantum Mechanical Molecular Mechanical Simulations of the Arginine 210 Mutant Biochemistry 49, 3957-3963.
Mutations in the chromosome 9 copy of ASS cause citrullinemia. 40% to 90%Novel Bladder Cancer Therapy Based on Arginine Deprivation Shows Promising Results of bladder cancers are deficient in argininosuccinate synthetase.Novel Approach to Bladder Cancer Chemotherapy Based on Arginine DepletionFrequent ASS1 deficiency in bladder cancer and sensitivity to pegylated arginine deiminase (ADI-PEG20): A potential novel therapeutic strategyPrognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging.
The ARG1 gene provides instructions for making an enzyme called arginase, this enzyme controls the last steps of the urea cycle, which produces urea by extracting nitrogen from arginine. In people with arginase deficiency, arginase is missing, and arginine is not broken down properly. consequently, urea cannot be produced and excess nitrogen accumulates in the blood in the form of ammonia. Ammonia and arginine are thought to cause neurological problems and other symptoms of arginase deficiency.
Arginine vasopressin-induced protein 1 is a protein that in humans is encoded by the AVPI1 gene.
L-arginine is recognized as safe (GRAS- status) at intakes of up to 20 grams per day.
Protein arginine N-methyltransferase 3 is an enzyme that in humans is encoded by the PRMT3 gene.
Protein arginine N-methyltransferase 2 is an enzyme that in humans is encoded by the PRMT2 gene.
Likewise arginine, ornithine, and citrulline, which are interconvertible by the urea cycle, are considered a single group.
WD repeat-containing protein 77 has been shown to interact with CTDP1 and Protein arginine methyltransferase 5.
Arginine and lysine interfere with the passage of lutetium (177Lu) oxodotreotide through these kidney tubules. As a result, the radioactive medicine leaves the body in the urine and the kidneys are exposed to less radiation. Arginine/lysine was approved for medical use in the European Union in July 2019.
Mono-ADP ribosyltransferases commonly catalyze the addition of ADP-ribose to arginine side chains using a highly conserved R-S-EXE motif of the enzyme. The reaction proceeds by breaking the bond between nicotinamide and ribose to form an oxonium ion. Next, the arginine side chain of the target protein then acts a nucleophile, attacking the electrophilic carbon adjacent to the oxonium ion. In order for this step to occur, the arginine nucleophile is deprotonated by a glutamate residue on the catalyzing enzyme.
ATP synthase consists of a F1 and F0 subunit. The F1 subunit contains alpha and beta subunits of its own which can assist in the formation of ATP, or hydrolyze it to serve as a proton pump. Though most catalytic actions happen on the beta subunits, the alpha subunits each contain an arginine finger. The role of the arginine finger in ATP synthase is akin to the function of the arginine finger residues of G proteins; to help split ATP.
In molecular biology, an arginine finger is an amino acid residue of some enzymes. Arginine fingers are often found in the protein superfamily of AAA+ ATPases, GTPases, and dUTPases, where they assist in the catalysis of the gamma phosphate or gamma and beta phosphates from ATP or GTP, which creates a release of energy which can be used to perform cellular work. Thus, they are essential for many forms of life, and are highly conserved. Arginine fingers function through non-covalent interactions.
Splicing factor, arginine/serine-rich 18 is a protein that in humans is encoded by the SFRS18 gene.
Splicing factor, arginine/serine-rich 16 is a protein that in humans is encoded by the SFRS16 gene.
Splicing factor, arginine/serine-rich 17A is a protein that in humans is encoded by the SFRS17A gene.
Trypsin cleaves the peptide bond on the carboxyl side of basic amino acids such as arginine and lysine.
Splicing factor, arginine/serine-rich 2 is a protein that in humans is encoded by the SFRS2 gene.
Serine/arginine repetitive matrix protein 1 is a protein that in humans is encoded by the SRRM1 gene.
Splicing factor, arginine/serine-rich 3 is a protein that in humans is encoded by the SFRS3 gene.
Splicing factor, arginine/serine-rich 6 is a protein that in humans is encoded by the SFRS6 gene.
Arginine fingers often interact with other motifs such as the Walker motifs and to perform catalysis more efficiently.
Splicing factor, arginine/serine-rich 5 is a protein that in humans is encoded by the SFRS5 gene.
Arginine-glutamic acid dipeptide repeats protein is a protein that in humans is encoded by the RERE gene.
This enzyme participates in 4 metabolic pathways: purine metabolism, glutamate metabolism, arginine and proline metabolism, and nitrogen metabolism.
Serine/arginine repetitive matrix protein 2 is a protein that in humans is encoded by the SRRM2 gene.
Splicing factor, arginine/serine-rich 4 is a protein that in humans is encoded by the SFRS4 gene.
Acid-Induced Arginine Decarboxylase (AdiA), also commonly referred to as arginine decarboxylase, is an enzyme responsible for catalyzing the conversion of L-arginine into agmatine and carbon dioxide. The process consumes a proton in the decarboxylation and employs a pyridoxal-5'-phosphate (PLP) cofactor, similar to other enzymes involved in amino acid metabolism, such as ornithine decarboxylase and glutamine decarboxylase. It is found in bacteria and virus, though most research has so far focused on forms of the enzyme in bacteria. During the AdiA catalyzed decarboxylation of arginine, the necessary proton is consumed from the cell cytoplasm which helps to prevent the over-accumulation of protons inside the cell and serves to increase the intracellular pH.
Protein arginine methyltransferase 8 is a protein that in humans is encoded by the PRMT8 gene. Arginine methylation is a posttranslational modification involved in a number of cellular processes, including DNA repair, RNA transcription, signal transduction and protein compartmentalization. PRMT8 binds and dimethylates Ewing sarcoma breakpoint region 1 (EWS) protein.
Putative splicing factor, arginine/serine-rich 14 is a protein that in humans is encoded by the SFRS14 gene.
Unlike other mitochondrial entry sequences, this does not contain as many arginine residues, and is in fact slightly longer.
The amino acid sequences of IFNα2a and IFNα2b differ only at position 23 (lysine in IFNα2a, arginine in IFNα2b).
There is an Arginine (R) to a Glycine (G) substitution at amino acid position 78 of the final protein.
FUS-interacting serine-arginine-rich protein 1 is a protein that in humans is encoded by the SFRS13A gene.
Bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 is an enzyme that in humans is encoded by the JMJD6 gene.
It is encoded by the codons CGU, CGC, CGA, CGG, AGA, and AGG. Arginine is classified as a semiessential or conditionally essential amino acid, depending on the developmental stage and health status of the individual. Preterm infants are unable to synthesize or create arginine internally, making the amino acid nutritionally essential for them. Most healthy people do not need to supplement with arginine because it is a component of all protein-containing foods and can be synthesized in the body from glutamine via citrulline.
General scheme of the reaction catalyzed by a lysine histone methyltransferase Histone methyltransferases are critical for genetic regulation at the epigenetic level. They modify mainly lysine on the ε-nitrogen and the arginine guanidinium group on histone tails. Lysine methyltransferases and Arginine methyltransferases are unique classes of enzymes, but both bind SAM as a methyl donor for their histone substrates. Lysine amino acids can be modified with one, two, or three methyl groups, while Arginine amino acids can be modified with one or two methyl groups.
In enzymology, an arginine-pyruvate transaminase () is an enzyme that catalyzes the chemical reaction :L-arginine + pyruvate \rightleftharpoons 5-guanidino-2-oxopentanoate + L-alanine Thus, the two substrates of this enzyme are L-arginine and pyruvate, whereas its two products are 5-guanidino-2-oxopentanoate and L-alanine. This enzyme belongs to the family of transferases, specifically the transaminases, which transfer nitrogenous groups. The systematic name of this enzyme class is L-arginine:pyruvate aminotransferase. Other names in common use include arginine:pyruvate transaminase, and AruH.
This conformational change forms the pyruvate binding site. Binding of pyruvate to the OcDH:NADH:L-arginine complex places the alpha-ketogroup of pyruvate in proximity with the alpha-amino group of L-arginine. The juxtaposition of these groups on the substrates results in the formation of a Schiff base which is subsequently reduced to D-octopine. The priming of the pyruvate site for hydride transfer via a Schiff base through the sequential binding of NADH and L-arginine to OcDH prevents the reduction of pyruvate to lactate.
Those in dendritic cells have weaker bactericidal properties than those in macrophages and neutrophils. Also, macrophages are divided into pro-inflammatory "killer" M1 and "repair" M2. The phagolysosomes of M1 can metabolise arginine into highly reactive nitric oxide, while M2 use arginine to produce ornithine to promote cell proliferation and tissue repair.
The main treatments for CTLN1 include a low-protein, high-calorie diet with amino acid supplements, particularly arginine. The Ucyclyd protocol, using buphenyl and ammonul, is used for treatment as well. Hyperammonemia is treated with hemodialysis; intravenous arginine, sodium benzoate, and sodium phenylacetate. In some cases, liver transplantation may be a viable treatment.
This gene encodes a small nuclear protein that is characterized by an arginine and glycine rich region. The encoded protein may be involved in cell cycle progression. This protein interacts with protein arginine methyltransferases and plays a role in the activation of estradiol- dependent transcription. Alternate splicing results in multiple transcript variants.
L-arginine continues through the urea cycle to form urea and ornithine, while fumarate can enter the citric acid cycle.
Arginine starvation is known to be a cause of programmed cell death, and local removal is a strong apoptotic agent.
Cysteine 464 and histidine 414 are crucial for this activity. Like metacaspases, the paracaspase cleaves substrates after an arginine residue.
This enzyme participates in d-arginine and d-ornithine metabolism. It has 3 cofactors: pyridoxal phosphate, Cobamide coenzyme, and Dithiothreitol.
In studies that use exocytotic SNAREs of yeast as models, a mutation from glutamine to arginine in the zero ionic layer leads to yeast cells that have deficient growth and protein secretion ability. However, a mutation from arginine to glutamine in this layer leads to yeast cells that are functionally wild-type. In the mutation where all four amino acids in the zero ionic layer are glutamine residues, the cells still exhibit normal secretory ability, but defects may become pronounced when there are other mutations. Complementary mutations, where a glutamine to arginine mutation is paired with an arginine to glutamine mutation in the zero ionic layer, have resulted in functionally wild-type yeast cells too, according to their secretory ability.
It predominantly interacts with A.T residues in ARG boxes. This hexameric protein binds DNA at its N terminus to repress arginine biosynthesis or activate arginine catabolism. Some species have several ArgR paralogs. In a neighbour-joining tree, some of these paralogous sequences show long branches and differ significantly from the well-conserved C-terminal region.
Compared to other human proteins, C16orf42 is high in the amino acids arginine and alanine, and low in the amino acid threonine. A brief analysis of its strict orthologs show that they too are generally high in arginine and low in threonine as well as compared to the typical protein in their respective species.
However, recruitment of DNMT1 to hemimethylated CpG sites during DNA replication depends on the UHRF1 protein. If UHRF1 does not bind to a hemimethylated CpG site, then DNMT1 is not recruited and cannot methylate the newly synthesized CpG site. The arginine methyltransferase PRMT6 regulates DNA methylation by methylating the arginine at position 2 of histone 3 (H3R2me2a). (See Protein methylation#Arginine.) In the presence of H3R2me2a UHRF1 can not bind to a hemimethylated CpG site, and then DNMT1 is not recruited to the site, and the site remains hemimethylated.
Laboratory studies have found that early life stress in rodents can cause phosphorylation of methyl CpG binding protein 2 (MeCP2), a protein that preferentially binds CpGs and is most often associated with suppression of gene expression. Stress-dependent phosphorylation of MeCP2 causes MeCP2 to dissociate from the promoter region of a gene called arginine vasopressin (avp), causing avp to become demethylated and upregulated. This may be significant because arginine vasopressin is known to regulate mood and cognitive behavior. Additionally, arginine vasopressin upregulates corticotropin-releasing hormone (CRH), which is a hormone important for stress response.
Peptidyl arginine deiminase, type III, also known as PADI3, is a protein which in humans is encoded by the PADI3 gene. This gene encodes a member of the peptidyl arginine deiminase family of enzymes, which catalyze the post- translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions. The family members have distinct substrate specificities and tissue-specific expression patterns. The type III enzyme modulates hair structural proteins, such as filaggrin in the hair follicle and trichohyalin in the inner root sheath, during hair follicle formation.
The crystal structure of the GoLoco motif in complex with G-alpha(i) has been solved. It consists of three small alpha helices. The highly conserved Asp-Gln-Arg triad within the GoLoco motif participates directly in GDP binding by extending the arginine side chain into the nucleotide binding pocket, highly reminiscent of the catalytic arginine finger employed in GTPase-activating protein (see PDOC50238). This addition of an arginine in the binding pocket affects the interaction of GDP with G-alpha and therefore is certainly important for the GoLoco GDI activity.
The primary structure of protamine P1, the protamine used for packaging DNA in sperm cells, in placental mammals is usually 49 or 50 amino acids long. This sequence is divided into three separate domains: an arginine- rich domain for DNA binding flanked by shorter peptide sequences containing mostly cysteine residues. The arginine-rich domain consists of 3-11 arginine residues and is conserved between fish protamine and mammalian protamine 1 sequences at about 60-80% sequence identity. After translation, the protamine P1 structure is immediately phosphorylated at all three of the above-mentioned domains.
Arginine fingers often work with other features in their assistance of catalysis. For example, in some trimeric dUTPases, such as those of M. tuberculosis, arginine fingers at the 64th and 140th residue can work with magnesium to cleave dUTP into dUMP and a pyrophosphate. The underlying mechanism of action for this is a nucleophilic attack; the positively charged magnesium ion () pulls on an oxygen of the beta and gamma phosphates to allow water to hydrolyze the bond between the beta and alpha phosphates. The arginine fingers help stabilize the transition state.
The fourth substitution traded a threonine for an arginine altering the protein's functionality. This substitution occurred somewhere in the 6 million year gap between the primate-human split and the Denisovan-human split, since exactly the same substitutions were found in Denisovan APOE. About 220,000 years ago, an arginine to cysteine substitution took place at amino acid 112 (Arg112Cys) of the APOE4 gene, and this resulted in the E3 allele. Finally, 80,000 years ago, another arginine to cysteine substitution at amino acid 158 (Arg158Cys) of the APOE3 gene created the E2 allele.
Each tablet contains 2, 4, or 8 mg of the tert- butylamine salt of perindopril. Perindopril is also available under the trade name Coversyl Plus, containing 4 mg of perindopril combined with 1.25 mg indapamide, a thiazide-like diuretic. In Australia, each tablet contains 2.5, 5, or 10 mg of perindopril arginine. Perindopril is also available under the trade name Coversyl Plus, containing 5 mg of perindopril arginine combined with 1.25 mg indapamide and Coversyl Plus LD, containing 2.5 mg of perindopril arginine combined with 0.625 mg indapamide.
When predating on nematodes, the fungus uses cellobiose, L-asparagine, L-arginine, DL glutamic acid for its carbon and nitrogen sources.
Lysines can be sites of post-translational modification and the conversion of Lysine to an Arginine could affect post-translational modification.
In molecular biology, group III pyridoxal-dependent decarboxylases are a family of bacterial enzymes comprising ornithine decarboxylase , lysine decarboxylase and arginine decarboxylase . Pyridoxal-5'-phosphate-dependent amino acid decarboxylases can be divided into four groups based on amino acid sequence. Group III comprises prokaryotic ornithine and lysine decarboxylase and the prokaryotic biodegradative type of arginine decarboxylase.
The chemical conversion of arginine to citrulline, known as citrullination or deimination. Citrullination or deimination is the conversion of the amino acid arginine in a protein into the amino acid citrulline. Citrulline is not one of the 20 standard amino acids encoded by DNA in the genetic code. Instead, it is the result of a post-translational modification.
Image:NOSreaction.svg Nitric oxide synthases produce NO by catalysing a five-electron oxidation of a guanidino nitrogen of L-arginine (L-Arg). Oxidation of L-Arg to L-citrulline occurs via two successive monooxygenation reactions producing Nω-hydroxy-L-arginine (NOHLA) as an intermediate. 2 mol of O2 and 1.5 mol of NADPH are consumed per mole of NO formed.
The most common side effects include nausea and vomiting. Arginine/lysine is also associated with hyperkalaemia (high blood potassium levels), but the frequency of this side effect is not known. Side effects with arginine/lysine are usually mild or moderate. Radiation from lutetium (177Lu) oxodotreotide can cause damage when the medicine passes through tubules in the kidney.
PRMT1 gene encodes for the protein arginine methyltransferase that functions as a histone methyltransferase specific for histone H4 in eukaryotic cells. Specifically altering histone H4 in eukaryotes gives it the ability to remodel chromatin acting as a post-translational modifier. Through regulation of gene expression, arginine methyltransferases control the cell cycle and death of eukaryotic cells.
Methylglyoxal is involved in the formation of advanced glycation endproducts (AGEs). In this process, methylglyoxal reacts with free amino groups of lysine and arginine and with thiol groups of cysteine forming AGEs. Histones are also heavily susceptible to modification by methylglyoxal and these modifications are elevated in breast cancer. AGEs derived from the action of methylglyoxal on arginine.
LysE appears to catalyze unidirectional efflux of L-lysine (and other basic amino acids such as L-arginine), and it provides the sole route for L-lysine excretion. The energy source is believed to be the proton motive force (H+ antiport). The E. coli ArgO homologue (TC# 2.A.75.1.2) effluxes arginine and possibly lysine and canavanine as well.
The guanidine group of arginine residues condense with malondialdehyde to give 2-aminopyrimidines. Human ALDH1A1 aldehyde dehydrogenase is capable of oxidizing malondialdehyde.
Antizyme inhibitor 2 (AzI2) also known as arginine decarboxylase (ADC) is an enzyme that in humans is encoded by the AZIN2 gene.
Methylamine arises as a result of putrefaction and is a substrate for methanogenesis. Additionally, methylamine is produced during PADI4-dependent arginine demethylation.
The effects of N-acetylglutamic acid on the clover species were more potent than the effects from glutamine, glutamate, arginine, or ammonia.
Histone tails are subject to a wide array of modifications which includes phosphorylation, acetylation, and methylation of serine, lysine and arginine residues.
Arginine/lysine is indicated for reduction of renal radiation exposure during peptide receptor radionuclide therapy (PRRT) with lutetium (177Lu) oxodotreotide in adults.
The methylation and charge of arginine residues in the RRM domain also contributes to the export of SR proteins associated with mRNA.
Peptidyl arginine deiminase, type IV, also known as PADI4, is a human protein which in humans is encoded by the PADI4 gene.
The RecQ helicase, along with most proteins containing arginine fingers, is inhibited by sodium orthovanadate, which interferes with the arginien finger residue.
Schulze and Winterstein synthesized arginine from ornithine and cyanamide in 1899, but some doubts about arginine's structure lingered until Sørensen's synthesis of 1910.
In the synthesis of nitric oxide the pterin-dependent nitric oxide synthase converts arginine to N-hydroxy derivative, which in turn releases NO.
9764-9778 On the protein side differences in the consensus motif and downstream arginine or lysine residues dictate the exact flanking sequence recognized.
Arginine, also known as -arginine (symbol Arg or R), is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, an α-carboxylic acid group, and a side chain consisting of a 3-carbon aliphatic straight chain ending in a guanidino group. At physiological pH, the carboxylic acid is deprotonated (−COO−), the amino group is protonated (−NH3+), and the guanidino group is also protonated to give the guanidinium form (-C-(NH2)2+), making arginine a charged, aliphatic amino acid. It is the precursor for the biosynthesis of nitric oxide.
Peptidyl arginine deiminase, type I, also known as PADI1, is a protein which in humans is encoded by the PADI1 gene. This gene encodes a member of the peptidyl arginine deiminase family of enzymes, which catalyze the post- translational deimination of proteins by converting arginine residues into citrullines in the presence of calcium ions. The family members have distinct substrate specificities and tissue-specific expression patterns. The type I enzyme is involved in the late stages of epidermal differentiation, where it deiminates filaggrin and keratin K1, which maintains hydration of the stratum corneum, and hence the cutaneous barrier function.
A common theme with methylated proteins, as with phosphorylated proteins, is the role this modification plays in the regulation of protein–protein interactions. The arginine methylation of proteins can either inhibit or promote protein–protein interactions depending on the type of methylation. The asymmetric dimethylation of arginine residues in close proximity to proline-rich motifs can inhibit the binding to SH3 domains. The opposite effect is seen with interactions between the survival of motor neurons protein and the snRNP proteins SmD1, SmD3 and SmB/B', where binding is promoted by symmetric dimethylation of arginine residues in the snRNP proteins.
He is also affiliated with the university's Mentored Research Program in Space Life Sciences, where he examines nutrition issues related to space travel and skeletal muscle metabolism. Much of Wu's research has focused on amino acid biochemistry and nutrition in animals, including the arginine- nitric oxide pathway, as well as the syntheses of the arginine-family of amino acids (including arginine, citrulline, glutamate, glutamine, and proline) and glycine in mammals, birds and fish. He recently proposed two important new concepts in nutrition: functional amino acids and dietary requirements of animals for synthesizable amino acids. In 2012, Wu was elected Fellow of the AAAS.
4-Imidazolone arise from the condensation of arginine residues and 3-deoxyglucosone (R = CH2CH(OH)CH(OH)CH2OH). 3DG is made naturally via the Maillard reaction. It forms after glucose reacts with primary amino groups of lysine or arginine found in proteins. Because of the increased concentration of the reactant glucose, more 3DG forms with excessive blood sugar levels, as in uncontrolled diabetes.
Arginine/lysine, sold under the brand name LysaKare, is a fixed-dose combination medication used to protect the kidneys from radiation damage during cancer treatment with a radioactive medicine called lutetium (177Lu) oxodotreotide. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged. It contains L-arginine hydrochloride and L-lysine hydrochloride.
In the field of enzymology, a dimethylargininase, also known as a dimethylarginine dimethylaminohydrolase (DDAH), is an enzyme that catalyzes the chemical reaction: :N-omega,N-omega'-methyl-L-arginine + H2O \rightleftharpoons dimethylamine + L-citrulline Thus, the two substrates of this enzyme are N-omega,N-omega'-methyl-L-arginine and H2O, whereas its two products are dimethylamine and L-citrulline.
Maillard reaction of argpyrimidine under physiological conditions. In vivo, argpyrimidine is synthesized from a Methylglyoxal (MG) mediated modification on an arginine residue in a protein. Methylglyoxal is formed through the Polyol pathway, the degradation of triose phosphates from Glycolysis, acetone metabolism, protein Glycation, or Lipid peroxidation. Methylglyoxal then can modify Arginine, Cysteine, or Lysine amino acid residues within a protein.
These variants have four nucleotide differences in the coding region with one silent mutation. The affected codons are amino acids 38, 61, 63 and 70 in the full length staphylokinase. Amino acid 38 is lysine, amino acid 61 is serine in SaKSTAR, glycine in SakφC, and arginine in Sak42D. Amino acid 63 is glycine in SakSTAR and SakφC, but arginine in Sak42D.
When the cells are growing in this medium, they incorporate the heavy arginine into all of their proteins. Thereafter, all peptides containing a single arginine are 6 Da heavier than their normal counterparts. Alternatively, uniform labeling with 13C or 15N can be used. The trick is that the proteins from both cell populations can be combined and analyzed together by mass spectrometry.
Editing results in a codon change from a glutamine codon (CAG) to an arginine codon (CIG). Editing at R/G results in a codon change. The region of the editing site is known to be the region that controls divalent cation permeability. The other ionotropic AMPA glutamate receptors have a genomically encoded have a glutamine residue, while GluR2 has an arginine.
Expression of argininosuccinate synthetase in the intestines ceases after two to three years of life. It is thought that regulation of argininosuccinate synthetase activity in arginine synthesis occurs primarily at the transcriptional level in response to glucocorticoids, cAMP, glucagon, and insulin. It has also been demonstrated in vitro that arginine down-regulates argininosuccinate synthetase expression, while citrulline up-regulates it.
The enzyme endothelial nitric oxide synthase produces nitric oxide from arginine in endothelial cells. Argininosuccinate synthetase and argininosuccinate lyase recycle citrulline, a byproduct of nitric oxide production, into arginine. Since nitric oxide is an important signaling molecule, this role of ASS is important to vascular physiology. In this role, argininosuccinate synthetase activity is regulated largely by inflammatory cellular signal molecules such as cytokines.
Norvaline is a promising candidate drug for the treatment of Alzheimer's disease. It is a non-competitive arginase inhibitor which readily crosses the blood-brain barrier, and reduces arginine loss in the brain. Amyloid-beta deposition is associated with L-arginine deprivation and neurodegeneration. Mice treated with Norvaline display improved spatial memory, increased neuroplasticity-related proteins, and decrease in amyloid- beta.
Mitochondrially encoded tRNA arginine also known as MT-TR is a transfer RNA which in humans is encoded by the mitochondrial MT-TR gene.
It is primarily attributed to the effects of the metabolism of L-arginine. Another important factor influencing the activity of MDSC is oppressive ROS.
His-1 is held in place over the nickel cofactor in a tight hydrogen bonding network with a glutamic acid residue and an arginine residue.
Editing at this site results in a codon changed from a Lysine to an Arginine. This occurs in a highly basic region of the protein.
The other amino acids, valine, methionine, leucine, isoleucine, phenylalanine, lysine, threonine and tryptophan for adults and histidine, and arginine for babies are obtained through diet.
In the edited version the position is an arginine. The long side chain of which is thought to be able to maintain these weak interactions.
The oil yield is about 400 l/hectare. In addition, the seeds contain a high amount of arginine, tryptophan, and the sulfur-containing amino acids.
Splicing factor, arginine/serine-rich 11 is a protein that in humans is encoded by the SFRS11 gene. This gene encodes 54-kD nuclear protein that contains an arginine/serine-rich region similar to segments found in pre-mRNA splicing factors. Although the function of this protein is not yet known, structure and immunolocalization data suggest that it may play a role in pre- mRNA processing.
A meta-analysis showed that L-arginine reduces blood pressure with pooled estimates of 5.4 mmHg for systolic blood pressure and 2.7 mmHg for diastolic blood pressure. Supplementation with -arginine reduces diastolic blood pressure and lengthens pregnancy for women with gestational hypertension, including women with high blood pressure as part of pre-eclampsia. It did not lower systolic blood pressure or improve weight at birth.
The role of post-translational processing in gene regulation is the subject of the growing field of study, epigenetics. One modification mechanism is methylation. A methyl group (CH3) binds to an arginine on the histone protein, altering DNA binding to the histone and allowing transcription to take place. When PAD converts arginine to citrulline on a histone, it blocks further methylation of the histone, inhibiting transcription.
The N-terminal region of Rev contains an arginine-rich sequence. The arginine-rich motif (ARM) is located between amino acids 38–49 of the rev gene and forms an alpha-helical secondary structure. The ARM is a highly specific sequence which allows for the multimerization of Rev proteins, prior to RNA binding. A single base substitution alters Rev’s ability to form a tetramer.
As the cellular environment becomes more acidic, these residues become neutrally charged through protonation. With less electrostatic repulsion between homodimers, the enzyme is allowed to assemble as the catalytically active decamer. This particular assembling strategy used by E. coli arginine decarboxylase is also commonly used by other acidophilic organisms to cope with acidic growth conditions. Overall, the acid resistance activity of arginine decarboxylase is two-fold.
Asymmetric dimethylarginine (ADMA) is a naturally occurring chemical found in blood plasma. It is a metabolic by-product of continual protein modification processes in the cytoplasm of all human cells. It is closely related to L-arginine, a conditionally essential amino acid. ADMA interferes with L-arginine in the production of nitric oxide (NO), a key chemical involved in normal endothelial function and, by extension, cardiovascular health.
Protegrin-1 that consists of 18 amino acids, six of which are arginine residues, forms two antiparallel β-sheets with a β-turn. Protegrin-2 is missing two carboxy terminal amino acids. So, Protegrin-2 is shorter than Protegrin-1 and it has one less positive charge. Protegrin-3 substitutes a glycine for an arginine at position 4 and it also has one less positive charge.
C3a, like other anaphylatoxins, has a C-terminal arginine residue. Serum carboxypeptidase B, a protease, cleaves the arginine residue from C3a, forming the desArg derivative of C3a, also known as acylation stimulating protein (ASP). Unlike C5a desArg, this version of C3a has no proinflammatory activity. However, ASP functions as a hormone in the adipose tissue, moderating fatty acid migration to adipocytes and triacylglycerol synthesis.
This difference is reflected in their metabolism; M1 macrophages have the unique ability to metabolize arginine to the "killer" molecule nitric oxide, whereas rodent M2 macrophages have the unique ability to metabolize arginine to the "repair" molecule ornithine. However, this dichotomy has been recently questioned as further complexity has been discovered. Human macrophages are about in diameter and are produced by the differentiation of monocytes in tissues.
The principle of SILAC. Cells are differentially labeled by growing them in light medium with normal arginine (Arg-0, blue color) or medium with heavy arginine (Arg-6, red color). Metabolic incorporation of the amino acids into the proteins results in a mass shift of the corresponding peptides. This mass shift can be detected by a mass spectrometer as indicated by the depicted mass spectra.
In addition to the adjusted glycolysis, Monocercomonoides contain enzymes needed in the arginine deiminase (degradation) pathway. The arginine deiminase pathway may be used for ATP production, as in Giardia intestinalis and Trichomonas vaginalis. In G. intestinalis (an anaerobic unicellular eukaryote) this pathway produces eight times more ATP than sugar metabolism, and a similar output is expected in Monocercomonoides, but has yet to be confirmed.
An accumulation of ammonia during the first few days of life leads to poor feeding, vomiting, seizures, and the other signs and symptoms of type I citrullinemia. Treatment for this defect includes a low-protein diet and dietary supplementation with arginine and phenylacetate. Arginine allows the urea cycle to complete itself, creating the substrates needed to originally fix ammonia. This will lower blood pH.
A RecQ helicase is one of a family of helicases that helps reduce sister chromatid exchange during meiosis to lower mutation rates. RecQ helicases are found in many organisms, ranging from E. coli to humans. One of these helicases, the Bloom syndrome protein, contains an arginine finger which assists in its hydrolysis of ATP. In humans, the arginine finger of the Bloom syndrome protein is Arg982.
Protein arginine N-methyltransferase 5 is an enzyme that in humans is encoded by the PRMT5 gene. PRMT5 symmetrically dimethylates H2AR3, H4R3, H3R2, and H3R8 in vivo, all of which are linked to a range of transcriptional regulatory events. PRMT5 is a highly conserved arginine methyltransferase that translocated from the cytoplasm to the nucleus at embryonic day ~E8.5, and during preimplantation development at the ~4-cell stage.
400px The Sakaguchi test is a chemical test used for detecting the presence of arginine in proteins. It is named after the Japanese Food Scientist and Organic Chemist, Shoyo Sakaguchi (1900-1995) who described the test in 1925. Sakaguchi reagent consists of 1-Naphthol and a drop of sodium hypobromite. The guanidine group in arginine reacts with Sakaguchi reagent to form a red- coloured complex.
Phenypressin has very similar characteristics as arginine vasopressin, so it is synthesized in the hypothalamus and travels to the posterior pituitary and is then released into the vesicles. Since the functions are similar to arginine vasopressin, we can assume that Phenypressin also has two main functions. Mainly, it increases the reabsorption of water in the kidneys. Secondly, it can also cause vasoconstriction, increasing the blood pressure.
John B. Hibbs Jr. is an American physician-scientist and educator. He is Distinguished Professor Emeritus in the Department of Medicine at the University of Utah. He is known for the discovery of the direct synthesis of L-citrulline and nitrogen oxides from L-arginine by murine activated macrophages, published in January 1987. This reaction was inhibited strongly by the non-toxic NG-monomethyl-L-arginine molecule.
Sequence identity between prokaryotic and eukaryotic NAGS is largely <30%, while sequence identity between lower and higher eukaryotes is ~20%. Enzyme activity of NAGS is modulated by L-arginine, which acts as an inhibitor in plant and bacterial NAGS, but an effector in vertebrates. While the role of arginine as an inhibitor of NAG in ornithine and arginine synthesis is well understood, there is some controversy as to the role of NAG in the urea cycle. The currently accepted role of NAG in vertebrates is as an essential allosteric cofactor for CPS1, and therefore it acts as the primary controller of flux through the urea cycle.
Because of its essential role, deficiency in arginine results in a buildup of toxic ammonia and leads to hyperammonemia. The symptoms of hyperammonemia include lethargy, vomiting, ataxia, and hyperesthesia, and can be serious enough to induce death and coma in a matter of days if a cat is being fed an arginine-free diet. The quick onset of these symptoms is due to the fact that diets devoid in arginine will typically still contain all of the other amino acids, which will continue to be catabolized by the body, producing mass amounts of ammonia that very quickly build up with no way of being excreted.
Arginine 2-monooxygenase () is an enzyme that catalyzes the chemical reaction :L-arginine + O2 \rightleftharpoons 4-guanidinobutanamide + CO2 \+ H2O Thus, the two substrates of this enzyme are L-arginine and oxygen, whereas its 3 products are 4-guanidinobutanamide, carbon dioxide, and water. This enzyme belongs to the family of oxidoreductases, specifically those acting on single donors with O2 as oxidant and incorporation of two atoms of oxygen into the substrate (oxygenases). The oxygen incorporated need not be derived from O with incorporation of one atom of oxygen (internal monooxygenases o internal mixed-function oxidases). The systematic name of this enzyme class is L-arginine:oxygen 2-oxidoreductase (decarboxylating).
L-Arginine is one of the essential amino acids widely distributed in biological substances. It forms a number of salts with organic and inorganic acids showing non-linear optical properties. L-Arginine maleate dihydrate (LAMD, C6H14N4O2,C4H4O4,2H2O) is one of these L-arginine salts which is a complex of strongly basic amino acid, carboxylic acid and provides useful information in relation to molecular interaction in present-day biological systems and to prebiotic self-organisms.S.L. Miller, E.L. Orgel, "The Origins of Life on the Earth", Prentice- Hall, New Jersey, 1974. It is also a nonlinear optical material with second harmonic generation efficiency 1.68 times that of KDP.
The main isotype for this is PAD4, which deiminates arginines and/or monomethylated arginines on histones 3 and 4, turning off the effects of arginine methylation.
Other names in common use include N-methylhydantoin amidohydrolase, methylhydantoin amidase, N-methylhydantoin hydrolase, and N-methylhydantoinase. This enzyme participates in arginine, creatinine, and proline metabolism.
Alterations in the availability of L-arginine and its metabolism into polyamines contribute significantly to the dysregulation of the host immune response to H. pylori Infection.
Orthocaspases is a sub-class in the C14 family of cysteine proteases. Similar to metacaspases and paracaspases, the orthocaspases cleave their protein substrates after an arginine.
Splicing factor, arginine/serine-rich 9, also known as SFRS9, is a human gene encoding an SR protein involved in splice site selection in alternative splicing.
It is due to a mutation inside the gene NR1H3, an arginine to glutamine mutation in the position p.Arg415Gln, in an area that codifies the protein LXRA.
Treatments include discontinuation of protein intake, intravenous infusion of glucose and, as needed, infusion of supplemental arginine and the ammonia removal drugs, sodium phenylacetate and sodium benzoate.
However, no formal assessment of the utility of carnitine and arginine supplementation has been published, and its uses have only been effective in patients with specific deficiencies.
The Company plans on incorporating this technology in their sugarless soft chews, BasicBites. Arginine is a common amino acid found in many foods and is also naturally found in saliva. On tooth surfaces, arginine is broken down by certain pH rising plaque bacteria to acid-neutralizing alkali. This results in a sustained neutral or elevated oral plaque pH, which creates an optimal environment for remineralization of the teeth.
Trypsin cleaves the peptide bond in chymotrypsinogen between arginine-15 and isoleucine-16. This creates two peptides within the π-chymotrypsin molecule, held together by a disulfide bond. One of the π-chymotrypsins acts on another by breaking a leucine and serine peptide bond. The activated π-chymotrypsin reacts with other π-chymotrypsin molecules to cleave out two dipeptides, which are, serine-14–arginine-15 and threonine-147–asparagine-148.
Nitroarginine, or Nω-nitro--arginine, is a nitro derivative of the amino acid arginine. It is an inhibitor of nitric oxide synthase and hence a vasoconstrictor. As such, it finds widespread use as a biochemical tool in the study of nitric oxide and its biological effects. Nitroarginine has been used in research studying coronary constriction, and it was found that, in the presence of midazolam vasodilatation was unaffected by nitroarginine.
In many prokaryotes, proline dehydrogenase and P5C dehydrogenase form a bifunctional enzyme that prevents the release of P5C during proline degradation. In arginine degradation, the enzyme ornithine-δ-aminotransferase mediates the transamination between ornithine and a 2-oxo acid (typically α-ketoglutarate) to form P5C and an L-amino acid (typically glutamate). Under specific conditions, P5C may also be used for arginine biosynthesis via the reverse reaction of ornithine-δ-aminotransferase.
Compositional analysis of all isoforms shows that they have below-average levels of aspartate (D) and valine (V) and above-average levels of glutamine (Q). In addition, they have above-average levels of lysine (K) and arginine (R) groupings. Isoform 3 also exhibits above-average lysine levels and below- average proline and glycine levels. Chimp, dog, and ferret orthologs also exhibited above-average glutamine levels and lysine and arginine groupings.
Lysine carboxypeptidase (, carboxypeptidase N, arginine carboxypeptidase, kininase I, anaphylatoxin inactivator, plasma carboxypeptidase B, creatine kinase conversion factor, bradykinase, kininase Ia, hippuryllysine hydrolase, bradykinin-decomposing enzyme, protaminase, CPase N, creatinine kinase convertase, peptidyl-L-lysine(-L-arginine) hydrolase, CPN) is an enzyme. This enzyme catalyses the following chemical reaction : Release of a C-terminal basic amino acid, preferentially lysine This is a zinc enzyme found in plasma. It inactivates bradykinin and anaphylatoxins.
Each addition of a methyl group on each residue requires a specific set of protein enzymes with various substrates and cofactors. Generally, methylation of an arginine residue requires a complex including protein arginine methyltransferase (PRMT) while lysine requires a specific histone methyltransferase (HMT), usually containing an evolutionarily conserved SET domain. Different degrees of residue methylation can confer different functions, as exemplified in the methylation of the commonly studied H4K20 residue.
The C peptide-A chain junction occurs between residues 64 and 65 of proinsulin. These are lysine and arginine molecules, respectively. The C peptide-B chain connection is between two arginine residues at positions 31 and 32 of proinsulin. There is conservation of much of the structure of proinsulin among mammalian species, with much of the residue changes seen from one species to another present in the C peptide.
However, in mammalian non-hepatic tissues, the main use of the urea cycle is in arginine biosynthesis, so, as an intermediate in metabolic processes, ornithine is quite important.
Arginine is the immediate precursor of NO, an important signaling molecule which can act as a second messenger, as well as an intercellular messenger which regulates vasodilation, and also has functions in the immune system's reaction to infection. Arginine is also a precursor for urea, ornithine, and agmatine; is necessary for the synthesis of creatine; and can also be used for the synthesis of polyamines (mainly through ornithine and to a lesser degree through agmatine, citrulline, and glutamate.) The presence of asymmetric dimethylarginine (ADMA), a close relative, inhibits the nitric oxide reaction; therefore, ADMA is considered a marker for vascular disease, just as L-arginine is considered a sign of a healthy endothelium.
The protein composition is relatively high in glutamic acid and serine residue levels and is relatively low in tryptophan and arginine when compared to the average human protein composition.
LC3 is also enriched in nucleoli via its triple arginine motif, and associates with a number of different nuclear and nucleolar constituents including: MAP1B, tubulin, and several ribosomal proteins.
This conformational rearrangement makes the serpin a more effective inhibitor. The archetypal example of this situation is antithrombin, which circulates in plasma in a partially inserted relatively inactive state. The primary specificity determining residue (the P1 arginine) points toward the body of the serpin and is unavailable to the protease. Upon binding a high-affinity pentasaccharide sequence within long-chain heparin, antithrombin undergoes a conformational change, RCL expulsion, and exposure of the P1 arginine.
Ferroplasma acidiphilum has been shown to grow as a chemomixotroph and to grow synergistically with the acidophilic bacteria Leptospirillum ferriphilum. The strain Ferroplasma acidiphilum YT is a facultative anaerobe with all the required genes for arginine fermentation. Although it is unclear whether Ferroplasma acidiphilum YT uses its arginine fermentation pathway, the pathway itself is an ancient metabolism that traces back to the last universal common ancestor (LUCA) of the three domains of life.
Transition state analogue example 3 Arginase is a binuclear manganese metalloprotein that catalyses the hydrolysis of L-arginine to L-ornithine and urea. It is also regarded as a drug target for the treatment of asthma. The mechanism of hydrolysis of L-arginine is carried out via nucleophilic attack on the guanidino group by water, forming a tetrahedral intermediate. Studies shown that a boronic acid moiety adopts a tetrahedral configuration and serves as an inhibitor.
The active site holds L-arginine in place via hydrogen bonding between the guanidine group with Glu227. This bonding orients L-arginine for nucleophilic attack by the metal- associated hydroxide ion at the guanidine group. This results in a tetrahedral intermediate. The manganese ions act to stabilize both the hydroxyl group in the tetrahedral intermediate, as well as the developing sp3 lone electron pair on the NH2 group as the tetrahedral intermediate is formed.
This domain contains both N-acetyl- glutamine semialdehyde dehydrogenase (AgrC), which is involved in arginine biosynthesis, and aspartate-semialdehyde dehydrogenase, an enzyme involved in the biosynthesis of various amino acids from aspartate. It also contains the yeast and fungal Arg5,6 protein, which is cleaved into the enzymes N-acetyl- gamma-glutamyl-phosphate reductase and acetylglutamate kinase. These are also involved in arginine biosynthesis. All proteins in this entry contain a dimerisation domain of semialdehyde dehydrogenase.
Clostripain (, clostridiopeptidase B, clostridium histolyticum proteinase B, alpha-clostridipain, clostridiopeptidase, Endoproteinase Arg-C) is a proteinase that cleaves proteins on the carboxyl peptide bond of arginine. It was isolated from Clostridium histolyticum. The isoelectric point of the enzyme is 4.8-4.9 (at 8 °C), and optimum pH is 7.4~7.8 (against α-benzoyl- arginine ethyl ester). The composition of the enzyme is indicated to be of two chains of relative molecular mass 45,000 and 12,500.
In the pre- mRNA of GluR-2 the editing site Q/R is found at amino acid position 607. This location is in the pore loop region deep within the ion channel in the proteins membrane segment 2. Editing results in a change from a glutamine(Q) codon to an Arginine (R) codon. Editing at the R/G site, located at amino acid position 764 results in a codon change from arginine to glycine.
This gene encodes a serine/arginine protein kinase specific for the SR (serine/arginine-rich domain) family of splicing factors. The protein localizes to the nucleus and the cytoplasm. It is thought to play a role in regulation of both constitutive and alternative splicing by regulating intracellular localization of splicing factors. A second alternatively spliced transcript variant for this gene has been described, but its full length nature has not been determined.
In molecular biology, group IV pyridoxal-dependent decarboxylases are a family of enzymes comprising ornithine decarboxylase , lysine decarboxylase , arginine decarboxylase and diaminopimelate decarboxylase. It is also known as the Orn/Lys/Arg decarboxylase class-II family. Pyridoxal-5'-phosphate- dependent amino acid decarboxylases can be divided into four groups based on amino acid sequence. Group IV comprises eukaryotic ornithine and lysine decarboxylase and the prokaryotic biosynthetic type of arginine decarboxylase and diaminopimelate decarboxylase.
Although there is no consensus of the catalytic acid that donates the proton to the imine functional group of the arginine product, some mutagenesis studies show serine 283 may be involved.
E. malodoratus does not produce methylcarbinol or hydrolyze arginine. In carbohydrate and raffinose broths, E. malodoratus forms acid. It does not form endospores thus separating it from bacilli and clostridia species.
Enduracididine is a non-proteinogenic α-amino acid that is a cyclic analogue of arginine. It is not genetically encoded into peptide sequences, but rather is generated as a posttranslational modification.
Isoleucine (0.5%) and lysine (1.4%) within C8orf82 were found to occur in lower frequencies compared to other normal human proteins, while proline(9.7%) and arginine (10.6%) had slightly higher occurrence frequencies.
Arginase II is coexpressed with nitric oxide (NO) synthase in smooth muscle tissue, such as the muscle in the genitals of both men and women. The contraction and relaxation of these muscles has been attributed to NO synthase, which causes rapid relaxation of smooth muscle tissue and facilitates engorgement of tissue necessary for normal sexual response. However, since NO synthase and arginase compete for the same substrate (L-arginine), over-expressed arginase can affect NO synthase activity and NO-dependent smooth muscle relaxation by depleting the substrate pool of L-arginine that would otherwise be available to NO synthase. In contrast, inhibiting arginase with ABH or other boronic acid inhibitors will maintain normal cellular levels of arginine, thus allowing for normal muscle relaxation and sexual response.
Delocalization of charge in guanidinium group of -Arginine The amino acid side-chain of arginine consists of a 3-carbon aliphatic straight chain, the distal end of which is capped by a guanidinium group, which has a pKa of 12.48, and is therefore always protonated and positively charged at physiological pH. Because of the conjugation between the double bond and the nitrogen lone pairs, the positive charge is delocalized, enabling the formation of multiple hydrogen bonds.
In addition to the three C-terminal WH2 domains, also the presence of the linker region L2 between the second and third WH2 domain was of importance for Cobl-mediated actin nucleation. Cobl assembles non-bundled, unbranched actin filaments. In contrast to other actin nucleators, which are directly or indirectly via their activators controlled by Rho type GTPases, Cobl hereby is controlled by calcium/calmodulin signalling and by arginine methylation brought about by the arginine methyltransferase 2 PRMT2.
The N-terminal part of the linker has a niche4 structure that is water-bound. In the scorpion toxin BeM9 the side chain of arginine 60 binds the carbonyls of residues 61 and 63 as a niche3. The motif, loss of which alters the specificity of the protein for voltage-gated sodium channels, is named "arginine hand". The slightly unusual dihedral angles for a niche3 are because this niche3 accommodates two separate NH groups from the arginine's guanidino group.
Due to the acidic nature of sialic acid, Siglec active sites contain a conserved arginine residue which is positively charged at physiological pH. This amino acid forms salt bridges with the carboxyl group of the sugar residue. This is best seen in Sialoadhesin, where arginine at position 97 forms salt bridges with the COO− group of the sialic acid, producing a stable interaction. Each lectin domain is specific for the linkage that connects sialic acid to the glycan.
This gene encodes a member of the CDC2-like (or LAMMER) family of dual specificity protein kinases. In the cell nucleus, the encoded protein phosphorylates serine/arginine-rich proteins involved in pre- mRNA processing, releasing them into the nucleoplasm. The choice of splice sites during pre-mRNA processing may be regulated by the concentration of transacting factors, including serine/arginine-rich proteins. Therefore, the encoded protein may play an indirect role in governing splice site selection.
A ureohydrolase is a type of hydrolase enzyme. The ureohydrolase superfamily includes arginase (), agmatinase (), formiminoglutamase () and proclavaminate amidinohydrolase (). These enzymes share a 3-layer alpha-beta-alpha structure, and play important roles in arginine/agmatine metabolism, the urea cycle, histidine degradation, and other pathways. Arginase, which catalyses the conversion of arginine to urea and ornithine, is one of the five members of the urea cycle enzymes that convert ammonia to urea as the principal product of nitrogen excretion.
Glycocyamine is formed in the mammalian organism primarily in the kidneys by transferring the guanidine group of L-arginine by the enzyme L-Arg:Gly-amidinotransferase (AGAT) to the amino acid glycine. From L-arginine, ornithine is thus produced, which is metabolized in the urea cycle by carbamoylation to citrulline. Glycocyamine Biosynthesis pathway In a further step, glycocyamine is methylated to creatine with S-adenosyl methionine by the enzyme guanidinoacetate N-methyltransferase (GAMT). The creatine is released into the bloodstream.
However, arginine's being a large, charged amino acid is a disadvantage to the Biofusion assembly technique: these properties of arginine result in the destabilisation of the protein by the N-end rule.
Metacaspases are members of the C14 class of cysteine proteases and thus related to caspases, orthocaspases and paracaspases. The metacaspases are arginine/lysine-specific, in contrast to caspases, which are aspartate- specific.
M. orale has been found to inhibit host cell growth by outcompeting the host cell for arginine. It is important to prevent contamination of Mycoplasma for reliable and accurate laboratory research results.
The necessity for this ligand also connects the high concentration of nitrogen, reflected in excess of glutamate and arginine to produce NAG, to an increase in CPSI activity to clear this excess.
This is the more common process of insulin resistance, which leads to adult-onset diabetes. Another example can be seen in diabetes insipidus, in which the kidneys become insensitive to arginine vasopressin.
This enzyme participates in 4 metabolic pathways: glycine, serine and threonine metabolism, cysteine metabolism, D-glutamine and D-glutamate metabolism, and D-arginine and D-ornithine metabolism. It employs one cofactor, pyridoxal phosphate.
Katsanis et al. showed that a homozygous alteration from Arginine to Glutamine amino acid expression, at the 150 position on RLBP1, brings about the onset of retinitis punctata albescens and or fundus albipunctatus.
The Indian blood group system (In) is a classification of blood based on the presence or absence of inherited antigens that reside within the CD44 molecule that is expressed on the surface of blood cells. It is named so because 4% of the population in India possess it. Most individuals express the Inb antigen that results from an arginine residue at position 46 of CD44 . The Ina blood type results from a substitution proline for arginine at this same position.
Heme arginate (or haem arginate) is a compound of heme and arginine used in the treatment of acute porphyrias. This heme product is only available outside the United States and is equivalent to hematin. Heme arginate is a heme compound, whereby L-arginine is added to prevent rapid degradation. It is given intravenously, and its action of mechanism is to reduce the overproduction of δ-aminolevulinic acid, which can cause the acute symptoms in an attack of the acute porphyrias.
Similar arginine residues in enzyme homologues (Arg370, Arg390) play analogous roles. Other homologues, such as in Sphingobacterium multivorum, feature the carboxy moiety bound to serine and methionine residues via water in place of arginine. Certain enzyme homologues, such as in S. multivorum as well as B. stolpii, are found to be associated with the inner cell membrane, thus resembling the eukaryotic enzymes. The B. stolpii homologue also features substrate inhibition by palmitoyl-CoA, a feature shared by the yeast and mammalian homologues.
Cyanophycin synthase (L-aspartate-adding) (, CphA, CphA1, CphA2, cyanophycin synthetase, multi-L-arginyl-poly-L-aspartate synthase) is an enzyme with systematic name cyanophycin:L-aspartate ligase (ADP-forming). This enzyme catalyses the following chemical reaction : ATP + [L-Asp(4-L-Arg)]n + L-Asp \rightleftharpoons ADP + phosphate + [L-Asp(4-L-Arg)]n-L-Asp This enzyme requires Mg2+ for activity. All enzymes known to have this activity also catalyze the addition of arginine, i.e. cyanophycin synthase (L-arginine- adding) activity.
Cyanophycin synthase (L-arginine-adding) (, CphA, CphA1, CphA2, cyanophycin synthetase, multi-L-arginyl-poly-L-aspartate synthase) is an enzyme with systematic name cyanophycin:L-arginine ligase (ADP-forming). This enzyme catalyses the following chemical reaction: : ATP + [L-Asp(4-L-Arg)]n-L-Asp + L-Arg \rightleftharpoons ADP + phosphate + [L-Asp(4-L-Arg)]n+1 This enzyme requires Mg2+ for activity. This enzyme requires Mg2+ for activity. All enzymes known to have this activity also catalyze the addition of aspartate, i.e.
Phenypressin (Phe2-Arg8-vasopressin) is an oxytocin neuropeptide belonging to the vertebrae vasopressin family and has similar pharmacological properties as arginine vasopressin. The name phenypressin came about because there is a substitution of phenylalanine that makes it different from arginine vasopressin in the second residue and that is the only difference. It belongs to the family, neurohypophysial hormones, named after the fact that they are secreted by the neurohypophysis (i.e. posterior pituitary gland) which is a neural projection from the hypothalamus.
This neurohypophysial hormone was identified and characterized by scientists through amino acid composition, ion-exchange chromatography, and high pressure liquid chromatography. Phenypressin differs from the common hormone, arginine vasopressin, because it has two phenylalanines and no tyrosine. A close look needs to be made in order to see the difference between arginine vasopressin and phenypressin because they have the same positions on the Amberlite CG-50 chromatograms and on paper chromato-electrophoresis. The differences in amino acids can be seen at residue 7.
For example, while there are only two functional Tat proteins in Bacillus subtilis, there can be over a hundred in Streptomyces coelicolor. Signal peptides that can recognise the Tat proteins are characterised by a consensus motif Ser/Thr-Arg-Arg-X-Phe-Leu-Lys (where X can be any polar amino acid). It is the two successive arginines from which the name twin arginine translocation came from. Replacement of any of the arginine leads to slow down or failure of secretion.
In enzymology, a scyllo-inosamine-4-phosphate amidinotransferase () is an enzyme that catalyzes the chemical reaction :L-arginine + 1-amino-1-deoxy- scyllo-inositol 4-phosphate \rightleftharpoons L-ornithine + 1-guanidino-1-deoxy-scyllo-inositol 4-phosphate Thus, the two substrates of this enzyme are L-arginine and 1-amino-1-deoxy-scyllo-inositol 4-phosphate, whereas its two products are L-ornithine and 1-guanidino-1-deoxy-scyllo- inositol 4-phosphate. This enzyme belongs to the family of transferases that transfer one-carbon groups, specifically the amidinotransferases. The systematic name of this enzyme class is L-arginine:1-amino-1-deoxy-scyllo- inositol-4-phosphate amidinotransferase. Other names in common use include L-arginine:inosamine-P-amidinotransferase, inosamine-P amidinotransferase, L-arginine:inosamine phosphate amidinotransferase, and inosamine-phosphate amidinotransferase.
She suggested that histones were a mixture of basic components such as lysine and arginine. Histones have since been shown to be important in gene expression. Daly's work on histones is now considered fundamental.
MT-TR is a small 65 nucleotide RNA (human mitochondrial map position 10405-10469) that transfers the amino acid arginine to a growing polypeptide chain at the ribosome site of protein synthesis during translation.
Another less common mutation is a G→C conversion resulting in one amino acid mutation in 696, where Proline substitutes normal Arginine. The decreased amount of functional IKAP protein in cells causes familial dysautonomia.
Trypsin () is a serine protease that cleaves protein substrates after lysine or arginine residues using a catalytic triad to perform covalent catalysis, and an oxyanion hole to stabilise charge-buildup on the transition states.
Monocercomonoides are able to get some energy from glucose using anaerobic metabolic pathways that operate in the cytoplasm, however, most of its energy is obtained using enzymes that break down the amino acid arginine.
Carboxypeptidase M (, CPM) is an enzyme. This enzyme catalyses the following chemical reaction : Cleavage of C-terminal arginine or lysine residues from polypeptides This is a membrane-bound enzyme optimally active at neutral pH.
Transformer-2 protein homolog beta, also known as TRA2B previously known as splicing factor, arginine/serine-rich 10 (transformer 2 homolog, Drosophila) (SFRS10), is a protein that in humans is encoded by the TRA2B gene.
Citrulline Arginine Anti-citrullinated protein antibodies (ACPAs) are autoantibodies (antibodies to an individual's own proteins) that are directed against peptides and proteins that are citrullinated. They are present in the majority of patients with rheumatoid arthritis. Clinically, cyclic citrullinated peptides (CCP) are frequently used to detect these antibodies in patient serum or plasma (then referred to as anti–citrullinated peptide antibodies). During inflammation, arginine amino acid residues can be enzymatically converted into citrulline residues in proteins such as vimentin, by a process called citrullination.
Insulin glargine differs from human insulin by replacing asparagine with glycine in position 21 of the A-chain and by carboxy-terminal extension of B-chain by 2 arginine residues. The arginine amino acids shift the isoelectric point from a pH of 5.4 to 6.7, making the molecule more soluble at an acidic pH and less soluble at physiological pH. The isoelectric shift also allows for the subcutaneous injection of a clear solution. The glycine substitution prevents deamidation of the acid-sensitive asparagine at acidic pH.
S. salivarius group organisms are positive for acetoin production and are esculin positive but are negative for arginine hydrolysis and fermentation of mannitol and sorbitol. S. mutans group Members of the S. mutans group are primarily isolated from the human oral cavity and includes several species that are phenotypically similar. S. mutans and S. sobrinus are the species within this group most commonly isolated from human infection. They do not hydrolyze arginine but are positive for acetoin production, esculin hydrolysis, and mannitol and sorbitol fermentation.
The highly conserved Rho- GAP domain (amino acids 639-847) functions to enhance the GTPase activity of the Rho-GTPase proteins RhoA and Cdc42, promoting the hydrolysis of their bound GTP to GDP and thus “shutting off” these proteins. DLC1 contains a conserved “arginine finger” arginine residue at position 677, which is located within the active site of the protein and is essential for catalyzation of the GTP hydrolysis. Rho-GTPases are involved in regulating cell morphology (through cytoskeletal organization) and migration (through focal adhesion formation).
The presence of octamer arginine residues allows cell membrane transduction of various cargo molecules including peptides, DNA, siRNA, and contrast agents. However, the ability of cross membrane is not unidirectional; arginine-based CPPs are able to enter-exit the cell membrane, displaying an overall decreasing concentration of contrast agent and a decrease of magnetic resonance (MR) signal in time. This limits their application in vivo. To solve this problem, contrast agents with disulfide, reversible bond between metal chelate and transduction moiety enhance the cell-associated retention.
Enzymes called peptidylarginine deiminases (PADs) hydrolyze the imine group of arginines and attach a keto group, so that there is one less positive charge on the amino acid residue. This process has been involved in the activation of gene expression by making the modified histones less tightly bound to DNA and thus making the chromatin more accessible. PADs can also produce the opposite effect by removing or inhibiting mono-methylation of arginine residues on histones and thus antagonizing the positive effect arginine methylation has on transcriptional activity.
Within subunit a, arginine residues serve to stabilize the deprotonated form of glutamic acid and allow the release of their protons. This rotation and proton transfer brings the protons through the pump and across the membrane.
Arginine decarboxylase is part of an enzymatic system in Escherichia coli (E. coli), Salmonella Typhimurium, and methane-producing bacteria Methanococcus jannaschii; that makes these organisms acid resistant and allows them to survive under highly acidic medium.
According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), Rathayibacter toxicus strain WAC3373 is capable of performing glycolysis, citric acid cycle (TCA), arginine biosynthesis, amino acid metabolism, carbohydrate metabolism, and various bacterial DNA repair mechanisms.
A good example of folding enhancement by periplasmic expression is the disulfide bond-containing plasminogen activator variant (rPA). Folding of rPA is shown to increase when folding enhancers or arginine is added to the culture medium.
There is only one variant of C11orf52 RNA. The mRNA sequence is 1,140 base pairs long. There is an upstream stop codon located at nucleotides 65 – 67. The 23rd amino acid varies between threonine and arginine.
In 1982 and 1984, the researchers published on using benzoate and arginine for urea cycle disorders in the NEJM. Use of sodium phenylbutyrate was introduced in the early 1990s, as it lacks the odor of phenylacetate.
It is active on peptide linkages involving the carboxyl group of lysine or arginine. The protein is implicated in epithelial sodium channel regulation and may help regulate a variety of tissue functions that involve a sodium channel.
To reduce the levels of ornithine in the blood, a diet restricted in arginine has been used. Some research has shown that when diet or other treatment is initiated early in life, the outcome can be improved.
The few that have been characterized transport Cystine (TC# 2.A.43.1.1), basic amino acids such as L-lysine and L-arginine (TC# 2.A.43.2.1) and drugs such as fluconazole and caspofungin (TC# 2.A.43.2.7).
Toxin phaseolotoxin is produced, which acts as an irreversible inhibitor of ornithine carbamyltransferase (OTC), an essential enzyme involved in the conversion from ornithine to arginine, an amino acid which is utilized in the biosynthesis of proteins in plants. With presence of 30 pmol phaseolotoxin, it is able to reduce OCT activity to less than 20% of the one of unaffected OCT within, leading to arginine starvation and subsequently prohibiting protein synthesis. As a result, disease symptoms appear within 2 days, where chlorotic lesions appear as yellow halos surrounding black necrotic spots on the infected plants.
Both liquid chromatography and liquid chromatography/mass spectrometric assays have found that brain tissue of deceased schizophrenics shows altered arginine metabolism. Assays also confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between L-ornithine level and the duration of illness. Moreover, cluster analyses revealed that L-arginine and its main metabolites L-citrulline, L-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group.
The protein FFA1 is activated by medium to long chain fatty acids. FFA1 is most strongly activated by eicosatrienoic acid (20:3Δ11,14,17), but has been found to be activated by fatty acids as small as 10 carbons long. For saturated fatty acids the level of activation is dependent on the length of the carbon chain, which is not true for unsaturated fatty acids. It has been found that three hydrophilic residues (arginine-183, asparagine-244, and arginine-258) anchor the carboxylate group of a fatty acid, which activates FFA1.
The enzyme requires a two-molecule metal cluster of manganese in order to maintain proper function. These Mn2+ ions coordinate with water, orienting and stabilizing the molecule and allowing water to act as a nucleophile and attack L-arginine, hydrolyzing it into ornithine and urea. In most mammals, two isozymes of this enzyme exist; the first, Arginase I, functions in the urea cycle, and is located primarily in the cytoplasm of hepatocytes (liver cells). The second isozyme, Arginase II, has been implicated in the regulation of intracellular arginine/ornithine levels.
The intermediates of the biosynthesis of clavulanic acid Clavulanic acid is biosynthesized from the amino acid arginine and the sugar glyceraldehyde 3-phosphate. With the β-lactam like structure, clavulanic acid looks structurally similar to penicillin, but the biosynthesis of this molecule involves a different pathway and set of enzymes. Clavulanic acid is biosynthesized by the bacterium Streptomyces clavuligerus, using glyceraldehyde-3-phosphate and L-arginine as the starting materials of the pathway. Although all of the intermediates of the pathway are known, the exact mechanism of each enzymatic reaction is not fully understood.
Beside their lack of overall sequence and structure similarity, class I and class II synthetases feature different ATP recognition mechanisms. While class I binds via interactions mediated by backbone hydrogen bonds, class II uses a pair of arginine residues to establish salt bridges to its ATP ligand. This oppositional implementation is manifested in two structural motifs, the Backbone Brackets and Arginine Tweezers, which are observable in all class I and class II structures, respectively. The high structural conservation of these motifs suggest that they must have been present since ancient times.
Different types made up of 14 and 13 amino acids have been isolated and they each share a common C-terminal sequence. These N-terminally truncated peptides are known as the kisspeptins and belong to a larger family of peptides known as RFamides which all share a common arginine-phenylalanine- NH2 motif at their C-terminus. Among these conserved amino acids are arginine and phenylalanine residues, which are paired in this family of peptides. Also within this conserved family is a C-terminus that has an amide added to it.
Northern epilepsy syndrome is caused by an inherited autosomal recessive mutation in the telomeric region of the short arm of chromosome 8. There are at least ten mutations within the chromosome that cause the disease, and the most common missense mutation occurs at codon 24, where a glycine takes the place of an arginine. This primary mutation can also be paired with a missense at codon 237, where an arginine takes the place of a glycine. When the two mutations interact, a lengthened progression of the disease is observed.
Sanofi-Aventis developed glargine as a longer-lasting insulin analogue, and markets it under the trade name Lantus. It was created by modifying three amino acids. Two positively charged arginine molecules were added to the C-terminus of the B-chain, and they shift the isoelectric point from 5.4 to 6.7, making glargine more soluble at a slightly acidic pH and less soluble at a physiological pH. Replacing the acid-sensitive asparagine at position 21 in the A-chain by glycine is needed to avoid deamination and dimerization of the arginine residue.
Protein phosphorylation is considered the most abundant post-translational modification in eukaryotes. Phosphorylation can occur on serine, threonine and tyrosine side chains (often called 'residues') through phosphoester bond formation, on histidine, lysine and arginine through phosphoramidate bonds, and on aspartic acid and glutamic acid through mixed anhydride linkages. Recent evidence confirms widespread histidine phosphorylation at both the 1 and 3 N-atoms of the imidazole ring. Recent work demonstrates widespread human protein phosphorylation on multiple non-canonical amino acids, including motifs containing phosphorylated histidine, aspartate, glutamate, cysteine, arginine and lysine in HeLa cell extracts.
The protein encoded by this gene is a member of the serine/arginine (SR)-rich family of pre-mRNA splicing factors, which constitute part of the spliceosome. Each of these factors contains an RNA recognition motif (RRM) for binding RNA and an RS domain for binding other proteins. The RS domain is rich in serine and arginine residues and facilitates interaction between different SR splicing factors. In addition to being critical for mRNA splicing, the SR proteins have also been shown to be involved in mRNA export from the nucleus and in translation.
LUC7 like 3 pre-mRNA splicing factor (LUC7L3), also known as Cisplatin resistance-associated overexpressed protein, or CROP, is a human gene. This gene encodes a cisplatin resistance-associated overexpressed protein (CROP). The N-terminal half of the CROP contains cysteine/histidine motifs and leucine zipper-like repeats, and the C-terminal half is rich in arginine and glutamate residues (RE domain) and arginine and serine residues (RS domain). This protein localizes with a speckled pattern in the nucleus, and could be involved in the formation of splicesome via the RE and RS domains.
Semapimod was first developed to inhibit nitric oxide synthesis by inflammatory macrophages, via inhibition of the uptake of arginine which macrophages require for nitric oxide synthesis. Subsequently, it was found that suppression of nitric oxide synthesis occurred even at semapimod concentrations 10-fold less than required for inhibition of arginine uptake, suggesting that this molecule was a more general inhibitor of inflammatory responses. Further work revealed that semapimod suppressed the translation efficiency of tumor necrosis factor production. Specifically, semapimod was found to be an inhibitor of p38 MAP kinase activation.
There are two known isoforms, one having an arginine residue at the 192 position and the other a glutamine, which are associated with high and low enzymatic activity respectively.Manzo, Luigi. "Organophosphates." Occupational Neurotoxicology. By Lucio G. Costa. N.p.
LOC23366 contains a protein domain of unknown function called DUF1704. It also contains a region of low complexity from position 120 to position 150 in the protein, and an arginine-rich area from position 12 to position 51.
A zinc gluconate-based product, also containing arginine, is used as a veterinary chemical castration drug. For dogs, the product is injected directly into the testicles. It has been sold under various brand names, including Neutersol and Esterilsol.
Opioids also may act on the gut indirectly through tonic gut spasms after inhibition of nitric oxide generation. This effect was shown in animals when a nitric oxide precursor, L-arginine, reversed morphine-induced changes in gut motility.
People suffering from Bothnia dystrophy have a homozygous C to T base pair substitution in exon 7 of the RLBP1 gene. This leads to a missense mutation from Arginine to Tryptophan at the 234 position of the RLBP1.
In humans, these enzymes regulate gene expression and hence are involved in pathogenesis of many human diseases. Using enzyme inhibitors for arginine methyltransferase 1, studies were able to demonstrate the enzyme's potential as an early catalyst of various cancers.
In cases of chronic arsenic exposure, the nitric oxide levels are depleted, due to the superoxide reactions. The enzyme NO synthase (NOS) uses L-arginine to form nitric oxide, but this enzyme is inhibited by monomethylated arsenic (III) compounds.
Mi- VII is due to a double mutation in glycophorin A converting an arginine residue into a threonine residue and a tyrosine residue into a serine at the positions 49 and 52 respectively. The threonine-49 residue is glycosylated.
Structures of these WW domain complexes confirmed molecular details of phosphorylation- regulated interactions. There are also WW domains that interact with polyprolines that are flanked by arginine residues or interrupted by leucine residues, but they do not contain aromatic amino acids.
The arginine-rich domain of Rev interacts with the rev-binding element (RBE), which is part of the HIV Rev response element (RRE) located in an intron downstream of the env gene. The domain also contains a nuclear localization signal.
In molecular biology, members of the ArgJ protein family are bifunctional protein that catalyses the first () and fifth steps () in arginine biosynthesis. The structure has been determined for glutamate N-acetyltransferase 2 (ornithine acetyltransferase), an ArgJ-like protein from Streptomyces clavuligerus.
Multiple sites of proteins can be methylated. For some types of methylation, such as N-terminal methylation and prenylcysteine methylation, additional processing is required, whereas other types of methylation such as arginine methylation and lysine methylation do not require pre-processing.
TCF21 is a member of the bHLH (basic helix-loop-helix) family of transcription factors. This protein is predicted to span 179 amino acid residues and contains a bHLH domain and an arginine-rich sequence that may facilitate DNA binding.
Dicarboxylic aminoaciduria is the result of a point mutation of tryptophan to arginine at position 445 and a deletion mutation of isoleucine at position 395. EAAT3 is found in location 9p24, it is primarily expressed in the brain and kidneys.
Desmoplakin has two isoforms that differ in the length of their middle rod domain. All desmoplakins have an N-terminal head, a C-tail consisting of three plakin repeats, and a glycine-serine-arginine rich domain (GSR) at the C-end.
In adult microbiomes, a high prevalence of enzymes involved in fermentation, methanogenesis and the metabolism of arginine, glutamate, aspartate and lysine have been found. In contrast, in infant microbiomes the dominant enzymes are involved in cysteine metabolism and fermentation pathways.
In the kidney, AVPR2's primary property is to respond to arginine vasopressin by stimulating mechanisms that concentrate the urine and maintain water homeostasis in the organism. When the function of AVPR2 is lost, the disease nephrogenic diabetes insipidus (NDI) results.
Trypsin-like proteases cleave peptide bonds following a positively charged amino acid (lysine or arginine). This specificity is driven by the residue which lies at the base of the enzyme's S1 pocket (generally a negatively charged aspartic acid or glutamic acid).
Various treatments have been discovered in order to aid those with spermatogenesis arrest, one of these being through the use of arginine. A study done by Jungling and Bunge in 1976 had a small breakthrough in the field by orally distributing arginine, daily to a group of infertile men. Of the eighteen men in the test group only one experienced an increase in sperm count, while others saw no improvement; these men also experienced a decreased sperm motility. However, one of the patients in the group successfully impregnated his wife while taking part in the study.
PAR1 is activated when the terminal 41 amino acids of its N-terminus are cleaved by thrombin, a serine protease. Thrombin recognizes PAR1 by a Lysine-Aspartate-Proline-Arginine-Serine sequence at the N-terminal, where it cuts the peptide bond between Arginine-41 and Serine-42. The affinity of thrombin to this specific cleavage site in PAR1 is further aided by secondary interactions between thrombin's exosite and an acidic region of amino acid residues located C-terminal to Ser-42. This proteolytic cleavage is irreversible and the loose peptide, often referred to as parstatin, is then released outside of the cell.
7-Nitroindazole, or 7-NI, is a heterocyclic small molecule containing an indazole ring that has been nitrated at the 7 position. Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, a hemoprotein enzyme that, in neuronal tissue, converts arginine to citrulline and nitric oxide (NO). Nitric oxide can diffuse through the plasma membrane into neighbouring cells, allowing cell signalling, so nitroindazole indirectly inhibits this signalling process. Other inhibitors exist such as 3-bromo-7-nitroindazole, which is more potent but less specific, or NPA (N-propyl-L-arginine), which acts on a different site.
In the center of the complex is the zero ionic layer composed of one arginine (R) and three glutamine (Q) residues, and it is flanked by leucine zippering. Layers '-1', '+1' and '+2' at the centre of the complex most closely follow ideal leucine-zipper geometry and aminoacid composition. The zero ionic layer is composed of R56 from VAMP-2, Q226 from syntaxin-1A, Q53 from Sn1 and Q174 from Sn2, and is completely buried within the leucine- zipper layers. The positively charged guanidino group of the arginine (R) residue interact with the carboxyl groups of each of the three glutamine (Q) residues.
In this context, a sodium ion (Na+) will prefer a carboxylate, and a potassium ion (K+) will prefer a sulfonate, which has important partitioning effects in biological systems. Protein solubility depends on pH and salt concentration, where small changes in the local environment can lead to Hofmeister series reversals. In aqueous solutions of glycans, lyotropic ion-pairing effects often dominate molecular interactions by controlling salt-bridge binding. Modern computational approaches in salt- bridge formation in proteins demonstrate mechanisms underlying the favorable arginine-arginine pairing that is due to reduction in electrostatic repulsion due to pi-stacking interactions.
The mechanism of malate synthase is a combination of a Claisen-Schmidt condensation and a hydrolysis of an acyl-CoA. Initially, the aspartic acid 631 acts as a catalytic base, abstracting a proton from the alpha carbon of acetyl-CoA and creating an enolate that is stabilized by Arginine 338. This is considered to be the rate-determining step of the mechanism. Then, the newly formed enolate acts as a nucleophile that attacks the aldehyde of the glyoxylate molecule, imparting a negative charge on the oxygen which is stabilized by the Arginine 338 and the coordinating magnesium cation.
Domain A1 (approximately 22kDa in cholera toxin or heat labile enterotoxins) is the part of the toxin responsible for its toxic effects. Domain A2 (approximately 5kDa in cholera toxin or heat labile enterotoxin) provides a non-covalent linkage to the B subunit through the B subunit's central pore. The A1 chain for cholera toxin catalyzes the transfer of ADP-ribose from Nicotinamide adenine dinucleotide(NAD) to arginine or other guanidine compounds by utilizing ADP- ribosylation factors (ARFs). In the absence of arginine or simple guanidino compounds, the toxin mediated NAD+ nucleosidase (NADase) activity proceeds using water as a nucleophile.
Of the basic set of twenty amino acids (not counting selenocysteine), humans cannot synthesize eight. In addition, the amino acids arginine, cysteine, glycine, glutamine, histidine, proline, serine, and tyrosine are considered conditionally essential, meaning they are not normally required in the diet but must be supplied exogenously to specific populations that do not synthesize it in adequate amounts. For example, enough arginine is synthesized by the urea cycle to meet the needs of an adult but perhaps not those of a growing child. Amino acids that must be obtained from the diet are called essential amino acids.
The second AT-hook of HMGA1 (black ribbon) bound to the minor-groove of AT- rich DNA. The amino-acid side chains and nucleotides have been hidden. The AT- hook is a DNA-binding motif present in many proteins, including the high mobility group (HMG) proteins, DNA-binding proteins from plants and hBRG1 protein, a central ATPase of the human switching/sucrose non-fermenting (SWI/SNF) remodeling complex. This motif consists of a conserved, palindromic, core sequence of proline-arginine-glycine-arginine-proline, although some AT- hooks contain only a single proline in the core sequence.
Two major hormones have been identified to be involved in amplexus. The hormone arginine vasotocin (AVT) has been identified as having an effect on the calling behaviours produced by these male amphibians when searching for a female mate, as AVT increased the amount of calling behaviour produced in male amphibians. Additionally, it is believed that the gonadotropin-releasing hormone (GnRH) has an influence on amplexus in amphibians, as it has been found to produce or initiate this behaviour in many anuran amphibians. Furthermore, both arginine vasotocin and gonadotropin-releasing hormone have been found to be involved in the sexual behaviour of male amphibians.
In a very energy-intensive process, nitrogenase is first synthesized and then takes N2 from the air, combining it with protons and electrons to produce ammonia and hydrogen gas. The organisms also store cyanophycin, a nitrogen-reserve molecule which is a polymer of arginine and asparagine, for use by the organism during the day. Different Cyanothece species metabolize nitrogen- containing compounds through a variety of pathways; all have an arginine decarboxylase, but vary after that point. To provide the anoxic environment needed by nitrogenase, Cyanothece boosts its respiration as night begins by using its glycogen stores while turning off photosynthesis.
Studies of these sites have found that methylation of histone tails at different residues serve as markers for the recruitment of various proteins or protein complexes that serve to regulate chromatin activation or inactivation. Lysine and arginine residues both contain amino groups, which confer basic and hydrophobic characteristics. Lysine is able to be mono-, di-, or trimethylated with a methyl group replacing each hydrogen of its NH3+ group. With a free NH2 and NH2+ group, arginine is able to be mono- or dimethylated. This dimethylation can occur asymmetrically on the NH2 group or symmetrically with one methylation on each group.
Copeptin (also known as CT-proAVP) is a 39-amino acid-long peptide derived from the C-terminus of pre-pro-hormone of arginine vasopressin, and copeptin. Arginine vasopressin (AVP), also known as the antidiuretic hormone (ADH), is involved in multiple cardiovascular and renal pathways and abnormal level of AVP are associated with various diseases. Hence measurement of AVP would be useful, but is not commonly carried out in clinical practice because of its very short half-life making it difficult to quantify. In contrast, copeptin can be immunologically tested with ease and therefore can be used as a vasopressin surrogate marker.
Long arginine 3-IGF-1, abbreviated as IGF-1 LR3 or LR3-IGF-1, is a synthetic protein and lengthened analogue of human insulin-like growth factor 1 (IGF-1). It differs from native IGF-1 in that it possesses an arginine instead of a glutamic acid at the third position in its amino acid sequence ("arginine 3"), and also has an additional 13 amino acids at its N-terminus (MFPAMPLLSLFVN) ("long"), for a total of 83 amino acids (relative to the 70 of IGF-1). The consequences of these modifications are that IGF-1 LR3 retains the pharmacological activity of IGF-1 as an agonist of the IGF-1 receptor, has very low affinity for the insulin-like growth factor-binding proteins (IGFBPs), and has improved metabolic stability. As a result, it is approximately three times more potent than IGF-1, and possesses a significantly longer half-life of about 20–30 hours (relative to IGF-1's half- life of about 12–15 hours).
This scar sequence results in a much more stable protein as the glycine forms a stable N-terminal, unlike the arginine, which signals for N-terminal degradation. The assembly technique proposed by the Freiburg team diminishes the limitations of the Biofusion standard.
Arginine plays an important role in cell division, wound healing, removing ammonia from the body, immune function, and the release of hormones. It is a precursor for the synthesis of nitric oxide (NO), making it important in the regulation of blood pressure.
The basic region of HIV-Tat protein is suggested to form an alpha helix. The basic region is involved in RNA (TAR, trans-activation response element) binding and Tat proteins thus belong to the family of arginine-rich motif (ARM) RNA binding proteins.
DNA sequence data is incomplete for M. hominis. M. hominis uses an atypical type of energy metabolism, dependent upon the degradation of arginine. Other mycoplasmas lack this characteristic. Determining the genome will provide information that would facilitate the understanding of metabolic reconstitutions.
8 beta forms exist: alanine, leucine, lysine, arginine, glutamate, glutamine, phenylalanine, tyrosine forms.Enantioselective Synthesis of Beta-Amino Acids Sec 2.2, Eusebio Juaristi, Vadim A. Soloshonok Aspartic acid is regarded as both beta and alpha forms, although the beta form is found in microcystins.
C2orf16 has a predicted molecular weight of 224kD and a predicted isoelectric point of 10.08, values that are relatively constant between orthologs. The protein includes higher than average composition of serine, histidine, and arginine and a lower than average composition of alanine.
A second hypothesis involves the methylation of genes in vascular cells by folic acid and vitamin B12, which may also accelerate plaque growth. Finally, altered methylation may catalyse l-arginine to asymmetric dimethylarginine, which is known to increase the risk of vascular disease.
At this step, the chirality of the amino acid is established. Alanine and aspartate are synthesized by the transamination of pyruvate and oxaloacetate, respectively. Glutamine is synthesized from NH4+ and glutamate, and asparagine is synthesized similarly. Proline and arginine are derived from glutamate.
Carbon dioxide can bind to amino groups, creating carbamino compounds. Amino groups are available for binding at the N-terminals and at side-chains of arginine and lysine residues in hemoglobin. This forms carbaminohemoglobin. Carbaminohemoglobin is the major contributor to the Haldane effect.
Researchers at the System Biology Initiative have been identifying techniques to identify novel methylated lysine and arginine residues via mass spectrometry and peptide mass fingerprinting. Currently researchers are in the process of utilising these techniques to identify novel methylated residues in the Saccharomyces cerevisiae interactome.
Glutamate-5-semialdehyde is a non-proteinogenic amino acid involved in the biosynthesis of proline and arginine (via ornithine), as well as in the biosynthesis of antibiotics, such as carbapenems. It is synthesized by the reduction of glutamyl-5-phosphate by glutamate-5-semialdehyde dehydrogenase.
FHV-1 also suppresses healing of the cornea. Symptoms include conjunctivitis, squinting, eye discharge, and blood vessels on the cornea. It can cause severe scarring. Treatment is with topical antiviral drugs and antibiotics, and oral L-lysine, which competes with arginine and inhibits viral replication.
S. humi reduces nitrogen. It is capable of hydrolyzing tween 20, arginine, and urea. It is oxidase positive, meaning that it produces cytochrome c oxidases. It is catalase negative, suggesting that it is incapable of forming catalase, and is therefore incapable of neutralizing hydrogen peroxide.
SOGA2 is rich in glycine (ratio r of SOGA2 composition to average human protein is 1.723), glutamate (r = 1.647), and arginine (r = 1.357). It also has a lower than usual composition of tyrosine (r = 0.3406), isoleucine (r = 0.4430), phenylalanine (r = 0.5808), and valine (r = 0.6161).
Protegrin-4 substitutes a phenylalanine for a valine at position 14 and sequences are different in the β-turn. This difference makes protegrin-4 less polar than others and less positively charged. Protegrin-5 substitutes a proline for an arginine with one less positive charge.
Point mutations in the genes that encode arginine vasopressin and or its carrier protein neurophysin II underlie most cases of the familial, autosomal dominant disorder neurohypophyseal diabetes insipidus. (also called hereditary hypothalamic diabetes insipidus). This condition results from insufficient ADH release into systemic circulation.
For example, FBW7, the F-box substrate recognition unit of an SCFFBW7ubiquitin ligase, stabilizes a phosphorylated substrate by hydrogen binding its arginine residues to the phosphate, as shown in the figure to the right. In absence of the phosphate, residues of FBW7 repel the substrate.
Histones are composed of mostly positively charged amino acid residues such as lysine and arginine. The positive charges allow them to closely associate with the negatively charged DNA through electrostatic interactions. Neutralizing the charges in the DNA allows it to become more tightly packed.
C1orf198 has the highest composition of serine, glutamic acid, proline, alanine, and arginine; It has the lowest composition of histidine. Relative to the average human protein, C1orf198 is serine-rich, proline-rich, and tyrosine-poor.B. Rost, J. Liu, The PredictProtein server. Nucleic Acids Res.
Nopaline is a chemical compound derived from the amino acids glutamic acid and arginine. It is classified as an opine. Ti plasmids are classified on the basis of the different types of opines they produce. These may be nopaline plasmids, octopine plasmids and agropine plasmids.
Argpyrimidine is an organic compound with the chemical formula C11H18N4O3. It is an advanced glycation end-product formed from arginine and methylglyoxal through the Maillard reaction. Argpyrimidine has been studied for its food chemistry purposes and its potential involvement in aging diseases and Diabetes Mellius.
Lumenal proteins are exported across the thylakoid membrane into the lumen by either the Tat-dependent pathway (2) or the Sec-dependent pathway (3) and released by cleavage from the thylakoid targeting signal. The different pathways utilize different signals and energy sources. The Sec (secretory) pathway requires ATP as energy source and consists of SecA, which binds to the imported protein and a Sec membrane complex to shuttle the protein across. Proteins with a twin arginine motif in their thylakoid signal peptide are shuttled through the Tat (twin arginine translocation) pathway, which requires a membrane-bound Tat complex and the pH gradient as an energy source.
Arginine decarboxylase is one of the main components of arginine-dependent acid resistance (AR3) that allows E. coli to survive long enough in the highly acidic environment of the stomach to pass through the digestive tract and infect a human host. The enzyme consumes a cytoplasmic proton in the decarboxylation reaction, preventing the pH of the cell from becoming too acidic. The activity of the enzyme is dependent upon the surrounding pH. At more basic cellular pH levels, the enzyme exists in an inactive homodimer form, as electrostatic repulsion between negatively-charged acidic residues in the wing domains prevent homodimers from assembling into the catalytically active decamer.
Halocins are classified as either peptide (≤ 10 kDa; 'microhalocins') or protein (> 10 kDa) antibiotics produced by members of the archaeal family Halobacteriaceae. To date, all of the known halocin genes are encoded on megaplasmids (> 100 kbp) and possess typical haloarcheal TATA and BRE promoter regions. Halocin transcripts are leaderless and the translated preproteins or preproproteins are most likely exported using the twin arginine translocation (Tat) pathway, as the Tat signal motif (two adjacent arginine residues) is present within the amino terminus. Halocin genes are almost universally expressed at the transition between exponential and stationary phases of growth; the only exception is halocin H1, which is induced during exponential phase.
The native enzyme to biotin ratio has been determined to be one mole native enzyme to 4 moles biotin. The N1 of biotin is thought to be the active site base. Site-directed mutagenesis at D422 shows a change in the substrate specificity of the propionyl-CoA binding site, thus indicating this residue’s importance in PCC’s catalytic activity. In 1979, inhibition by phenylglyoxal determined that a phosphate group from either propionyl-CoA or ATP reacts with an essential arginine residue in the active site during catalysis. Later (2004), it was suggested that Arginine-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.
The primary control of cortisol is the pituitary gland peptide, ACTH, which probably controls cortisol by controlling the movement of calcium into the cortisol-secreting target cells. ACTH is in turn controlled by the hypothalamic peptide corticotropin-releasing hormone (CRH), which is under nervous control. CRH acts synergistically with arginine vasopressin, angiotensin II, and epinephrine. (In swine, which do not produce arginine vasopressin, lysine vasopressin acts synergistically with CRH.) When activated macrophages start to secrete IL-1, which synergistically with CRH increases ACTH, T-cells also secrete glucosteroid response modifying factor (GRMF), as well as IL-1; both increase the amount of cortisol required to inhibit almost all the immune cells.
It has been predicted that M. infernorum possess most of the key metabolic pathways for the biosynthesis of all amino acids, nucleotides and cofactors, with the sole exception of the cobalamin cofactor. Genetic studies have shown that the enzymes it uses in several metabolic pathways differs to the ones used by other methylotrophs like for example in the biosynthesis of aromatic amino acids, lipoic acid biosynthesis, urea cycle and in the number and diversity of transporters encoded. The bacteria is able to counteract extreme acidic environments thanks to the presence of various enzymes like glutamate decarboxylase, glutamate/γ-aminobutyrate antiporter, arginine decarboxylase and an arginine/agmatine antiporter.
Arg-102, Arg-109, and Arg-171 (which are protonated, and thus positively charged) participate in electrostatic catalysis and help to bind the negatively charged carboxylates on the substrate. Additionally, the Arginine residues on the enzyme provide additional substrate specificity and binding through hydrogen bonding between the guanidinium side chain of the Arginine amino acid residues and the carboxylates of the substrate. Studies have also identified a mobile loop in malate dehydrogenase that participates in the catalytic activity of the enzyme. The loop undergoes a conformational change to shield the substrate and catalytic amino acids from the solvent in response to the binding of the malate dehydrogenase:coenzyme complex to substrate.
Many different amino acid side chains have been described as ADP-ribose acceptors. From a chemical perspective, this modification represents protein glycosylation: the transfer of ADP-ribose occurs onto amino acid side chains with a nucleophilic oxygen, nitrogen, or sulfur, resulting in N-, O-, or S-glycosidic linkage to the ribose of the ADP-ribose. Originally, acidic amino acids (glutamate and aspartate) were described as the main sites of ADP-ribosylation. However, many other ADP-ribose acceptor sites such as serine, arginine,Laing S, Koch-Nolte F, Haag F, Buck F. "Strategies for the identification of arginine ADP- ribosylation sites". Journal of proteomics. 2011;75:169–176.
Caspase-8 (as surface) cleavage of Bid (as ribbon) (visualization by Kosi Gramatikoff) Several reports have demonstrated that caspase-8, and its substrate BID, are frequently activated in response to certain apoptotic stimuli in a death receptor-independent manner. N-hydroxy-L-arginine (NOHA), a stable intermediate product formed during the conversion of L-arginine to nitric oxide activates caspase-8. Activation of caspase-8, and subsequent BID cleavage participate in cytochrome-c mediated apoptosis. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mediated activation of caspase-9 via cytochrome-c release has been shown to result in the activation of caspase-8 and Bid cleavage.
These proteins are split into two main groups depending on whether they are produced by the water mould in the symplast (inside plant cells) or in the apoplast (between plant cells). Proteins produced in the symplast included RXLR proteins, which contain an arginine-X-leucine-arginine (where X can be any amino acid) sequence at the amino terminus of the protein. Some RXLR proteins are avirulence proteins, meaning that they can be detected by the plant and lead to a hypersensitive response which restricts the growth of the pathogen. P. infestans was found to encode around 60% more of these proteins than most other Phytophthora species.
Following cell lysis, equal amounts of protein from both conditions are combined and subjected to proteotypic digestion. Arginine and lysine amino acids were chosen, because trypsin, the predominant enzyme used to generate proteotypic peptides for MS analysis, cleaves at the C-terminus of lysine and arginine. Following digestion with trypsin, all the tryptic peptides from cells grown in SILAC media would have at least one labeled amino acid, resulting in a constant mass shift from the labeled sample over non-labeled. Because the peptides containing heavy and light amino acids are chemically identical, they co-elute during reverse-phase column fractionation and are detected simultaneously during MS analysis.
The negative aspartate residue (Asp 189) located in the catalytic pocket (S1) of trypsin is responsible for attracting and stabilizing positively charged lysine and/or arginine, and is, thus, responsible for the specificity of the enzyme. This means that trypsin predominantly cleaves proteins at the carboxyl side (or "C-terminal side") of the amino acids lysine and arginine except when either is bound to a C-terminal proline, although large-scale mass spectrometry data suggest cleavage occurs even with proline. Trypsin is considered an endopeptidase, i.e., the cleavage occurs within the polypeptide chain rather than at the terminal amino acids located at the ends of polypeptides.
Perindopril is a long-acting ACE inhibitor used to treat high blood pressure, heart failure, or stable coronary artery disease in form of perindopril arginine (trade names include Coversyl, Coversum) or perindopril erbumine (Aceon). According to the Australian government's Pharmaceutical Benefits Scheme website, based on data provided to the Australian Department of Health and Ageing by the manufacturer, perindopril arginine and perindopril erbumine are therapeutically equivalent and may be interchanged without differences in clinical effect. However, the dose prescribed to achieve the same effect differs due to different molecular weights for the two forms. A prodrug, perindopril is hydrolyzed to its active metabolite, perindoprilat, in the liver.
H. erato is then able to extract nitrogenous compounds in a clear liquid, including amino acids like arginine, leucine, lysine, valine, proline, histidine, isoleucine, methionine, phenylalanine, threonine, and tryptophan. Females typically carry larger loads of pollen than males as females require more amino acids for egg production.
Structurally speaking, YopE has 4 alpha helices arranged in a left handed Four-helical up- and-down bundle. This bundle acts as the GAP domain, because arginine from an alpha helix is inserted into a GTP-ase which catalyses GTP hydrolysis through stabilisation of the transition state.
Ortek Therapeutics, Inc. is a private healthcare company based in Roslyn Heights, New York which specializes in researching and commercializing oral care products. It was founded in 1998. To date, Ortek's commercial success is based on the company's patented AlkaGen Technology (an arginine bicarbonate/calcium carbonate complex).
The domain is proline- and arginine-rich, but DUF4641 has lower levels of isoleucine, tyrosine and threonine compared to other proteins in human (Analysis of Protein Sequences, SAPS ). DUF4641 has an unusual spacing between lysine residues and positive charged amino acids (Analysis of Protein Sequences, SAPS ).
MP196 is a synthetic antimicrobial peptide. It falls under the structural class: short cationic peptides. Since it is a short cationic peptide, it can be easily synthesized, derivatized and isolated. MP196 is rich in tryptophan, a hydrophobic amino acid and arginine residues, a positively charged amino acid.
The advantage of using those autotrophies lies in the fact that they exhibit wild-type or nearly wild-type virulence in a mouse model compared to the URA3 system. One application of the leucine, arginine and histidine autotrophy is for example the candida two-hybrid system.
The biosynthesis begins with L-glutamine, which is derived from L-ornithine in plants. The roles of L-ornithine and L-arginine was confirmed by Edward Leete. Ornithine then undergoes a PLP-dependent decarboxylation to form putrescine. In animals, however, the urea cycle derives putrescine from ornithine.
A 2011 study of a Brazilian birth cohort found an association between the non- mutant arginine TP53 and individuals without a family history of cancer. Another 2011 study found that the p53 homozygous (Pro/Pro) genotype was associated with a significantly increased risk for renal cell carcinoma.
The amino acid composition of C7orf61 consists of high frequencies in leucine, serine, and charged valine. The protein has an unusual low frequency in asparagine, making it an asparagine-deficient protein, and contains higher frequencies of salt- bridge formations between glutamic acid, aspartic acid, lysine, and arginine.
This mode of interaction goes along with and explains the flexible side chains. The amino acid make up of the toxin determines the way each interacts with Shaker K channels. In Agitoxin, for example, the arginine interacts electrostatically with the aspartate of the ‘Shaker K’ channel.
The twin-arginine translocation pathway is an important pathway involved in virulence, which transports proteins through the cell membrane of the bacteria. Over 100 different proteins are thought to be transported by the pathway, some of which are required for virulence, but others just for normal growth.
There are instances of the core globular domains of histones being methylated as well. The histone methyltransferases are specific to either lysine or arginine. The lysine-specific transferases are further broken down into whether or not they have a SET domain or a non-SET domain.
Its main products from fermenting fructose or maltose are lactate, acetate, ethanol, glycerol, and carbon dioxide. Lactobacillus pontis cannot use citrate as an electron acceptor in the presence of maltose. There is also no presence of catalase activity. Lactobacillus pontis has the ability to catabolize arginine.
It has been suggested also that the difference in the heat stability of the different mabinlin homologues is due to the presence of an arginine residue (heat-stable homologue) or a glutamine (heat-unstable homologue) at position 47 in the B-chain. The sequences of Mabilins cluster with Napins ().
Nardilysin (, N-arginine dibasic convertase, NRD-convertase) is an enzyme. This enzyme catalyses the following chemical reaction : Hydrolysis of polypeptides, preferably at -Xaa-Arg-Lys-, and less commonly at -Arg-Arg-Xaa-, in which Xaa is not Arg or Lys This enzyme is present rat brain and testis.
Dipsogenic DI or primary polydipsia results from excessive intake of fluids as opposed to deficiency of arginine vasopressin. It may be due to a defect or damage to the thirst mechanism, located in the hypothalamus, or due to mental illness. Treatment with desmopressin may lead to water intoxication.
Glycine is responsible for close packing of the chains. Presence of proline restricts the conformation. This is important for gelation properties of gelatin. Other amino acids that contribute highly include: alanine (Ala) 8-11%; arginine (Arg) 8-9%; aspartic acid (Asp) 6-7%; and glutamic acid (Glu) 10-12%.
This environment helps shield the tea leaves from harsh sunlight and produce a richer flavour. As a result, Yamecha is high in flavour-producing compounds such as theanine, glutamic acid, and arginine. Many tests on tea cultivated in this area have shown to produce a strong, sweet body.
APP3m has an N-terminal mitochondrial-targeting sequence (MTS) domain importing APP3m into mitochondria, where the domain is removed proteolytically and APP3m functions as a 51-kDa mature protein. By contrast, APP3c, lacks the MTS and is expressed in the cytosol. Arginine in MTS is required for mitochondrial transport.
The amino group of Gly 193 orientates itself into the correct position, which completes the oxyanion hole in active site, thereby activating the protein. Since trypsin also cleaves the peptide bond after an arginine or a lysine, it can cleave other trypsinogen, and the activation process therefore becomes autocatalytic.
1), in E. coli have been evaluated using model structures based on the crystal structure of AdiC (2.A.3.2.5), an agmatine-arginine antiporter (). The central cavity of CadB, containing the substrate-binding site is wider than that of PotE, mirroring the different sizes of cadaverine and putrescine.
Tracy Palmer One or more of the preceding sentences incorporates text from the royalsociety.org website where: is a Professor of Microbiology in the Centre for Bacterial Cell Biology at Newcastle University in Tyne & Wear, England. She is known for her work on the twin-arginine translocation (Tat) pathway.
Danske forskere får ål til at yngle udenfor Sargassohavet. Politiken. Retrieved 22 April 2017. By 2007, DTU Aqua scientists were able to set a new record where the larvae survived for 12 days by feeding the mother eel with a special arginine-enriched diet.Nywold, M. (5 October 2007).
This octamer can be thought of as a tetramer of dimers, and it is likely that the dimer is the active unit of the protein. In each dimer, an arginine residue Arg20 forms part of the active site in the other monomer, where it helps bind both phosphate groups.
In any case, the translation of the small ORF transcript produces a 27-kDa polypeptide. This polypeptide consists of 28 of basic, mainly arginine, residues. However this polypeptide has not been detected in infected cells. The segment B transcript encodes it encodes a 112.8-kDa VP1 polypeptide once translated.
NTX is a peptide consisting of 39 amino acid residues. It has a molar mass of 4195.06 and the following primary amino acid sequence: TIINVKCTSPKQCSKPCKELYGSSAGAKCMNGKCKCYNN-NH2. The sequence of NTX contains no histidine, arginine, tryptophan, or phenylalanine. NTX has three disulphide bridges and contains an amidated C-terminus.
Phenylglyoxal is the organic compound with the formula C6H5C(O)C(O)H. It contains both an aldehyde and a ketone functional group. It is yellow liquid when anhydrous but readily forms a colorless crystalline hydrate. It has been used as a reagent to modify the amino acid, arginine.
ASL (argininosuccinate lyase, also known as argininosuccinase) is an enzyme that catalyzes the reversible breakdown of argininosuccinate (ASA) producing the amino acid arginine and dicarboxylic acid fumarate. Located in liver cytosol, ASL is the fourth enzyme of the urea cycle and involved in the biosynthesis of arginine in all species and the production of urea in ureotelic species.; Mutations in ASL, resulting low activity of the enzyme, increase levels of urea in the body and result in various side effects. The ASL gene is located on chromosome 7 between the centromere (junction of the long and short arm) and the long (q) arm at position 11.2, from base pair 64,984,963 to base pair 65,002,090.
The derivatives can be delivered to the cells by using the functional groups L-phenylalanine, folic acid, and L-arginine among others. Functionalizing the fullerenes aims to increase the solubility of the molecule by the cancer cells. Cancer cells take up these molecules at an increased rate because of an upregulation of transporters in the cancer cell, in this case amino acid transporters will bring in the L-arginine and L-phenylalanine functional groups of the fullerenes. Once absorbed by the cells, the derivatives would react to light radiation by turning molecular oxygen into reactive oxygen which triggers apoptosis in the HeLa cells and other cancer cells that can absorb the fullerene molecule.
Apart from this, studies also suggest that when TM7x is associated with XH001, the gene encoding the lsrB ortholog which functions as a receptor for the AI-2 signalling molecule is highly upregulated. Comparatively, the genes encoding potassium uptake, putative membrane proteins, and ompA expression, known to encode an immunogenic protein were down-regulated. The TM7x cells are capable of several common metabolic processes, such as glycolysis, the TCA cycle, nucleotide biosynthesis and some amino acid biosynthesis and salvage pathways. Genes coding for glycosyl hydrolase family enzymes have been observed, suggesting that these cells may use oligosaccharides as growth substrates, as well as Arginine, which is another potential growth substrate (arginine deiminase pathway).
Upon nucleotide hydrolysis the loop does not significantly change the protein conformation, but stays bound to the remaining phosphate groups. Walker motif A-binding has been shown to cause structural changes in the bound nucleotide, along the line of the induced fit model of enzyme binding. PTPs (protein tyrosine phosphatases) that catalyse the hydrolysis of an inorganic phosphate from a phosphotyrosine residue (the reverse of a tyrosine kinase reaction) contain a motif which folds into a P-loop-like structure with an arginine in the place of the conserved lysine. The conserved sequence of this motif is C-x(5)-R-[ST], where C and R denote cysteine and arginine residues respectively.
Dietary proteins are broken down into amino acids, ten of which are considered essential to honey bees: methionine, tryptophan, arginine, lysine, histidine, phenylalanine, isoleucine, threonine, leucine, and valine. Of these amino acids, honey bees require highest concentrations of leucine, isoleucine, and valine, however elevated concentrations of arginine and lysine are required for brood rearing. In addition to these amino acids, some B vitamins including biotin, folic acid, nicotinamide, riboflavin, thiamine, pantothenate, and most importantly, pyridoxine are required to rear larvae. Pyridoxine is the most prevalent B vitamin found in royal jelly and concentrations vary throughout the foraging season with lowest concentrations found in May and highest concentrations found in July and August.
The arg-gua bond is stabilized by aspartic acid from a 2nd residue, which positions the long chain of arginine through a hydrogen bond salt bridge interaction. In residue 3 of the 2nd (i.e., middle) zinc finger, histidine49 forms a hydrogen bond with a co-planar guanine in base pair 6. The stacking of Histidine against Thymine in base pair 5 limits the conformational ability of Histidine49 leading to increased specificity for the histidine-guanine hydrogen bond. At the 6th residue, fingers 1 and 3 have arginine donating a pair of charged hydrogen bonds to Nitrogen 7 and Oxygen 6 of guanine at the 5’ end enhancing the site recognition sequence of zinc fingers.
This finding suggested that the bacterium is likely to have retained a variety of key metabolic pathways common to free-living bacteria; however the bacterium is also likely to have lost genes in pathways where the host environment (Nasonia vitripennis) provides the required metabolites. A. nasoniae lacked genes for the metabolism of proline, histidine and arginine. The loss of loss of the histidine pathway is typical of a variety of obligate parasitic bacteria. Genomic analysis showed that A. nasoniae had conserved genes for ATP-binding cassette transporters for arginine, methionine and proline; therefore suggesting the bacterium is able to supplement its reduced bio-synthetic abilities by up-taking these amino acids from its environment.
Some cells synthesize argininosuccinic acid from citrulline and aspartic acid and use it as a precursor for arginine in the urea cycle or citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase.
DAPDC then uses the interaction of 3 residues (Arginine, Aspartate, and Glutamate) within the active site to identify the D-stereocenter. The DAP is decarboxylated and then stabilized by PLP. It is not clear which general acid protonates after decarboxylation, but there is speculation that the lysine residue is the donor.
In this role, feedback regulation from arginine would act to signal NAGS that ammonia is plentiful within the cell, and needs to be removed, accelerating NAGS function. As it stands, the evolutionary journey of NAGS from essential synthetic enzyme to primary urea cycle controller is yet to be fully understood.
The occupation of the LUMO decreases the strength of the N-O bond. A second electronic effect is the hydrogen bonding of both oxygens to nearby amino acids. These acids are often arginine and Histidine. The interactions lengthen the N-O bonds and facilitate cleavage of an oxygen from nitrogen.
This code shares with many other mitochondrial codes the reassignment of the UGA STOP to tryptophan, and AGG and AGA to an amino acid other than arginine. The initiation codons in Rhabdopleura compacta are ATG and GTG. Code 24 is very similar to the mitochondrial code 33 for the Pterobranchia.
N-Acetylglutamic acid is the second intermediate in the arginine production pathway in Escherichia coli and is produced via NAGS. In this pathway, N-acetylglutamic acid kinase (NAGK) catalyzes the phosphorylation of the gamma (third) carboxyl group of N-acetylglutamic acid using the phosphate produced by hydrolysis of adenosine triphosphate (ATP).
The most work investigating crystalline structures have been done on PorA and PorB of Zobellia galactinovirans. The L6S unit at subsite −2 is surrounded by tryptophan and arginine residues in both PorA and PorB, which construct a positively charged hydrophobic pocket that allows for a bulky sulfate group to fit.
Brown, M., Brown, S., Bisceglio, I., and Lemke, S. 1983. Breeding Condition, Temperature, and the Regulation of Salt and Water by Pituitary Hormones in the Red-Spotted Newt, Notophthalmus viridescens. General and Comparative Endocrinology 51, 292-302. Arginine vasotocin not only increases cutaneous water permeability, but promotes increased cutaneous blood flow.
Lipovitan products are sold in Japan and in stores in other countries that carry Asian products. Its introduction predates Red Bull, having been first released in 1962. Arginine is the main active ingredient in the modified Red Bull sold in Japan. The Japan national rugby team is sponsored by Lipovitan Dli.
To diagnose this bacillus, certain reactions may be tested. The bacterium should test positive for catalase and oxidase, arginine dihydrolase, maltose, and lactose. It should test negative for nitrate reduction, urease, and H2S production. C. canimorsus can be distinguished from other Gram-negative bacteria by testing negative for inulin and sucrose.
Drosocin is primarily active against Gram-negative bacteria. The peptide is proline-rich with proline-arginine repeats, as well a critical threonine residue. This threonine is O-glycosylated, which is required for antimicrobial activity. This O-glycosylation can be performed either by mono- or disaccharides, which have different activity spectra.
Protein Red is a protein that in humans is encoded by the IK gene. The protein encoded by this gene was identified by its RED repeat, a stretch of repeated arginine, glutamic acid and aspartic acid residues. The protein localizes to discrete dots within the nucleus, excluding the nucleolus. Its function is unknown.
Esculentin-2CHa is constituted by thirty-seven amino acids. These amino acids have different characteristics; some are aliphatic and hydrophobic like Alanine and Leucine. Others, for example Phenylalanine, are aromatic and hydrophobic; therefore, they repel water. There are also positively charged amino acids (Arginine and Lysine) and a negatively charged one (Aspartic acid).
This enzyme participates in arginine and proline metabolism and aminoacyl-trna biosynthesis. It contains a conserved domain at the N terminus called arginyl tRNA synthetase N terminal domain or additional domain 1 (Add-1). This domain is about 140 residues long and it has been suggested that it is involved in tRNA recognition.
If approved, the condom would be marketed under the Durex brand. , it was still in clinical trials. In 2009, Ansell Healthcare, the makers of Lifestyle condoms, introduced the X2 condom lubricated with "Excite Gel" which contains the amino acid l-arginine and is intended to improve the strength of the erectile response.
The longest isoform of the C16orf95 protein has 239 amino acids. It has a conserved domain of unknown function spanning residues 76 to 239. C16orf95 has a calculated molecular weight of 26.5 kDa, and a predicted isoelectric point of 9.8. Compared to other human proteins, C16orf95 has more cysteine, arginine, and glutamine residues.
In potassium and sodium channels, voltage-sensing S4 helices contain positively-charged lysine or arginine residues in repeated motifs. In its resting state, half of each S4 helix is in contact with the cell cytosol. Upon depolarization, the positively-charged residues on the S4 domains move toward the exoplasmic surface of the membrane.
AGEs are antigenic and represent many of the important neoantigens found in cooked or stored foods. They also interfere with the normal product of nitric oxide in cells. Although there are several lysine and arginine residues in the serum albumin structure, very few of them can take part in the glycation reaction.
Carboxypeptidase U (, arginine carboxypeptidase, carboxypeptidase R, plasma carboxypeptidase B, thrombin-activatable fibrinolysis inhibitor) is an enzyme. This enzyme catalyses the following chemical reaction : Release of C-terminal Arg and Lys from a polypeptide Pro-carboxypeptidase U in (human) plasma is activated by thrombin or plasmin during clotting to form the unstable carboxypeptidase U.
Lavik has explored ways that nanoparticles can help reduce internal bleeding. The nanoparticles attach to activated platelets, forming clots and stopping bleeding. The nanoparticles are delivered intravenously and include a molecule that binds to a glycoprotein. They are based on poly(lactic-co-glycolic acid), polyethylene glycol and Arginine-Glycine-Aspartic acid.
Covalent modifications of either DNA (e.g. cytosine methylation and hydroxymethylation) or of histone proteins (e.g. lysine acetylation, lysine and arginine methylation, serine and threonine phosphorylation, and lysine ubiquitination and sumoylation) play central roles in many types of epigenetic inheritance. Therefore, the word "epigenetics" is sometimes used as a synonym for these processes.
Expression profile for FHAD1 from Human Protein AtlasFHAD1 has been predicted to be a nuclear protein with 94.1% reliability. It also contains possible nuclear localization signal sequences between 1100 - 1107 aa. Two pat4 and one pat7 sequences were predicted. Pat4 and pat7 are consensus sequences consisting of clusters of lysine or arginine residues.
Secondly, the glycine corresponding to proglucagon(108) was found to serve as a substrate for amidation of the C-terminal arginine resulting in the equally potent GLP-1 (7–36) amide. In humans, almost all (>80%) secreted GLP-1 is amidated, whereas a considerable part remains GLP-1 (7–37) in other species.
Several mutations are known to cause loss of function in WNT4. One example is a heterozygous C to T transition in exon 2. This causes an arginine to cysteine substitution at amino acid position 83, a conserved location. The formation of illegitimate sulfide bonds creates a misfolded protein, resulting in loss of function.
Studies showed positive results for chronic pulmonary disease, hip fracture, and in AIDS‐related and cancer‐related cachexia. However, many of these clinical studies used HMB as a component of combination treatment with glutamine, arginine, leucine, higher dietary protein and/or vitamins, which limits the assessment of the efficacy of HMB alone.
Why editing exists at this site instead of a genomically encoded arginine is unknown since nearly 100% of transcripts are edited. Cancer Decreased editing at the Q/R site is also found in some human brain tumors. Reduction of ADAR2 expression is thought to be associated with epileptic seizures in malignant glioma.
If it does bind the furanose ring, it next opens the ring. Then the enzyme forms the eneldiol which is stabilized by a lysine or arginine residue. Calculations have demonstrated that this stabilization is the most significant contributor to the overall catalytic activity of this isomerase and a number of others like it.
Complementary positional proteomics for screening substrates of endo- and exoproteases Nat. Methods, 7, 512–515 (2010). workflows have been developed specifically to study the C-termini of proteins. Recently, the Overall Lab tackled another difficulty of C-terminomics, using endopeptidase LysargiNase™ to generate C-termini carrying N-terminal lysine or arginine residues.
Figure 2. Wild type (left) and mutated (right) form of lamin A (LMNA, PDB: 1IFR). Normally, arginine 527 (blue) forms salt bridge with glutamate 537 (magenta), but R527L mutation causes loss of the complementary negative charge and structure destabilization. At the phenotype level this manifests with overlapping mandibuloacral dysplasia and progeria syndrome.
The ligands co-ordinating the metal ion can vary with histidine, glutamate, aspartate, lysine, and arginine. The fourth coordination position is taken up by a labile water molecule. Treatment with chelating agents such as EDTA leads to complete inactivation. EDTA is a metal chelator that removes zinc, which is essential for activity.
There has been a long discussion that lysine, when administered intravenously or orally, can significantly increase the release of growth hormones. This has led to athletes using lysine as a means of promoting muscle growth while training, however, no significant evidence to support this application of lysine has been found to date. Because herpes simplex virus (HSV) proteins are richer in arginine and poorer in lysine than the cells they infect, lysine supplements have been tried as a treatment. Since the two amino acids are taken up in the intestine, reclaimed in the kidney, and moved into cells by the same amino acid transporters, an abundance of lysine would, in theory, limit the amount of arginine available for viral replication.
Host-specific selection pressures would bring about a change in the viral proteome of HIVs to suit the new host and therefore these regions would not be conserved when compared to SIVs. Through these viral proteomic comparisons, the viral matrix protein Gag-30 was identified as having differing amino acids at position 30. This amino acid is conserved as a methionine in SIVs but mutated to an arginine or lysine in HIV-1 groups M, N and O, suggesting a strong selection pressure in the new host. This observation was supported by other data including the fact that this mutation was reversed when HIV-1 was used to infect primates meaning that the arginine or lysine converted back to the methionine originally observed in SIVs.
In enzymology, a 2,4-diaminopentanoate dehydrogenase () is an enzyme that catalyzes the chemical reaction :2,4-diaminopentanoate + H2O + NAD(P)+ \rightleftharpoons 2-amino-4-oxopentanoate + NH3 \+ NAD(P)H + H+ The 4 substrates of this enzyme are 2,4-diaminopentanoate, H2O, NAD+, and NADP+, whereas its 5 products are 2-amino-4-oxopentanoate, NH3, NADH, NADPH, and H+. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH2 group of donors with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is 2,4-diaminopentanoate:NAD(P)+ oxidoreductase (deaminating). This enzyme is also called 2,4-diaminopentanoic acid C4 dehydrogenase. This enzyme participates in 3 metabolic pathways: lysine degradation, arginine and proline metabolism, and d-arginine and d-ornithine metabolism.
Together with ubiquitin and phosphorylation, methylation is a major biochemical process for modifying protein function. The most prevalent protein methylations produce specific histones from arginine and lysine. Otherwise histidine, glutamate, asparagine, cysteine are susceptible to methylation. Some of these products include S-methylcysteine, two isomers of N-methylhistidine, and two isomers of N-methylarginine.
The pre-mRNA of this subunit is edited at one position. The R/G editing site is located in exon 13 between the M3 and M4 regions. Editing results in a codon change from an arginine (AGA) to a glycine (GGA). The location of editing corresponds to a bipartite ligand interaction domain of the receptor.
Vibrio furnissii is a Gram-negative, rod-shaped bacterium. Its type strain is ATCC 35016 (= CDC B3215). V. furnissii is aerogenic, and uses L-rhamnose, L-arginine, L-arabinose, maltose, and D-mannitol, but not L-lysine, L-ornithine, or lactose. It has been isolated from patients with gastroenteritis, bacteremia, skin lesions, and sepsis.
Arginase is a controlling factor in both male erectile function and female sexual arousal, and is therefore a potential target for treatment of sexual dysfunction in both sexes. Additionally, supplementing the diet with additional L-arginine will decrease the amount of competition between arginase and NO synthase by providing extra substrate for each enzyme.
Treatment may include vitamin B6, lysine or dramatic dietary change to minimise arginine from patients diet. Research has indicated that these treatments may be somewhat effective in lowering ornithine blood concentration levels in some patients, either in combination or individually. Vitamin B6 has been found to be very effective in a small proportion of patients.
The glutamate family of amino acids includes the amino acids that derive from the amino acid glutamate. This family includes: glutamate, glutamine, proline, and arginine. This family also includes the amino acid lysine, which is derived from α-ketoglutarate. The biosynthesis of glutamate and glutamine is a key step in the nitrogen assimilation discussed above.
Mutation of this gene—a single nucleotide polymorphism (SNP) is located in exon 10. As a missense substitution of amino acid R to amino acid Q, it changes the protein's amino acid from arginine to glutamine. Depending on the chosen start the position of the nucleotide variant is either at position 1691 or 1746.
SakSTAR and SakφC amino acid 70 is histidine, whereas it is arginine in Sak42D. The mature structure of staphylokinase consists of 163 amino acids, and it is elongated in shape. Sak contains two folded domains which are of similar size. The distance from the center of gravity between the two domains is 3.7 nm.
Krebs started working on the possible method for the synthesis of arginine. Using his Warburg manometer, he mixed a slice of liver with purified ornithine and citrulline. He found that citrulline acted as a catalyst in the metabolic reactions of urea from ammonia and carbon dioxide. He and Henseleit published their discovery in 1932.
The 4 amino acids are asymmetrically arranged in the layer, as shown in the picture. However, their intensive interactions ensure the layer's stability: the arginine side chain end lies in the center of the asymmetry and amino groups form hydrogen bonds with the three glutamine residues. Thus, steric and electrostatic fit is well established.
The pre-mRNA of this subunit is edited at one position. The R/G editing site is located in exon 13 between the M3 to M4 region. Editing results in a codon change from an Arginine (AGA) to a Glycine (GGA). The location of editing corresponds to a bipartite ligand interaction domain of the receptor.
The structure of human poly(A)-binding protein found in the nucleus (PABPN1) has yet to be well determined but it has been shown to contain a single RRM domain and an arginine rich carboxy terminal domain. They are thought to be structurally and functionally different from poly-A binding proteins found in the cytosol.
L-Ornithine is one of the products of the action of the enzyme arginase on L-arginine, creating urea. Therefore, ornithine is a central part of the urea cycle, which allows for the disposal of excess nitrogen. Ornithine is recycled and, in a manner, is a catalyst. First, ammonia is converted into carbamoyl phosphate ().
TAT is an arginine-rich CPP. Several improvements for this substrate includes the usage of unnatural β or γ amino acids. This strategy offers multiple advantages, such resistance to proteolytic degradation, a natural degradation process by which peptide bonds are hydrolyzed to amino acids. Unnatural acid insertion in the peptide chain has multiple advantages.
The 13-amino acid terminal is unusually rich in lysine (7 in number) are attributed to the higher toxicity of CSTX-1. This makes CSTX-2a seven times less toxic than CSTX-1. Further, CSTX-2b also lacks arginine at position 61 compared to CSTX-1, and this reduces the neurotoxicty by 190-fold.
The first case is that of the sortases, an enzyme family that is spread throughout numerous gram positive bacteria. It has been shown to be an important pathogenicity and virulence factor. The general reaction performed by sortases involves using its own brand of the ‘catalytic triad’: i.e. using histidine, arginine, and cysteine for the reactive mechanism.
Conditionally essential nutrients are certain organic molecules that can normally be synthesized by an organism, but under certain conditions in insufficient quantities. In humans, such conditions include premature birth, limited nutrient intake, rapid growth, and certain disease states. Choline, inositol, taurine, arginine, glutamine and nucleotides are classified as conditionally essential and are particularly important in neonatal diet and metabolism.
Finally, the loss of positive charge at physiological pH caused by citrullination can be utilized. Prior to bottom-up proteomics analysis, proteins are enzymatically cleaved into peptides. Commonly the protease trypsin is used, which cleaves after the positively charged arginine and lysine residues. However, trypsin is unable to cleave after a citrulline residue which is neutral.
The Y/C editing site is located at amino acid 2 of the final protein. The codon change introduces a tyrosine (UAU) to a (UGU) cysteine substitution. The Q/R site is a second coding region found at amino acid 5 of the final protein. Here the glutamine (Q_) is codon is converted to an arginine (R).
A review of the literature concluded this claim was unwarranted. In elderly people, supplementation with just leucine resulted in a modest (0.99 kg) increase in lean body mass. The non-essential amino acid arginine, consumed in sufficient amounts, is thought to act as a donor for the synthesis of nitric oxide, a vasodilator. A review confirmed blood pressure lowering.
The most common mutation in the lamin A/C is the homozygous Arg527His (arginine replaced by histidine at position 527) substitution in exon 9 of the LMNA gene Other known mutations are Ala529Val and Arg527His/Val440Met. Additionally, some mutations such as Arg527Cys, Lys542Asn, Arg471Cys, Thr528Met/Met540Thr, and Arg471Cys/Arg527Cys, Arg527Leu result in mandibuloacral dysplasia with progeria-like features.
Proline, arginine, cystine, and cysteine are required for its growth. N. cinerea does not react with antigonococcal protein I monoclonal antibodies and does not produce immunoglobulin A protease, unlike N. gonorrhoeae. Also unlike N. gonorrhoeae, N. cinerea is not resistant to the antibiotic colistin, and it can grow on Mueller-Hinton agar and trypticase soy agar.
This is an alphabetical list of some opines or opine-like compounds. ;Acetopine Acetopine (N2-(carboxymethyl)-arginine or demethyl-octopine) was isolated from cotton (Gossypium hirsutum) and soybean (Glycine max) callus. It wasn't found in plant tissues transformed by Agrobacterium and therefore it is not considered a "true" opine. ;Agrocinopines Agrocinopines (A-D) are a separate class of opines.
361x361px PAR2 is a member of the large family of 7-transmembrane receptors that couple to guanosine-nucleotide- binding proteins. PAR2 is also a member of the protease-activated receptor family. PAR2 is activated by several different endogenous and exogenous proteases. It is activated by proteolytic cleavage of its extracellular amino terminus between arginine and serine.
In mice, there are two alleles: Thy1.1 (Thy 1a, CD90.1) and Thy1.2 (Thy 1b, CD90.2). They differ by only one amino acid at position 108; an arginine in Thy-1.1 and a glutamine in Thy-1.2. Thy 1.2 is expressed by most strains of mice, whereas Thy1.1 is expressed by some like AKR/J and PL mouse strains.
Radiation from lutetium (177Lu) oxodotreotide can cause damage when the medicine passes through tubules in the kidney. Arginine/lysine can be used to reduce renal radiation exposure during peptide receptor radionuclide therapy with lutetium (177Lu) oxodotreotide. Text was copied from this source which is © European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
The longest CCDC74A peptide product, isoform 6, is 420 amino acids in length. This protein has a predicted molecular weight of 45.9kD and a predicted isoelectric point of 10.65. The entire length of the protein is evenly enriched in lysine and arginine residues. The protein contains 2 eukaryotic coiled-coil domains of unknown function, CCDC92 and CCDC74C.
Glycation pathway via Amadori Rearrangement (in HbA1c, R is typically N-terminal valine). Imidazolones (R = CH2CH(OH)CH(OH)CH2OH) are typical glycation products. They arise by the condensation of 3-deoxyglucosone with the guanidine group of an arginine residue. Glycations occur mainly in the bloodstream to a small proportion of the absorbed simple sugars: glucose, fructose, and galactose.
Central diabetes insipidus is caused by low levels of Vasopressin (also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin). ADH is produced in the hypothalamus and stored in and released from the posterior pituitary gland. ADH increases water absorption in the collecting duct systems of kidney nephrons, subsequently decreasing urine production. ADH regulate hydration levels in the body.
The intracellular toll-like receptors have been shown to interact with UNC93B in splenocytes and bone marrow-derived dendritic cells. TLR3 and TLR9 bind to UNC93B via their transmembrane domains. Introduction of the point mutation H412R (histidine to arginine at amino acid 412: a single base transition - adenosine to guanine at base 1235) in UNC93B abolishes this interaction.
Animals, including A. pisum, can produce nonessential amino acids de novo but cannot synthesize nine essential amino acids that must be obtained through their diets: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. In addition to these nine essential amino acids, A. pisum is unable to synthesize arginine due to missing urea cycle genes.Wilson, A.C.C., et al.
Arginase belong to the ureohydrolase family of enzymes. Arginase catalyzes the fifth and final step in the urea cycle, a series of biochemical reactions in mammals during which the body disposes of harmful ammonia. Specifically, arginase converts L-arginine into L-ornithine and urea. Mammalian arginase is active as a trimer, but some bacterial arginases are hexameric.
This is the third position of an isoleucine codon: AUU, AUC, or AUA all encode isoleucine, but AUG encodes methionine. In computation, this position is often treated as a twofold degenerate site. There are three amino acids encoded by six different codons: serine, leucine, and arginine. Only two amino acids are specified by a single codon each.
It is Gram-negative, motile, and its rod- shaped cells are about 1 by 2 µm with rounded ends. Its metabolism is fermentative, and it produces catalase, oxidase, and arginine dihydrolase. It is susceptible to chlortetracycline, colistin sulfate, furazolidone, gentamicin, neomycin, nitrofurantoin, and tetracycline, but not to ampicillin, cloxacillin, novobiocin, or sulfafurazole. It produces a bacteriocin-like inhibitory substance.
Specifically, the positively charged arginine and the non-polar alanine residues were both shown to be essential for poneratoxin potency. See figure, where the hydrophobic (red) and hydrophillic (blue) regions of poneratoxin and the lipid bilayer align, demonstrating that the structure is evolved to insert into the membrane, which will promote interaction with the voltage gated sodium channels.
P11-4 is a synthetic, pH controlled self-assembling peptide used for biomimetic mineralization e.g. for enamel regeneration or as an oral care agent. P11-4 (INCI name Oligopeptide 104) consists of the natural occurring amino acids Glutamine, Glutamic acid, Phenylalanine, Tryptophan and Arginine. The resulting higher molecular structure has a high affinity to tooth mineral.
SAAL1 is abundant in aspartic acid (7.8% by composition) and deficient in glycine (3.4% by composition)compared to other human proteins. It also has 44 more aspartic acid and glutamic acid residues compared to lysine and arginine, indicating an overall negative charge. Two negatively charged and glutamic acid abundant segments were identified and labeled in the SAAL1 conceptual translation.
The majority of Streptococcus anginosus strains produce acetoin from glucose, ferment lactose, trehalose, salicin, and sucrose, and hydrolyze esculin and arginine. Carbon dioxide can stimulate growth or is even required for growth in certain strains. Streptococcus anginosus may be beta-hemolytic or nonhemolytic. The small colonies often give off a distinct odor of butterscotch or caramel.
The biosynthesis begins with L-Glutamine, which is derived to L-ornithine in plants. The major contribution of L-ornithine and L-arginine as a precursor to the tropane ring was confirmed by Edward Leete. Ornithine then undergoes a pyridoxal phosphate-dependent decarboxylation to form putrescine. In animals, however, the urea cycle derives putrescine from ornithine.
The general structure of a guanidine Guanidines are a group of organic compounds sharing a common functional group with the general structure . The central bond within this group is that of an imine, and the group is related structurally to amidines and ureas. Examples of guanidines are arginine, triazabicyclodecene, saxitoxin, and creatine. Galegine is isoamylene guanidine.
The extreme hypoglycemic version of the ITT is potentially very dangerous and must be undertaken with great care, because it can iatrogenically induce the equivalent of a diabetic coma. A health professional must attend it at all times.Other provocation tests which cause much less release of growth hormone include the use of glucagon, arginine and clonidine.
The RRE is a highly structured RNA element. Computational predictions, later verified by chemical and enzymatic probing, indicate that RRE contains multiple stem loops and bulges (see Figure). Rev binds to RRE in a sequence specific manner with Rev-RNA recognition mediated by a 17-residue a-helical stretch on Rev, the Arginine-Rich-Motif (ARM). RRE Secondary Structure.
ASF/SF2 is an SR protein, and as such, contains two functional modules: an arginine-serine rich region (RS domain), where the bulk of ASF/SF2 regulation takes place, and two RNA recognition motifs (RRMs), through which ASF/SF2 interacts with RNA and other splicing factors. These modules have different functions within general splicing factor function.
The protein encoded by this gene is a membrane-bound arginine/lysine carboxypeptidase. Its expression is associated with monocyte to macrophage differentiation. This encoded protein contains hydrophobic regions at the amino and carboxy termini and has 6 potential asparagine-linked glycosylation sites. The active site residues of carboxypeptidases A and B are conserved in this protein.
During an acute hyperammonemic episode, oral proteins must be avoided and intravenous (I.V.) lipids, glucose and insulin (if needed) should be given to promote anabolism. I.V. nitrogen scavenging therapy (with sodium benzoate and/or sodium phenylacetate) should normalize ammonia levels, but if unsuccessful, hemodialysis is recommended. Long-term management involves dietary protein restriction as well as arginine supplementation.
MFGE8 contains a phosphatidylserine (PS) binding domain, as well as an Arginine-Glycine- Aspartic acid motif, which enables the binding to integrins. MFGE8 binds PS, which is exposed on the surface of apoptotic cells. Opsonization of the apoptotic cells and binding to integrins on the surface of phagocytic cells, mediates the engulfment of the dead cell.
The pre-mRNA of GluR-5 is edited at one position at the Q/R site located at membrane region 2 (M2). There is a codon change as a result of editing. The codon change is (CAG) Glutamine (Q) to (CGG) an Arginine (R). Like GluR-6 the ECS is located about 2000 nucleotides downstream of the editing site.
The presence of a GluA2 subunit will almost always render the channel impermeable to calcium. This is determined by post-transcriptional modification — RNA editing — of the Q-to-R editing site of the GluA2 mRNA. Here, A→I editing alters the uncharged amino acid glutamine (Q) to the positively charged arginine (R) in the receptor's ion channel.
It has the formula H2NC(O)NH(CH2)3CH(NH2)CO2H. It is a key intermediate in the urea cycle, the pathway by which mammals excrete ammonia by converting it into urea. Citrulline is also produced as a byproduct of the enzymatic production of nitric oxide from the amino acid arginine, catalyzed by nitric oxide synthase.
YTHDC1 has a double role in alternative splicing. First of all, it recruits the serine and arginine-rich splicing factor 3 (SRSF3), which promotes exon inclusion. In addition, YTHDC1 blocks binding of SRSF10, a protein involved in exon-skipping. Due to the role of m6A in alternative splicing, pre-mRNAs have higher levels of m6A than mature mRNAs.
Roszer, T (2012) The Biology of Subcellular Nitric Oxide. Nitric oxide, known as an endothelium-derived relaxing factor (EDRF), is biosynthesized endogenously from L-arginine, oxygen, and NADPH by various nitric oxide synthase (NOS) enzymes. Reduction of inorganic nitrate may also serve to make nitric oxide. One of the main enzymatic targets of nitric oxide is guanylyl cyclase.
Q/R site This site is found in exon 1 at position 66. Editing results in a codon change from a Glutamine codon to an Arginine codon. T/A site This site is also found in exon 1, at position 63. It was only detected in one genomic sample indicating that the edited residue may be an SNP.
Phenypressin was found to be less abundant in the marsupials compared to other vasopressin-like peptides. It belongs to some marsupials [2] and has the polypeptide sequence: Cys-Phe-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2. The neurohypophyseal hormones present in Australian marsupials are unique compared to the usual hormones found in placental mammals: oxytocin and arginine vasopressin.
The phenypressin discovery happened with two experiments which were carried out for two species: red kangaroo (9 and 14 glands) and the tammer (24 and 33 glands). After experimental preparation, the materials were examined through paper chromato-electrophoresis. These experiments helped show that Phenypressin was similar to arginine vasopressin, except the phenylalanine replaced the tyrosine at the second residue.
SP4-Z MEDIUM. This medium contains either glucose or arginine (but not both at the same time) as a carbon source; however, it does not contain yeast extract. For exact information regarding all components of this medium see "DSMZ Medium" in External Links. It is considered to be a mesophilic bacteria growing best at a temperature of 37 °C.
This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This enzyme is secreted by the pancreas and cleaved to its active form in the small intestine. It is active on peptide linkages involving the carboxyl group of lysine or arginine. Mutations in this gene are associated with hereditary pancreatitis.
In April 1927, he attended the Lister Centenary Celebration held in England. During the last years of Kossel's life, he conducted important research into the composition of the protein types protamines and histones, and introduced flavianic acid for the quantitative separation of arginine, histidine and lysine in proteins. A monograph describing this work was published shortly after his death.
In April 2009, it was demonstrated that generation of iPS cells is possible without any genetic alteration of the adult cell: a repeated treatment of the cells with certain proteins channeled into the cells via poly-arginine anchors was sufficient to induce pluripotency. The acronym given for those iPSCs is piPSCs (protein-induced pluripotent stem cells).
NDUFAF7 is a type II arginine methyltransferase, meaning that its enzymatic activity produces a symmetrical ω-NG,NG′-dimethylarginine. It has a methyltransferase domain and an N-terminal sequence that corresponds to the recognized mitochondrial-targeting peptide. NDUFAF7's stoichometry is disputed with some findings indicating that it is a homodimer, while others denote it to be monomeric.
One method attempted to inhibit glucosepane formation is to use an α-dicarbonyl trap molecule, aminoguanidine (AG). AG reacts with the α-dicarbonyl intermediate with a higher affinity than arginine, thus blocking the cross-link. While this method has been seen to have some success, it did not greatly interfere with the normal aging of rats.
It is the head member of the mannityl family of opines. ;Mannopinic acid Mannopinic acid (N-1-(D-mannityl)-L-glutamic acid) was isolated from crown gall tumors. Belongs to the mannityl family. ;Methiopine Methiopine (N-[1-D-(carboxyl)ethyl]-L-methionine) was found in crown gall tumors. ;Mikimopine Mikimopine (4-epimer of cucumopine) was first isolated from tobacco crow gall tumors. ;Nopaline Nopaline (N2-(D-1,3-dicarboxypropyl)-L-arginine) was first isolated from crown gall tumors. It is the head member of the nopaline family of opines. It was also found in certain nontransformed plant tissues as a result of arginine metabolism ;Nopalinic acid Nopalinic acid (also named ornaline) (N2-(D-1,3-dicarboxypropyl)-L-ornithine) is a member of the nopaline family found in crown gall tumors.
The calcium component is available for enhanced remineralization and the bicarbonate, carbonate components also aids in buffering the teeth from acid attacks and support the activities of arginine and calcium. The AlkaGen technology, which is based on over 40 years of research in saliva chemistry, was licensed to the company by The Research Foundation of the State University of New York after being developed by Department of Oral Biology and Pathology at Stony Brook University. A 2008 clinical trial published in the Journal of Clinical Dentistry found that a confection with AlkaGen Technology was highly effective in preventing caries in Venezuelan children, as those consuming the confections had 62% less cavities than the placebo group. Ortek developed and commercialized two dental pastes for sensitive teeth and were based on the arginine bicarbonate/calcium carbonate technology.
The primary amino acid synthesized and intra-fungally transferred is arginine, which is catabolized into ammonium. The ammonium is then shunted into the interfacial space between the peloton and the surrounding plant membrane,and transported into the plant cell via ammonium transporters and incorporated into the plant. To accommodate the transport of nitrogen via this pathway, primarily as ammonium, an array of ammonium transporter genes are up regulated in the plant partners, and additionally the mycorrhizal fungal partners often upregulate a group of protease genes as well as external amino acid permeases, nitrate transporters and ammonium transporters. As proposed by Cameron 2006 and Fochi 2016, nitrogen may also be transferred as amino acids such as arginine, glycine and glutamine into the cell via a select few specialized amino acid transporters.
Both the human and the mouse protein have been shown to contain 225 amino acids and feature an orange domain as well as a conserved sequence of four amino acids at the C-terminal end. The four amino acids are Tryptophan-Arginine-Proline- Tryptophan. This conserved sequence of four amino acids binds Groucho/TLE family members. Groucho/TLE are transcriptional corepressors.
The arginine catabolic mobile element (ACME) is a mobile genetic element of Staphylococcus bacterial species. This genetic element provides for several immune modulating functions, including resistance to polyamines which serve as a non-specific immune response both on intact skin and following the inflammatory response in wound healing. Diverse ACME are present in several species of Staphylococcus, including Staphylococcus epidermidis.
In molecular biology, the octopine dehydrogenase family of enzymes act on the CH-NH substrate bond using NAD(+) or NADP(+) as an acceptor. The family includes octopine dehydrogenase , nopaline dehydrogenase , lysopine dehydrogenase and opine dehydrogenase . NADPH is the preferred cofactor, but NADH is also used. Octopine dehydrogenase is involved in the reductive condensation of arginine and pyruvic acid to D-octopine.
The rod domain connects to the head domain. The head domain 84 amino acids with many arginine, serine, and aromatic residues is important in filament assembly and dimer-dimer interactions. The tail domain is responsible for the integration of filaments and interaction with proteins and organelles. Desmin is only expressed in vertebrates, however homologous proteins are found in many organisms.
Opines and opine-like substances are not restricted to crown galls tumors. The very first opine discovered, octopine, was initially isolated from octopus muscle. Similar derivatives have been isolated from muscle tissue of certain marine invertebrates: alanopine, strombine, and tauropine. Opines like acetopine and nopaline can also be formed in normal callus and plant tissue as a result of arginine metabolism.
Structurally it is a member of the octopine family. ;Succinamopine Succinamopine (also named asparaginopine) (N-(3-amino-1-carboxy-3-oxopropyl)glutamic acid) is a member of the nopaline family isolated from crown gall tumors. Its structure is analogous to that of nopaline, with asparagine replacing arginine. ;Tauropine Tauropine (N-(D-1-carboxyethyl)-taurine) was found in some marine invertebrates.
Hydrolysis of an ester bond on poly (HPMA- DMAE). Polyelectrolyte stabilized emulsions are important in the field of nanomedicine. In order to function properly, any drug delivery system must be biocompatible and biodegradable. Polyelectrolytes such as dextran sulfate (DSS), protamine (PRM) or poly-L-arginine all fulfill these requirements and may be used as a capsule with an emulsion inside.
In enzymology, a proline—tRNA ligase () is an enzyme that catalyzes the chemical reaction :ATP + L-proline + tRNAPro \rightleftharpoons AMP + diphosphate + L-prolyl-tRNAPro The 3 substrates of this enzyme are ATP, L-proline, and tRNA(Pro), whereas its 3 products are AMP, diphosphate, and L-prolyl-tRNA(Pro). This enzyme participates in arginine and proline metabolism and aminoacyl-trna biosynthesis.
Glutamine is synthesized from glutamate by glutamine synthetase, which utilizes adenosine triphosphate to form glutamyl phosphate; this intermediate is attacked by ammonia as a nucleophile giving glutamine and inorganic phosphate. Proline, arginine, and lysine (in some organisms) are other amino acids synthesized as well. These three amino acids derive from glutamate with the addition of further steps or enzymes to facilitate reactions.
For example, many GAPs of the small G proteins have a conserved finger-like domain, usually an arginine finger, which changes the conformation of the GTP-bound G protein to orient the GTP for better nucleophilic attack by water.Scheffzek, K. et al. "The Ras-RasGAP Complex: Structural Basis for GTPase Activation and Its Loss in Oncogenic Ras Mutants". Science. 277 (1997): 333–338.
Proteins with such domains include the anaphase-promoting complex (APC) subunits cdc16, cdc23 and cdc27, the NADPH oxidase subunit p67-phox, hsp90-binding immunophilins, transcription factors, the protein kinase R (PKR), the major receptor for peroxisomal matrix protein import PEX5, protein arginine methyltransferase 9 (PRMT9), and mitochondrial import proteins. Depiction of TPR repeat. Image rendered with King Software. PDB ID: 1NA0.
Pulmonary hypertension has been gaining recognition as a complication of chronic hereditary and acquired hemolysis. Free hemoglobin released during hemolysis inactivates the vasodilator nitric oxide (NO). Hemolysis also releases arginase that depletes L-arginine, the substrate needed for NO synthesis. This reduces NO-dependent vasodilation and induces platelet activation, thrombin generation, procoagulant factors and tissue factor activation, contributing to the formation of thrombosis.
To date, the crystallographic structure of human dysferlin and solution NMR structure of myoferlin DysF have been obtained by Altin Sula et al. and PryankPatel et al. accordingly. Myoferlin and dysferlin DysF domains show 61% sequence identity. A unique feature of DysF domains in both dysferlin and myoferlin is that these domains are held together by arginine/aromatic sidechain (specially tryptophan) stacking.
Two enzymes are needed to release tuftsin from immunoglobulin G.Victor, A. N. Tuftsin, a natural activator of phagocyte cells: an overview. Ann. New York Acad. Sci. 1–11 (1983) First, the spleen enzyme tuftsin-endocarboxypeptidase nicks the heavy chain at the Arg- Glu bond (292-293). The arginine carboxy-terminal is now susceptible to the action of the second enzyme, carboxypeptidase β.
Analysis of the M. hominis PG21 genome sequence shows that this organism is the second smallest genome among self-replicating free living organisms. Due to their minimal genomes, M. hominis have reduced metabolic capabilities which are characterized by distinct energy-generating pathways. Three energy pathways that M. hominis is capable of going through is Embden-Meyerhoff-Parnas (EMP), arginine dihydrolase and Riboflavin metabolism.
This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This enzyme is expressed in the brain and pancreas and is resistant to common trypsin inhibitors. It is active on peptide linkages involving the carboxyl group of lysine or arginine. This gene is localized to the locus of T cell receptor beta variable orphans on chromosome 9.
There are five amino acids which humans are able to synthesize in the body. These five are alanine, aspartic acid, asparagine, glutamic acid and serine. There are six conditionally essential amino acids whose synthesis can be limited under special pathophysiological conditions, such as prematurity in the infant or individuals in severe catabolic distress. These six are arginine, cysteine, glycine, glutamine, proline and tyrosine.
61: 1027-1028. Hemolymph is composed of water, inorganic salts, and organic compounds. Some of the organic compounds are free amino acids, and the contents vary by species in terms of which amino acids are present and their overall concentrations. The amino acids present in B. giganteus are alanine, arginine, cysteine, glutamic acid, glycine, histidine, leucine, proline, threonine, tyrosine, and valine.
Several positively charged arginine residues, positioned to face the active site from domains 1 and 2, have been shown to stabilize the carboxylate functionalities on the incoming porphobilinogen as well as the growing pyrrole chain. These structural features presumably favor the formation of the final hydroxymethylbilane product. Porphobilinogen deaminase usually exists in dimer units in the cytoplasm of the cell.
Dormant and germinated sporangiospores show deep furrows and prominent ridges with a pattern that makes it distinguishable from that of R. stolonifer. The germination of sporangiospores can be induced by the combined action of L-proline and phosphate ions. L-ornithine, L-arginine, D-glucose and D-mannose are also effective. Optimal germination occurs on media containing D-glucose and mineral salts.
Crystal structure of its complex with the enzyme reveals that it displaces the metal- bridging hydroxide ion and bridges the binuclear manganese cluster. Additionally, 2(S)-amino-6-boronohexonic acid (ABH) is an L-arginine analogue that also creates a tetrahedral intermediate similar to that formed in the catalysis of the natural substrate, and is a potent inhibitor of human arginase I.
In addition, both NOS1 and NOS2 have been shown to form ferrous-nitrosyl complexes in their heme prosthetic groups that may act partially to self- inactivate these enzymes under certain conditions. The rate-limiting step for the production of nitric oxide may well be the availability of L-arginine in some cell types. This may be particularly important after the induction of NOS2.
The specific mechanism of how this enzyme works is still under investigation; however, it is known that this enzyme has the ability to couple together glyceraldehyde-3-phosphate with L-arginine in the presence of thiamine diphosphate (TDP or thiamine pyrophosphate), which is the first step of the clavulanic acid biosynthesis. Proposed mechanism of CEA synthetase in the biosynthesis of clavulanic acid.
Fresh meat contains 0.4–0.5 mg/kg nitrite and 4–7 mg/kg of nitrate (10–30 mg/kg nitrate in cured meats). The presence of nitrite in animal tissue is a consequence of metabolism of nitric oxide, an important neurotransmitter. Nitric oxide can be created de novo from nitric oxide synthase utilizing arginine or from ingested nitrate or nitrite.
In these bradytroph strains, rapid growth occurs when the chemical is present in the cell's growth media and the missing metabolite can be transported into the cell from the external environment. A bradytroph may also be referred to as a "leaky auxotroph". The first usage of "bradytroph" was to describe Escherichia coli mutants partially defective in arginine biosynthesis.Novick RP Maas WK (1961).
Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO Journal, 16(8), 1876-1887. Ghosh, N., Patel, N., Jiang, K., Watson, J., Cheng, J., Chalfant, C., & Cooper, D. (2007). Ceramide- activated protein phosphatase involvement in insulin resistance via Akt, serine/arginine-rich protein 40, and ribonucleic acid splicing in L6 skeletal muscle cells.
A well known Tudor domain containing protein is Staphylococcal Nuclease Domain Containing 1 (SND1)/Tudor-SN/p100 co activator. SND1 is involved in RISC complex and interacts with AEG-1 oncogene. SND1 is also acts as an oncogene and plays a very important role in HCC and colon cancer. The SND1 tudor domain binds to methylated arginine in the PIWIL1 protein.
Alterations to the epigenome post-fertilization. The upper part of the image shows replacement of protamines with histones in paternal pronucleus shortly after fertilization. DNA packaged with protamines forms toroid-shaped structures, shown at the top left corner of the image. During the formation of sperm, protamine binds to the phosphate backbone of DNA using the arginine- rich domain as an anchor.
Two antidiuretic hormones, Arginine vasotocin (AVT) and angiotensin (AII) are increased in blood plasma as a response to hyperosmolality and hypovolemia. AVT triggers antidiuretic hormone (ADH) which targets the nephrons of the kidney. ADH causes a reabsorption of water from the lumen of the nephron to the extracellular fluid osmotically. These extracellular fluids then drain into blood vessels, causing a rehydrating effect.
AVPR1B is responsible for fueling the effects of vasopressin on ACTH release. This interaction takes place as Arginine Vasopressin works with corticotropin releasing hormone to stimulate the pituitary gland to secrete ACTH. AVPR1b is then responsible for mediating the stimulatory effect of vasopressin on ACTH release. Several G proteins are also involved in the signal transduction pathways linked with AVPR1B.
Methylation of Lysine (amino acid) Once the peptide chain is synthesized, it still must be modified. Post-translational modifications can occur before protein folding or after. Common biological methods of modifying peptide chains after translation include methylation, phosphorylation, and disulfide bond formation. Methylation often occurs to arginine or lysine and involves adding a methyl group to a nitrogen (replacing a hydrogen).
A decrease in eIF2B activity has been correlated with the onset of VWM. A common factor among VWM patients is mutations in the five subunits of eIF2B (21 discovered thus far), expressed in over 60% of the patients. These mutations lead to the decreased activity of eIF2B. The most common mutation is R113H, which is the mutation of histidine to arginine.
Nowadays most suppliers offer modified trypsin where selective methylation of the lysines limits the autolytic activity to the arginine cutting sites.Rice, RH et al., Biochimica et Biophysica Acta, 1977, 492 (2), 316-321. Unmodified trypsin has its highest activity between 35 °C and 45 °C. After the modification, the optimal temperature is changed to the range of 50 °C to 55 °C.
Zero ionic layer is the main site of interaction in the core SNARE complex. Dipole-dipole interactions take place between 3 glutamine (Q) residues and 1 arginine (R) residue exposed in this layer. Despite that, the majority of the SNARE complex is hydrophobic because of the leucine zipper. Extensively studied layers within the SNARE alpha-helical bundle are designated from "-7" to "+8".
Therefore, both were close enough to cause a reaction. Figure 4: The mechanism is based on x-ray structures of PLP-L-Ala and PLP-D- Ala and molecular orbital calculations done by Watanabe (4). This mechanism is supported by mutations of Arg219. Mutations changing Arg219 to a carboxylate result in a quinonoid intermediate being detected whereas none was detected with arginine.
A recent study suggested that SON may be a novel therapeutic molecular target for pancreatic cancer as the results of a recent study show that this protein is very important as far as proliferation, survival and tumorigenicity of cancer cells are concerned. Specifically, these results revealed that the serine-arginine-rich protein involved in the RNA splicing process, could suppress pancreatic cell tumorigenicity.
However, over time, it causes electrolyte imbalances and has reduced effectiveness. Furosemide is prohibited in competing horses in some countries, and by the International Olympic Committee. The United States and Canada are the only countries which permit furosemide use during racing. Other vascular agents such as nitric oxide (NO), n-nitro-l-arginine methyl ester (L-Name), nitroglycerin, NO + phosphodiesterase inhibitors (e.g.
The mammalian gene product was originally discovered by expression cloning, due to the protein's ability to mobilize intracellular calcium in response to the peptide hormone arginine vasopressin. It was first titled VACM-1, for vasopressin-activated, calcium-mobilizing receptor. Since then, VACM-1 has been shown to be homologous to the Cullin family of proteins, and was subsequently dubbed cul5.
Both 18S rRNA production and rRNA pseudouridylation are impaired if any one of the four proteins is depleted. These four H/ACA snoRNP proteins are also components of the telomerase complex. The encoded protein of this gene contains two glycine- and arginine-rich domains and is related to Saccharomyces cerevisiae Gar1p. Two splice variants have been found for this gene.
The experiment provides the connectivities between the amide of a residue with the carbonyl carbon of the preceding residues. It is the most sensitive of the triple resonance experiments. The sidechains carboxamides of asparagine and glutamine are also visible in this experiment. Additionally, the guanidino group of arginine, which has similar coupling constant to the carboxamide group, may also appear in this spectrum.
Pyrrhocoricin is primarily active against Gram-negative bacteria. The peptide is proline-rich with proline-arginine repeats, as well a critical threonine residue, which is required for activity through O-glycosylation. Like the antimicrobial peptides drosocin and abaecin, pyrrhocoricin binds to the bacterial protein DnaK, inhibiting cell machinery and replication. Only the L-enantiomer of pyrrhocoricin is active against bacteria.
Platelet-derived factors, shear stress, acetylcholine, and cytokines stimulate the production of NO by endothelial nitric oxide synthase (eNOS). eNOS synthesizes NO from the terminal guanidine-nitrogen of L-arginine and oxygen and yields citrulline as a byproduct. NO production by eNOS is dependent on calcium-calmodulin and other cofactors. Nitric oxide synthases (NOSs) synthesize the metastable free radical nitric oxide (NO).
Reductive dehalogenases are related to the cobamide (or vitamin B12) family of enzymes. They contain a cobalamin at its catalytic active site, where actual reductive reaction occurs. They also harbor iron− sulfur clusters that supply the reducing equivalents. All membrane-associated dehalogenases harbor a N-terminal twin- arginine (TAT) signal sequence (RRXFXK), which is a conserved signal peptide for membrane protein translocation.
This gene encodes an arginine-specific serine protease and member of the peptidase S1 family of proteins. The encoded protein may undergo proteolytic activation before storage in azurophil granules, in neutrophil cells of the immune system. Following neutrophil activation, the protease is released into the pericellular environment, where it may play a role in defense against microbial pathogens. [provided by RefSeq, Jul 2016].
The ldcC RNA motif is a conserved RNA structure that was discovered by bioinformatics. ldcC motif RNAs are found in Firmicutes and two species of Spirochaetes. ldcC motif RNAs likely function as cis-regulatory elements, in view of their positions upstream of protein-coding genes. The genes presumably regulated by ldcC RNAs are decarboxylases of arginine, ornithine, S-adenosylmethionine or other substrates.
Isothermal titration calorimetry (ITR), nuclear magnetic resonance (NMR) crystallography, and clonal studies of OcDH and its substrates have led to the identification of the enzyme reaction mechanism. First, the Rossmann fold in Domain I of OcDH binds NADH. Binding of NADH to the Rossmann fold triggers small conformational change typical in the binding of NADH to most dehydrogenases resulting in an interaction between the pyrophosphate moiety of NADH with residue Arg324 on Domain II. This interaction with Arg324 generates and stabilizes the L-arginine binding site and triggers partial domain closure (reduction in the distance between the two domains). The binding of the guanidinium headgroup of L-arginine to the active site of the OcDH:NADH complex (located between the domains) induces a rotational movement of Domain II towards Domain I (via a helix-kink-helix structure in Domain II).
Silver's standard involves deletion of one nucleotide from the Xbal and SpeI site, which shortens the scar site by 2 nucleotides, which now forms a 6 bp scar sequence. The 6 bp sequence allows the reading frame to be maintained. The scar sequence codes for the amino acid threonine (ACT) and arginine (AGA). This minor improvement allows for the formation of in-frame fusion protein.
SREB proteins are indirectly required for cholesterol biosynthesis and for uptake and fatty acid biosynthesis. These proteins work with asymmetric sterol regulatory element (StRE). SREBPs have a structure similar to E-box-binding helix-loop-helix (HLH) proteins. However, in contrast to E-box-binding HLH proteins, an arginine residue is replaced with tyrosine making them capable of recognizing StREs and thereby regulating membrane biosynthesis.
E. faecalis is a nonmotile microbe; it ferments glucose without gas production, and does not produce a catalase reaction with hydrogen peroxide. It produces a reduction of litmus milk, but does not liquefy gelatin. It shows consistent growth throughout nutrient broth which is consistent with being a facultative anaerobe. It catabolizes a variety of energy sources, including glycerol, lactate, malate, citrate, arginine, agmatine, and many keto acids.
N1 and H1 form the ESPR and have strong conservation. Function: There are several roles that the Extended Signal Peptide Region is thought to hold. First, biogenesis of proteins in the Type V Secretion System (T5SS). Second, it is thought to target the protein to the inner membrane to be translocated either by the signal recognition particle pathway (SRP) or by twin arginine translocated (TAT).
Another pathway in plants starts with decarboxylation of L-arginine to produce agmatine. The imine functional group in agmatine then is hydrolysed by agmatine deiminase, releasing ammonia, converting the guanidine group into a urea. The resulting N-carbamoylputrescine is acted on by a hydrolase to split off urea group, leaving putrescine. After that the putrescine follows the same pathway to completing the synthesis of spermine.
The therapeutic effect of 177Lu derives from the ionsing beta radiation it emits, however this can also be harmful to healthy tissue and organs. The kidneys are particularly at risk as they help to remove 177Lu DOTA-TATE from the body. To protect them, an amino acid solution (arginine/lysine) is administered by slow infusion, starting before the radioactive administration and normally continuing for several hours afterwards.
While there were many theories about the cause of the disease including plants, worms and sunstroke, it was not until 1950 that researchers identified the precise cause. Mildly affected horses can recover with a regime of drenching with gelatine and feeding a diet high in arginine but euthanasia is recommended for severely affected horses. As there is no cure, preventing horses from grazing on indigo is recommended.
These are small proteins that recognise and bind tightly to twin-arginine signal peptides. He returned to work on bacterial bioenergetics, specifically nickel-dependent hydrogenases and molybdenum- containing enzymes, when he returned to University of Dundee. This type of enzyme is involved in handling carbon dioxide in bacteria to convert it into formic acid that can be used in industry or for carbon transport and storage.
MADS-box genes have a variety of functions. In animals, MADS-box genes are involved in muscle development and cell proliferation and differentiation. Functions in fungi range from pheromone response to arginine metabolism. In plants, MADS-box genes are involved in controlling all major aspects of development, including male and female gametophyte development, embryo and seed development, as well as root, flower and fruit development.
A mutation in the gene ACVR1 (also known as activin-like kinase 2 (ALK2)) is responsible for the disease. ACVR1 encodes activin receptor type-1, a BMP type-1 receptor. The mutation causes substitution of codon 206 from arginine to histidine in the ACVR1 protein. This substitution causes abnormal activation of ACVR1, leading to the transformation of connective tissue and muscle tissue into a secondary skeleton.
In addition, the phosphate group yields several potential areas for hydrogen- bonding or establishment of salt-bridges, of which the latter generally involves an arginine residue. Binding of effector molecules may be affected in a similar manner if the phosphorylated residue makes part of the allosteric site. Autophosphorylation has also been reported to have an effect on the cell's ability for endocytosis and proteolysis.
Cyanase is regulated both transcriptionally and in its enzymatic activity. Transcription of cyanase is elevated with the presence of extracellular cyanate, a toxic ion, but also down regulated by the presence of excess arginine, the catalytic amino acid. Cyanase requires the product of the reaction catalyzed by cyanate permease. Activity of cyanase is also dependent on the concentration of its substrates, cyanate and bicarbonate.
The CHRNE gene codes for the epsilon subunit of the AChR. Most mutations are autosomal recessive loss-of-function mutations and as a result there is endplate AChR deficiency. CHRNE is associated with changing the kinetic properties of the AChR. One type of mutation of the epsilon subunit of the AChR introduces an Arginine into the binding site at the α/ε subunit interface of the receptor.
During later attacks, he also presented with distortions of the left hemifield, ataxia, slurred speech, followed by headache. After enrolling in school, he developed bouts of rhythmic arm jerking with concomitant confusion, also lasting approximately 30 minutes. He also has presented, at various times, with migraines. This patient carries a proline to arginine substitution in the fifth transmembrane-spanning segment of the gene SLC1A3.
Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain, by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors.
This gene encodes a trypsinogen, which is a member of the trypsin family of serine proteases. This enzyme is secreted by the pancreas and cleaved to its active form in the small intestine. It is active on peptide linkages involving the carboxyl group of lysine or arginine. This gene and several other trypsinogen genes are localized to the T cell receptor beta locus on chromosome 7.
Enterobacter taylorae is a Gram-negative bacteria formerly known as Enteric Group 19, and also known as Enterobacter cancerogenus. Strains of E. taylorae are positive for: Voges-Proskauer, citrate utilization, arginine dihydrolase and malonate utilization. They ferment D-glucose and also ferment D-mannitol, L-rhamnose and cellobiose. They are negative for indole production, urea hydrolysis, lysine decarboxylase and fermentation of adonitol, D-sorbitol and raffinose.
The amino acids present in greatest proportions were glutamic acid, alanine, glycine, and histidine. The overall concentration of amino acids is roughly 265 mg/100 ml of hemolymph. The presence of alanine, cysteine, glutamic acid, leucine, proline, tyrosine, and valine is shared among different species of cockroaches, such as Blattella germanica and P. americana. The presence of arginine, however, is species- specific to B. giganteus.
The metabolic disorder, lysinuric protein intolerance is caused by the body's inability to digest and use certain protein building blocks or amino acids. These are lysine, arginine, and ornithine. These amino acids are found in many protein-rich foods. Since in this disorder the human body cannot effectively break down these amino acids people typically experience nausea and vomiting after ingesting protein rich foods.
Microsporum audouinii is effective in utilizing its carbon sources, but growth is strongest in the hexoses (glucose, mannose and fructose) and weakest in maltose, sucrose, lactose and galactose. It is unable to synthesize the vitamins thiamine, niacin and riboflavin and requires an exogenous supply of these materials to support its growth. The fungus is only able to utilize organic nitrogen sources, particularly nitrogen from arginine and urea.
Proteolytic cleavage sites for full length osteopontin (OPN- FL). Thrombin exposes the cleaved epitope SVVYGLR (OPN-R), and then CPB removes the c-terminal arginine from OPN-R. The cleaved epitope has a non-RGD domain, which binds to integrin receptors (α4β1, α9β1, and α9β4). Next to the cleaved epitope, there is a RGD domain that interacts with other integrin receptors (αvβ1,3,5, and α5β1).
Upon binding these receptors, cells use several signal transduction pathways to elicit immune responses in these cells. OPN-R can be further cleaved by Carboxypeptidase B (CPB) by removal of C-terminal arginine and become OPN-L. The function of OPN-L is largely unknown. It appears an intracellular variant of OPN (iOPN) is involved in a number of cellular processes including migration, fusion and motility.
Due to this alternate method of removing excess arginine and ammonia from the bloodstream, subjects with arginase deficiency tend to have longer lifespans than those who have other urea cycle defects. Symptoms of the disorder include neurological impairment, dementia, retardation of growth, and hyperammonemia. While some symptoms of the disease can be controlled via dietary restrictions and pharmaceutical developments, no cure or completely effective therapy currently exists.
Amazake is believed to be very nutritious. It contains vitamin B1, B2, B6, folic acid, dietary fiber, oligosaccharide, cysteine, arginine and glutamine. It is often considered a hangover cure in Japan. Outside Japan, it is often sold in Asian grocery stores during the winter months, and, all year round, in natural food stores in the U.S. and Europe, as a beverage and natural sweetener.
Endothelial cell specific nitric oxide synthase (EcNOS) is activated by the pulsatile flow of blood through vessels. Nitric oxide produced by EcNOS, maintains the diameter of blood vessels and proper blood flow to tissues. In addition to this, nitric oxide also regulates angiogenesis, which plays a major role in wound healing. Thus, diabetic patients exhibit reduced ability to generate nitric oxide from L-arginine.
In contrast to prokaryotes, NAGS in mammals is enhanced by arginine, along with protamines. It is inhibited by N-acetylglutamic acid and its analogues (other N-acetylated compounds). The brain also contains N-acetylglutamic acid at trace amounts, however no expression of NAGS is found. This suggests that N-acetylglutamic acid is produced by another enzyme in the brain that is yet to be determined.
In molecular biology, the SR1 RNA is a small RNA (sRNA) produced by species of Bacillus and closely related bacteria. It is a dual-function RNA which acts both as a protein-coding RNA and as a regulatory sRNA. SR1 RNA is involved in the regulation of arginine catabolism. SR1 RNA binds to complementary stretches of ahrC mRNA (also known as argR and inhibits translation.
Other Diseases: The Consequence of "To Be or Not To Be" (P3.081), Neurology April 5, 2016 vol. 86 no. 16 Supplement P3.081 Since 2016, a special clinical variant of "rapidly progressive" MS has been found to be different from RRMS and other kinds of PPMS. It is due to a mutation inside the gene NR1H3, an arginine to glutamine mutation in the position p.
PY Buchod, TR Hawn, MR Siddiqui, P Saunderson, S Britton, I Abraham, AT Argaw, M Janer, LP Zhao, G Kaplan, A Aderem. Toll-like recepter 2 polymorphisms are associated with reversal reaction in leprosy. 2008. The Journal of Infectious Diseases 197(2):253-261 An Arginine to Glutamine mutation in TRL2, Arg753Gln, was connected to increased pediatric Urinary Tract Infections caused by gram- positive bacteria.
Another conserved glutamate residue forms a hydrogen bond with one of the hydroxyl groups on the ribose chain to further facilitate this nucleophilic attack. As a result of the cleavage reaction, nicotinamide is released. The modification can be reversed by ADP-ribosylhydrolases, which cleave the N-glycosidic bond between arginine and ribose to release ADP-ribose and unmodified protein; NAD+ is not restored by the reverse reaction.
Human monomeric endostatin is a globular protein containing two disulfide bonds: Cys162−302 and Cys264−294. It folds tightly, has a zinc binding domain at the N-terminus of the protein, and has a high affinity for heparin through an 11 arginine basic patch. Endostatin also binds all heparan sulfate proteoglycans with low affinity. Oligomeric endostatin (trimer or dimer) binds mainly with laminin of the basal lamina.
However, the dog is not merely an omnivore. More like the cat and less like other omnivores, the dog can only produce bile acid with taurine, and it cannot produce vitamin D, which it obtains from animal flesh. Also, more like the cat, the dog requires arginine to maintain its nitrogen balance. These nutritional requirements place the dog part-way between carnivores and omnivores.
Both recognize and bind poly-A RNA to transport RNA. Most SR proteins that do not shuttle out of the nucleus with an RNA transcript have nuclear retention signals. Shuttling SR proteins associate with the nuclear export factor TAP for export out of the nucleus. Methylation of arginine residues in the RRM may also contribute to the export of SR proteins out of the nucleus.
There is evidence from a phylogenetically diverse sample of tunicates (Urochordata) that AGA and AGG code for glycine. In other organisms, AGA/AGG code for either arginine or serine and in vertebrate mitochondria they code a STOP. Evidence for glycine translation of AGA/AGG was first found in 1993 in Pyura stolonifera and Halocynthia roretzi. It was then confirmed by tRNA sequencing and sequencing whole mitochondrial genomes.
Vasopressin V1b receptor (V1BR) also known as vasopressin 3 receptor (VPR3) or antidiuretic hormone receptor 1B is a protein that in humans is encoded by the AVPR1B (arginine vasopressin receptor 1B) gene. V1BR acts as a receptor for vasopressin. AVPR1B belongs to the subfamily of G-protein coupled receptors. Its activity is mediated by G proteins which stimulate a phosphatidylinositol- calcium second messenger system.
Generally, hydrophobic amino acids at P1 and P1' positions increase cleavage probability. Phenylalanine, leucine and methionine at the P1 position, and phenylalanine, tryptophan and tyrosine at the P1' position result in the highest cleavage probability. Cleavage is disfavoured by positively charged amino acids histidine, lysine and arginine at the P1 position. Pepsin cleaves Phe1Val, Gln4His, Glu13Ala, Ala14Leu, Leu15Tyr, Tyr16Leu, Gly23Phe, Phe24 in the insulin B chain.
Trypsin cuts the peptide bond specifically at the carboxyl end of the basic aminoacids arginine and lysine. If there is an acidic amino acid like aspartic acid or glutamic acid in direct neighborhood to the cutting site, the rate of hydrolysis is diminished, a proline C-terminal to the cutting site inhibits the hydrolysis completely.Thiede, B et al., Rapid Commun Mass Spectrom, 2000, 14 (6), 496-502.
Two populations of cells are cultivated in cell culture. One of the cell populations is fed with growth medium containing normal amino acids. In contrast, the second population is fed with growth medium containing amino acids labeled with stable (non-radioactive) heavy isotopes. For example, the medium can contain arginine labeled with six carbon-13 atoms (13C) instead of the normal carbon-12 (12C).
In enzymology, a proline racemase () is an enzyme that catalyzes the chemical reaction :L-proline \rightleftharpoons D-proline Hence, this enzyme has two substrates, L- and D-proline, and two products, D- and L- proline. This enzyme belongs to the family of proline racemases acting on free amino acids. The systematic name of this enzyme class is proline racemase. This enzyme participates in arginine and proline metabolism.
The catalytic domain of PRMTs consists of a SAM binding domain and substrate binding domain (about 310 amino acids in total). Each PRMT has a unique N-terminal region and a catalytic core. The arginine residue and SAM must be correctly oriented within the binding pocket. SAM is secured inside the pocket by a hydrophobic interaction between an adenine ring and a phenyl ring of a phenylalanine.
These predicted editing sites result in the translation of an Arginine instead of a Glutamine at the Q/R site and an Alanine instead of a Threonine at the T/A site. These codon changes are nonsynomonous. Since the editing sites are located just before a collagen like trimerization domain, editing may effect protein oligomerization. This region is also likely to be a protease domain.
These observations provided the biochemical tools needed to establish the new and unexpected field of nitric oxide biochemistry and made possible its rapid initial progress in cardiovascular and neural physiology. In 1988, he directly measured the gas nitric oxide, simultaneously with Michael Marletta, showing that it is the proximal nitrogen oxide produced during the biological oxidation of a terminal guanidino nitrogen atom of L-arginine.
It is unique in the fact that it is the first peptide toxin to be identified in any human fungal pathogen. C. albicans produces the protein Ece1 (extent of cell elongation 1) during the formation of hyphae. Cleavage of Ece1 at arginine/lysine residues by Kex2 and Kex1 releases several peptides, including the toxin Candidalysin. Consequently, Candidalysin is also known as Ece1-III62–92K.
Citrullination is a modification of proteins where a nitrogen in the amino acid arginine is replaced with an oxygen, converting it into citrulline. The modified (citrullinated) protein may be identified by as foreign, provoking an autoimmune inflammation response. Various kinds of citrullinated proteins have been detected in the joints of RA patients. One of these is Sa antigen, now known as mutated citrullinated vimentin (MCV).
Recent studies from Claire E Eyers lab confirm widespread human protein phosphorylation on multiple non-canonical amino acids, including motifs containing phosphorylated histidine (1 and 3 positions), aspartate, cysteine, glutamate, arginine and lysine in HeLa cell extracts. Due to the chemical and thermal lability of these phosphorylated residues, special procedures and separation techniques are required for preservation alongside the heat stable 'classical' Ser, Thr and Tyr phosphorylation.
Derived from ribose, a pentose, pentosidine forms fluorescent cross-links between the arginine and lysine residues in collagen. It is formed in a reaction of the amino acids with the Maillard reaction products of ribose. Although it is present only in trace concentrations among tissue proteins, it is useful for assessing cumulative damage to proteins--advanced glycation endproducts--by non-enzymatic browning reactions with carbohydrates.
Encyclopedia of Earth. eds. Sidney Draggan and C.J.Cleveland, National Council for Science and the Environment, Washington DC The genus is named after Theodor Escherich, the discoverer of Escherichia coli. Escherichia are facultative aerobes, with both aerobic and anaerobic growth, and an optimum temperature of 37 °C. Escherichia are usually motile by flagella, produce gas from fermentable carbohydrates, and do not decarboxylate lysine or hydrolyze arginine .
These two variable elements are always standard L-amino acids. In microcystin-LR these are leucine and arginine. The chemical composition of microcystin-LR, made up of 7 amino acids Eighty microcystins have been identified to date, representing differences in the two variable residues and some modifications in the other amino acids. These modifications include demethylation of Masp and Mdha and methylesterification of D-Glu.
Helicobacter typhlonius is a microaerophile capable of oxidative phosphorylation using oxygen as a terminal electron acceptor. In this species, fermentation of pyruvate and Acetyl-CoA to acetate is possible in the absence of oxygen. Additionally, carbohydrate breakdown includes both sucrose and mannose and amino acid degradation includes citrulline, aspartate, glutamate, and glutamine. H. typhlonius is also capable of arginine biosynthesis through the urea cycle.
For example, Oskar protein was found to localize to pole plasm and may be involved in anchoring Vasa to polar granules in the posterior pole of the oocyte. Another enzyme, fat facets, may further stabilize Vasa in the pole plasm. Other post-translational modification includes phosphorylation of the Vasa ortholog in C. elegans, and arginine methylation in a conserved region of mice, Xenopus and Drosophila Vasa genes.
Schematic representation of the assembly of the core histones into the nucleosome. In biology, histones are highly basic proteins found in eukaryotic cell nuclei that pack and order the DNA into structural units called nucleosomes. Histones are abundant in lysine and arginine. Histones are the chief protein components of chromatin, acting as spools around which DNA winds, and playing a role in gene regulation.
SRPK2 phosphorylates the serine residues of EVI5L EVI5L has been shown to interact with NUDT18 (nucleoside diphosphate linked moiety X)-type motif 18STRING - Known and Predicted Protein-Protein Interactions NUDT18 and EVI5L interaction and SRPK2 (serine/threonine-protein kinase 2).IntAct: molecular interaction data SRPK2 and EVI5L interaction NUDT18 is a member of the Nudix hydrolase family. Nudix hydrolases eliminate potentially toxic nucleotide metabolites from the cell and regulate the concentrations and availability of many different nucleotide substrates, cofactors, and signaling molecules.GeneCards: NUDT18 (nucleoside diphosphate linked moiety X)-type motif 18 NUDT18 (nucleoside diphosphate linked moiety X)-type motif 18 Function SRPK2 is a Serine/arginine rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing.
These enzymes consist of several conserved domains. The N-terminal domain has a flavodoxin-like fold, and is termed the "wing" domain because of its position in the overall 3D structure. Ornithine decarboxylase from Lactobacillus 30a (L30a OrnDC) is representative of the large, pyridoxal-5'-phosphate-dependent decarboxylases that act on lysine, arginine or ornithine. The crystal structure of the L30a OrnDC has been solved to 3.0 A resolution.
The structure of cyclothiazomycin A was established primarily by two-dimensional nuclear magnetic resonance spectroscopy. Cyclothiazomycin A contains a dehydroalanine and two dehydrohomoalanine residues within a bicyclic, macrocyclic scaffold composed of thiazolines, thiazoles, and a trisubstituted pyridine. Cyclothiazomycin B and C vary from cyclothiazomycin A at the second and third threonine residues in the core sequence of the precursor peptide. In cyclothiazomycin B, the second threonine is an arginine.
VAC14 knock-out mice die at, or shortly after birth and exhibit massive neurodegeneration. Fibroblasts from these mice display ~50% lower levels of PtdIns(3,5)P2 and PtdIns(5)P. A spontaneous mouse VAC14-point mutation (with arginine substitution of leucine156) is associated with reduced life span (up to 3 weeks), body size, enlarged brain ventricles, 50% decrease in PtdIns(3,5)P2 levels, diluted pigmentation, tremor and impaired motor function.
Octopine is a derivative of the amino acids arginine and alanine. It was the first member of the class of chemical compounds known as opines to be discovered. Octopine gets its name from Octopus octopodia from which it was first isolated in 1927. Octopine has been isolated from the muscle tissue of invertebrates such as octopus, Pecten maximus and Sipunculus nudus where it functions as an analog of lactic acid.
Glucose, glycerol, mannose, starch, maltose, sucrose, glutamate, alanine, ornithine, fumarate, malate, pyruvate, succinate, and lactate substrates support growth. Growth is not sustained on arabinose, lactose, mannitol, rhamnose, sorbitol, galactose, ribose, xylose, arginine, lysine, aspartate, glycine, acetate, propionate, and citrate. Sensitivity to novobiocin, bacitracin, anisomycin, aphidicolin, and rifampicin have been observed. However, no sensitivity has been shown to ampicillin, penicillin, chloramphenicol, erythromycin, neomycin, nalidixic acid, nystatin, tetracycline, streptomycin, or kanamycin.
The factor Xa protease can be used in biochemistry to cleave off protein tags that improve expression or purification of a protein of interest. Its preferred cleavage site (after the arginine in the sequence Ile- Glu/Asp-Gly-Arg, IEGR or IDGR) can easily be engineered between a tag sequence and the protein of interest. After expression and purification, the tag is then proteolytically removed by factor Xa.
Changing the tryptophan, tyrosine, or either lysine of the WRKYGQK motif to alanine completely abolishes DNA-binding, indicating these amino acids are essential for recognizing the W-box element. While not essential, altering the WRKYGQK motif arginine, glycine or glutamine to alanine reduces DNA-binding to the W-box. Overall, these complex WRKY protein domain-DNA interactions results in gene activation necessary for numerous aspects of plant development and defense.
Pyrodinium cannot grow with alanine, arginine, or histidine as nitrogen sources, indicating limited ability to assimilate organic nitrogen. Maximum growth rates and chlorophyll levels are observed when nitrogen levels are greater than 100 μM. Toxin production remains constant when nitrate is between 60 and 500 μM. Since toxin production remains constant even at nitrogen levels limiting to growth, toxin production must play an important role within Pyrodinium cells.
This enzyme also participates in following 3 metabolic pathways: pentose phosphate pathway, pentose and glucuronate interconversions, and arginine and proline metabolism. In addition to the cleavage of 2-dehydro-3-deoxy-D-gluconate 6-phosphate, it is also found to naturally catalyze Schiff base formation between a lysine E-amino acid group and carbonyl compounds, decarboxylation of oxaloacetate, and exchange of solvent protons with the methyl hydrogen atoms of pyruvate.
During metazoan spermiogenesis, the spermatid's chromatin is remodeled into a more spaced-packaged, widened, almost crystal-like structure. This process is associated with the cessation of transcription and involves nuclear protein exchange. The histones are mostly displaced, and replaced by protamines (small, arginine-rich proteins). It is proposed that in yeast, regions devoid of histones become very fragile after transcription; HMO1, an HMG-box protein, helps in stabilizing nucleosomes-free chromatin.
Protein hydrolysis is a useful route to the isolation of individual amino acids. Examples include cystine from hydrolysis of hair,, tryptophane from casein, histidine from red blood cells,, and arginine from gelatin. Common hydrolyzed products used in food are hydrolyzed vegetable protein and yeast extract, which are used as flavor enhancers because the hydrolysis of the protein produces free glutamic acid. Some hydrolyzed beef protein powders are used for specialized diets.
Staphylococcus condimenti is a Gram-positive, coagulase-negative member of the bacterial genus Staphylococcus consisting of single, paired, and clustered cocci. Strains of this species were originally isolated from fermenting soy sauce mash and are positive for catalase, urease, arginine dihydrolase, nitrate reductase, beta-galactosidase, and phosphatase activity. Unlike some clinical Staphylococcus isolates and some food-derived strains, S. condimenti has shown no noticeable resistance to antibiotics including lincomycin and penicillin.
KIAA1841 was found to interact with SRPK1 (Serine/arginine- rich protein-specific kinase 1) The interaction was detected via a protein kinase assay. SRPK1 localizes to the nucleus and the cytoplasm. By regulating intracellular localization of splicing factors it is thought to play a role in regulating both constitutive and alternative splicing. KIAA1841 is also found in the nucleus and is thought to play a role in regulating transcription.
The Basic Leucine Zipper Domain (bZIP domain) is found in many DNA binding eukaryotic proteins. One part of the domain contains a region that mediates sequence specific DNA binding properties and the leucine zipper that is required to hold together (dimerize) two DNA binding regions. The DNA binding region comprises a number of basic amino acids such as arginine and lysine. Proteins containing this domain are transcription factors.
Despite the toxic effects to mammalian cells, mastoparan is also a potential antibiotic template due to its potent antimicrobial activity. In design study performed by Irazazabal and co-workers (2016), it was demonstrated that the inclusion of an isoleucine and an arginine residue at positions 5 and 8 respectively [I5, R8], dramatically reduced the toxicity of mastoparan, turning it into a potentially valuable drug for fighting infectious disease.
The tripeptide Arg-Gly-Asp (RGD) consists of Arginine, Glycine, and Aspartate. It was originally identified as the amino acid sequence within the extracellular matrix protein fibronectin that mediates cell attachment. The RGD cell binding sequence has since been identified in other extracellular matrix proteins, including vitronectin and laminin. The family of membrane proteins known as integrins act as receptors for these cell adhesion molecules via the RGD motif.
6 genes: The true phenotype of DKC individuals may depend upon which protein has incurred a mutation. One documented autosomal recessive mutation in a family that carries DKC has been found in Nop10. Specifically, the mutation is a change of base from cytosine to thymine in a highly conserved region of the Nop10 sequence. This mutation, on chromosome 15, results in an amino acid change from arginine to tryptophan.
As was stated earlier, approximately 95% of the filtered water is reabsorbed into the blood supply. Since birds are able to produce hyperosmotic urine, the blood plasma usually contains a lot of water. In normally hydrated birds, the blood concentrations of arginine vasotocin, which is a peptide hormone involved in regulating plasma water concentrations, is 10pg/mL. Other hormones within the blood supply include angiotensin, aldosterone, and atrial natriuretic peptide.
In Molisch's test, 1-naphthol dissolved in ethanol, known as Molisch's reagent, is used as reagent for detecting the presence of carbohydrates. The test known as Molisch's test would give a red- or purple-colored compound to indicate the presence of carbohydrate. The rapid furfural test, similar to Molisch's test, also uses 1-naphthol. The Sakaguchi test uses 1-naphthol with sodium hypobromite to detect the presence of arginine in proteins.
Due to the aberrant codon usage of C. albicans it is less feasible to use the common host organism (Saccharomyces cerevisiae) for two-hybrid studies. To overcome this problem a C. albicans two-hybrid (C2H) system was created. The strain SN152 that is auxotrophic for leucine, arginine and histidine was used to create this C2H system. It was adapted by integrating a HIS1 reporter gene preceded by five LexAOp sequences.
A cartoon depicting movement of the S4 segment of a voltage sensor in response to depolarization. The voltage sensor domain contains four transmembrane helices, named S1 through S4. The S4 transmembrane helix contains a number of positively charged arginine and lysine amino acid residues. Voltage sensitivity in VSPs is generated primarily by these charges in the S4, in much the same way that voltage-gated ion channels are gated by voltage.
R-SNAREs are proteins that contribute an arginine (R) residue in the formation of the zero ionic layer in the assembled core SNARE complex. One particular R-SNARE is synaptobrevin, which is located in the synaptic vesicles. Q-SNAREs are proteins that contribute a glutamine (Q) residue in the formation of the zero ionic layer in the assembled core SNARE complex. Q-SNAREs include syntaxin and SNAP-25.
It is aerobic and heterotrophic. All strains are oxidase positive and catalase positive. Nitrate is reduced to nitrite. Degradation of elastin, starch and casein is positive. Strains SPS-243T, RQ-10 and RQ-12 utilize D-glucose, D-fructose, D-melibiose, D-cellobiose, sucrose, D-trehalose, D-raffinose, D-xylose, L-arabinose, D-sorbitol, D-mannitol, pyruvate, succinate, L-serine, L-asparagine, L-arginine, L-glutamine and L-proline.
Frataxin chaperones iron to the matrix side of ferrochelatase, where aspartate and histidine residues on both proteins coordinate iron transfer into ferrochelatase. Two arginine and tyrosine residues in the active site (Arg164, Tyr165) may perform the final metalation. Ferrochelatase active site with protoporphyrin IX substrate in green. Residues shown are: hydrophobic groups holding protoporphyrin IX (yellow), anionic proton transfer path (dark blue), metalation residues (cyan), catalytic histidine (red).
Protegrins are small peptides containing 16-18 amino acid residues. Protegrins were first discovered in porcine leukocytes and were found to have antimicrobial activity against bacteria, fungi, and some enveloped viruses. The amino acid composition of protegrins contains six positively charged arginine residues and four cysteine residues. Their secondary structure is classified as cysteine-rich β-sheet antimicrobial peptides, AMPs, that display limited sequence similarity to certain defensins and tachyplesins.
The two transmembrane domains are in continuous contact with the lipid bilayer and are thought to be the sensor for the tension in the lipid bilayer as well as sensor for voltage because of the three arginine residues present in those domains. Although MscS is activated by voltage it has been demonstrated that, voltage itself is insufficient to open the channel, thus functioning in a cooperative manner with the channel.
There are three natural transcript variants of TMEM8A. One is located at amino acid 136 where a threonine is swapped for an alanine. Another is present at amino acid 310 where an isoleucine is swapped for a valine and one at amino acid 567 where an arginine is swapped for a tryptophan. None of these variants result in a change of expression nor any loss/gain of function mutations.
Thrombin has multiple purposes, but mainly it converts soluble fibrinogen to an insoluble fibrin complex. Furthermore, it activates factors V, VIII and XI, all by cleaving the sequences GlyGlyGlyValArg-GlyPro and PhePheSerAlaArg-GlyHis, selectively between Arginine (Arg) and Glycine (Gly). These factors generate more thrombin. Thrombin also activates factor XIII that stabilizes the fibrin complex and therefore the clot and it stimulates platelets, which help with the coagulation.
Several studies have shown that histone acetyltransferase (HAT) inhibitors are useful in re-inducing expression of tumor suppression genes by stopping histone acetyltransferase activity to prevent chromatin condensation. Protein methyltransferase (PMT) inhibitors: PMT's play a key role in methylating lysine and arginine residues to affect transcription levels of genes. It has been suggested that their enzymatic activity plays a role in cancer, as well as neurodegenerative and inflammatory diseases.
There has been no general recommendation for treatment of patients with giant platelet disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with giant platelet disorders with mixed results, making this type of treatment contentious.
At first it was thought that the synthesis of steroidal alkaloids only involved multiple steps of hydroxylation, oxidation and amination of cholesterol with arginine as the source of the incorporated nitrogen. Later the glycoalkaloid metabolism genes were discovered. These genes produce the glycoalkaloid metabolism enzymes, which are responsible for the synthesis of steroidal alkaloid aglycones in potato and tomato plants. The reaction these enzymes perform are shown in the figure 1.
Legionella is auxotrophic for seven amino acids: cysteine, leucine, methionine, valine, threonine, isoleucine, and arginine. Once inside the host cell, Legionella needs nutrients to grow and reproduce. Inside the vacuole, nutrient availability is low; the high demand of amino acids is not covered by the transport of free amino acids found in the host cytoplasm. To improve the availability of amino acids, the parasite promotes the host mechanisms of proteasomal degradation.
This reinforces the idea of the strong, opposing host-specific selection pressure between humans and primates. Additionally, it was observed that methionine containing viruses replicated more efficiently in primates and arginine/lysine containing viruses in humans. This is evidence of the reason behind the mutation (optimal levels of replication in host CD4+ T lymphocytes), however the exact function and action of the position 30 amino acid is unknown.
This relaxation will decrease total peripheral resistance, which will in turn decrease venous return to the heart. The decrease in venous return to the heart will reduce the preload and will result in the heart's having to do less work. There is also a soluble guanylyl cyclase that cannot be stimulated by ANP. Instead, vascular endothelial cells will use L-arginine to make nitric oxide via nitric oxide synthase.
A partial extraction procedure was developed in 1935 which involved reacting the compound with benzoyl chloride to allow it to be separated from the water- soluble components. The compound was first isolated and purified to crystals by Osamu Shimomura. The structure of the compound was confirmed some years later. Feeding experiments suggest that the compound is synthesized in the animal from three amino-acids: tryptophan, isoleucine, and arginine.
Like HDACs, histone methyltransferases (HMTs) alter histones, but these enzymes are involved in the transfer of methyl groups to the histone's arginine and lysine residues. Chronic stress has been found to decrease the levels of a number of HMTs, such as G9a, in the NAc of susceptible mice. Conversely, in resilient mice, these HMTs have increased activity. H3K9 and H3K27 have less methylation when depressive behavior is seen.
1-Pyrroline-5-carboxylic acid (systematic name 3,4-dihydro-2H-pyrrole-2-carboxylic acid) is a cyclic imino acid. Its conjugate base and anion is 1-pyrroline-5-carboxylate (P5C). In solution, P5C is in spontaneous equilibrium with glutamate-5-semialdhyde (GSA). The stereoisomer (S)-1-pyrroline-5-carboxylate (also referred to as L-P5C) is an intermediate metabolite in the biosynthesis and degradation of proline and arginine.
Histones are positively charged molecules as they contain lysine and arginine in larger quantities and DNA is negatively charged. So they make a strong ionic bond in between them to form nucleosome. Packaging is also accomplished by specialized proteins that bind and fold the DNA. This generates a series of loops and coils that provide increasingly higher levels of organization and prevent the DNA from becoming tangled and unmanageable.
Serine-arginine family of RNA-binding protein Slr1 was found exert control on the polarized growth in Candida albicans. Slr1 mutations in mice results in decreased filamentation and reduces damage to epithelial and endothelial cells that leads to extended survival rate compared to the Slr1 wild-type strains. Therefore, this research reveals that SR-like protein Slr1 plays a role in instigating the hyphal formation and virulence in C. albicans.
Cronobacter is a genus of Gram-negative, facultatively anaerobic, oxidase- negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. They are generally motile, reduce nitrate, use citrate, hydrolyze esculin and arginine, and are positive for L-ornithine decarboxylation. Acid is produced from D-glucose, D-sucrose, D-raffinose, D-melibiose, D-cellobiose, D-mannitol, D-mannose, L-rhamnose, L-arabinose, D-trehalose, galacturonate and D-maltose. Cronobacter spp.
This condition is characterized by thickening (hypertrophy) of the cardiac muscle that can lead to heart failure. The m.8528T>C mutation occurs in the overlapping region of the MT-ATP6 and MT-ATP8 genes and has been described in multiple patients with infantile cardiomyopathy. This mutation changes the initiation codon in MT- ATP6 to threonine as well as a change from tryptophan to arginine at position 55 of MT-ATP8.
In humans, the enzyme's active site has 2-3 amino-terminal dsRNA binding domains (dsRBDs) and one carboxy terminal catalytic deaminase domain. In the dsRBD domain there is a conserved α-β-β-β-α configuration present. ADAR1 contains two areas for binding Z-DNA known as Zα and Zβ. ADAR2 and ADAR3 have an arginine rich single stranded RNA (ssRNA) binding domain. A crystal structure of ADAR2 has been solved.
There appear to be some hereditary factors in how and when these develop. The first ability is a hormone cycle that reduces the body's urine production. At about sunset each day, the body releases a minute burst of antidiuretic hormone (also known as arginine vasopressin or AVP). This hormone burst reduces the kidney's urine output well into the night so that the bladder does not get full until morning.
PLP-dependent enzymes are prevalent because they are needed to transform amino acids into other resources. ALAS is a homodimer with similarly sized sub units and the active sites consisting of amino acid side chains such as arginine, threonine, and lysine exist at a subunity interface. The protein when extracted from R. spheroids contains 1600-folds and weighs about 80,000 daltons. Enzymatic activity varies for different sources of the enzyme.
Common species such as the tiger salamander and the mudpuppy are being given hormones to stimulate the production of sperm and eggs, and the role of arginine vasotocin in courtship behaviour is being investigated. Another line of research is artificial insemination, either in vitro or by inserting spermatophores into the cloacae of females. The results of this research may be used in captive-breeding programmes for endangered species.
Editing also has several other function effects. Editing alters the maturation and assembly of the channel, with the unedited form having a tendency to tetramerize and then is transported to the synapse. However, the edited version is assembled as a monomer and resides mainly in the endoplasmic reticulum. The arginine residue in the pore loop of GluR-2 receptor is thought to belong to a retention signal for the endoplasmic reticulum.
The second catalytic residue is pre-positioned to donate a proton quickly after a carbanionic intermediate is formed and thus reduces the chance of alternative reactions occurring. There are two potential conflicts with this traditional mechanism, as identified by Watanabe et al. First, Arg219 forms a hydrogen bond with pyridine nitrogen of PLP. The arginine group has a pKa of about 12.6 and is therefore unlikely to protonate the pyridine.
In enzymology, an ornithine racemase () is an enzyme that catalyzes the chemical reaction :L-ornithine \rightleftharpoons D-ornithine Hence, this enzyme has one substrate, L-ornithine, and one product, D-ornithine. This enzyme belongs to the family of isomerases, specifically those racemases and epimerases acting on amino acids and derivatives. The systematic name of this enzyme class is ornithine racemase. This enzyme participates in d-arginine and d-ornithine metabolism.
Trypsin () is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins.The German physiologist Wilhelm Kühne (1837-1900) discovered trypsin in 1876. See: Trypsin is formed in the small intestine when its proenzyme form, the trypsinogen produced by the pancreas, is activated. Trypsin cuts peptide chains mainly at the carboxyl side of the amino acids lysine or arginine.
Ornithine is converted into a urea derivative at the δ (terminal) nitrogen by carbamoyl phosphate synthetase. Another nitrogen is added from aspartate, producing the denitrogenated fumarate, and the resulting arginine (a guanidinium compound) is hydrolysed back to ornithine, producing urea. The nitrogens of urea come from the ammonia and aspartate, and the nitrogen in ornithine remains intact. Ornithine is not an amino acid coded for by DNA, that is, not proteinogenic.
Evidence of two reserved ARM superfamily domains are shown in the TMCO6 protein. The ARM domain, Armadillo/ beta-catenin-like-repeat, is about a 40 amino acid long tandem repeat that forms superhelix of helices. Another feature is that TMCO6 has an Arginine rich region that is within the coil-coiled region. This indicates that the Arg rich area might be an important structural feature of the coiled- coil region.
Onnamide A is a complex biomolecule with a 39 unique carbon atoms and 11 degrees of unsaturation. Its core contains three rings, two of which comprise a dimeric lactone structure. It contains a long side chain that has a three conjugated trans- olefins that connects to an amide bond, terminating in an arginine residue. The stereochemical assignments of onnamide A have been extensively characterized by experimental and advanced NMR studies.
After mRNA binds to ALY, it is apparently transferred to the NXF1-NXT1 heterodimer for export (TAP/NFX1 pathway). The full-length ALY protein (Refbp1-I, 255 amino acids encoded by six exons) has a conserved RNA recognition motif (RRM; amino acids 105-182) flanked by alanine/arginine/glycine-rich sequences; an N-terminal region (amino acids 16-37) is sufficient for RNA binding and interaction with the NXF1-NXT1 heterodimer.
D1 and D2 receptors interact primarily through discrete amino acids in the cytoplasmic regions of each receptor, with no involvement of transmembrane parts. The intracellular loop 3 of the D2 receptor contains two adjacent arginine residues, while the carboxyl tail of the D1 receptor possesses two adjacent glutamic acid residues. The two receptors can form a heteromer complex via a salt bridge between the guanidine moiety and the carboxylic group.
Glycocyamine (or guanidinoacetate) is a metabolite of glycine in which the amino group has been converted into a guanidine by guanylation (transfer of a guanidine group from arginine). In vertebrate organism it is then transformed into creatine by methylation. Glycocyamine is used as a supplement and as a feed additive in poultry farming. However, the metabolism of creatine from glycocyamine in the liver causes a depletion of methyl groups.
Felypressin is a non-catecholamine vasoconstrictor that is chemically related to vasopressin, the posterior pituitary hormone. It is added to some local anaesthetics such as prilocaine in a concentration of 0.03 IU/ml. Felypressin is a Vasopressin 1 agonist, and will thus have effects at all Arginine vasopressin receptor 1As. It will, however, have its main physiological effects on vascular SMC's due to the form in which it is administered.
This arginine-hydroxylase is involved in the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I, MT-ND1) at early stages. Complex I is composed of 45 evolutionally conserved core subunits, including both mitochondrial DNA and nuclear encoded subunits. One of its arms is embedded in the inner membrane of the mitochondria, and the other is embedded in the organelle. The two arms are arranged in an L-shaped manner.
As mentioned above, H. pylori produce large amounts of urease to produce ammonia as one of its adaptation methods to overcome stomach acidity. Helicobacter pylori arginase, a bimetallic enzyme binuclear Mn2-metalloenzyme arginase, crucial for pathogenesis of the bacterium in human stomach, a member of the ureohydrolase family, catalyzes the conversion of L-arginine to L-ornithine and urea, where ornithine is further converted into polyamines, which are essential for various critical metabolic processes. This provides acid resistance and is thus important for colonization of the bacterium in the gastric epithelial cells. Arginase of H. pylori also plays a role in evasion of the pathogen from the host immune system mainly by various proposed mechanisms, arginase competes with host-inducible nitric oxide (NO) synthase for the common substrate L-arginine, and thus reduces the synthesis of NO, an important component of innate immunity and an effective antimicrobial agent that is able to kill the invading pathogens directly.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
Structures of this enzyme have been solved by both NMR and X-ray crystallography. See the links to PDB structures in the info boxes on the right for a current list of structures available in the PDB. The protein contains a beta sheet stacked on two alpha helices described by CATH as an Alpha-Beta Plait fold. The active site sits between sheet and helices and contains an arginine and an asparagine.
At the start of the assembly, 2,3-DHB is activated by MrbC and subsequently passed to MrbD, where it is attached to the arginine in the first module by MrbJ. The second module of MrbJ incorporates fhOrn, which is generated by the tailoring enzymes Amir_5066 and Amir_1095. The second addition of 2,3-DHB is followed by a hydrolytic cleavage, releasing the siderophore. Biosynthesis of mirubactin as proposed by Giessen, T. and coworkers (2012).
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
If as expected MS is an heterogeneous disease and the lesion development process would not be unique. In particular, some PPMS patients have been found to have a special genetic variant named rapidly progressive multiple sclerosis which would behave differently from what here is explained. It is due to a mutation inside the gene NR1H3, an arginine to glutamine mutation in the position p.Arg415Gln, in an area that codifies the protein LXRA.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
A particular cytokine gene encodes for IL-2, which influences T cell proliferation, survival, and differentiation. The absence of CD28 costimulation results in the loss of IL-2 production causing the T cells to be anergic. Additionally, CD28 ligation causes arginine-methylation for many proteins. CD28 also drives transcription within T cells and produce signals that lead to IL-2 production and Bcl-xL regulation, an antiapoptotic protein, which are essential for T cell survival.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
Histidine is one of the amino acids that can be converted to intermediates of the tricarboxylic acid (TCA) cycle.Board review series (BRS)-- Biochemistry, Molecular Biology, and Genetics (fifth edition): Swanson, Kim, Glucksman Histidine, along with other amino acids such as proline and arginine, takes part in deamination, a process in which its amino group is removed. In prokaryotes, histidine is first converted to urocanate by histidase. Then, urocanase converts urocanate to 4-imidazolone-5-propionate.
Although structural changes following phosphorylation are uncertain, crystallisation of parkin revealed a cationic pocket in RING0 formed by lysine and arginine residues Lys161, Arg163 and Lys211 that forms a putative phosphate binding site. Considering that RING0 is unique to parkin and that its hydrophobic interface with RING1 buries Cys431 in inactive parkin, targeting of phosphorylated Ub and/or Ubl towards this binding niche might be critical in dismantling autoinhibitory complexes during parkin activation.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as Chromatin. The basic structural unit of chromatin is the Nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
Studies have linked expression of CCDC113 in cancerous tissues to mutations present in the coding sequence. Missense mutations at location 86 from Arginine to Tryptophan (R86Y) and at R180C are related to adenocarcinomas of the colon. Two point mutations have also been linked to adenocarcinomas of the rectum, a missense mutation of R361Q and a base pair point mutation c972t. Serous carcinoma of the ovaries has been related to a missense mutation S6F.
Based on the fact that intrepicalcin and imperacalcin have a 70% sequence homology (see Homology), it is predicted that intrepicalcin has a coiled, spherical structure. The ICK motif contains three disulfide bridges embedded in 𝛽 strands. Most positively-charged residues (lysine and arginine) are located on the frontal side of the peptide. However, compared to other calcins, intrepicalcin contains two extra positively-charged basic lysines (residue 12 and 14) on its dorsal side.
The sequence of bovine neurotensin was determined to be pyroGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg- Arg-Pro-Tyr-Ile-Leu-OH. Neurotensin is synthesized as part of a 169 or 170 amino acid precursor protein that also contains the related neuropeptide neuromedin N. The peptide coding domains are located in tandem near the carboxyl terminal end of the precursor and are bounded and separated by paired basic amino acid (lysine-arginine) processing sites.
Arginine decarboxylase is a multimer of protein subunits. For instance, the form of this enzyme in E. coli is a ca. 800 kDa decamer of identical subunits, and is composed as a pentamer of dimers. Each subunit can be divided into five domains: (1) the amino-terminal wing domain, (2) the linker domain, (3) the PLP-binding domain, (4) the aspartate aminotransferase- (AspAT-) like small domain, and (5) the carboxy-terminal domain.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
On the other hand, some amino acids can be lost with heat. Lysine, both a reactive and an essential amino acid, has low retention during processing. Loss of lysine also decreases digestible protein and thus, is thought to be a sign of protein damage in extrudates. Other amino acids such as cysteine, arginine, histidine, and aspartic acid have been known to decrease in availability due to the low moisture content during processing.
The solvent-extracted meals have a lower fat content of 0.5% than the mechanically extracted meals with a fat content of 2.0%. Cottonseed meal contains more arginine than soybean meal. Cottonseed meal can be used in multiple ways: either alone or mixed with other plant and animal protein sources. Cottonseed hulls The outer coverings of the cottonseed, known as cottonseed hulls, are removed from the cotton kernels before the oil is extracted.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as Chromatin. The basic structural unit of chromatin is the Nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The high mannose form weighs 32kDa and the complex form, 35kDa. Granzyme B contains the catalytic triad histidine-aspartic acid-serine in its active site and preferentially cleaves after an aspartic acid residue situated in the P1 position. The aspartic acid residue to be cleaved associates with an arginine residue in the enzyme's binding pocket. Granzyme B is active at a neutral pH and is therefore inactive in the acidic CTL granules.
With the discovery that TDP-43, FUS, and C9orf72 can cause ALS as well as related forms of frontotemporal dementia (FTD/ALS) there has been intense effort to understand how these mutations cause disease, and whether other protein dysfunction may be important. it appeared that differences in the methylation of arginine residues in FUS protein may be relevant, and methylation status may be a way to distinguish some forms of FTD from ALS.
The removal of the methionine is more efficient when the second residue is small and uncharged (for example alanine), but inefficient when it is bulky and charged such as arginine. Once the f-Met is removed, the second residue becomes the N-terminal residue and are subject to the N-end rule. Residues with middle sized side-chains such as leucine as the second residue therefore may have a short half-life.
Sialoadhesin binds to certain molecules called sialic acids. During this binding process a salt bridge (protein) is formed between a highly conserved arginine residue (from the v-set domain to the 3'-sialyllactose) and the carboxylate group of the sialic acid. Since sialoadhesin binds sialic acids with its N-terminal IgV-domain, it is also a member of the SIGLEC family. Alternate names for sialoadhesin include siglec-1 and CD169 (cluster of differentiation 169).
It is predicted that C9orf84 undergoes several other post-translational modifications, including glycosylation and o-linked glycosylation, and it contains leucine-rich nuclear export signals. Compared to the generic reference set swp23s.q, the primary structure of the protein is deficient in the amino acid grouping AGP (alanine, glycine, proline), and contains more acidic amino acids (glutamate, aspartate) than basic amino acids (lysine, arginine). This is true for the protein in all vertebrates.
Barettin is a brominated alkaloid made of a dehydrogenated brominated derivative of tryptophan linked by two peptide bonds to an arginine residue, forming a 2,5-diketopiperazine nucleus. It is a cyclic dipeptide. Barettin is the major compound in the deep-sea sponge Geodia barretti. It was isolated for the first time in 1986 by Göran Lidgren, Lars Bohlin and Jan Bergman at Uppsala University, Sweden but the correct chemical structure was determined later in 2002.
In the first step of arginine biosynthesis in bacteria, glutamate is acetylated by transferring the acetyl group from acetyl-CoA at the N-α position; this prevents spontaneous cyclization. The enzyme N-acetylglutamate synthase (glutamate N-acetyltransferase) is responsible for catalyzing the acetylation step. Subsequent steps are catalyzed by the enzymes N-acetylglutamate kinase, N-acetyl-gamma-glutamyl-phosphate reductase, and acetylornithine/succinyldiamino pimelate aminotransferase and yield the N-acetyl-L-ornithine.
The term mycoplasma ( meaning fungus, and , meaning formed) is derived from the fungal-like growth of some mycoplasma species. The mycoplasmas were classified as Mollicutes (“mollis”, meaning soft and “cutis”, meaning skin) in 1960 due to their small size and genome, lack of cell wall, low G+C content and unusual nutritional needs. M. pneumoniae has also been designated as an arginine nonfermenting species. Mycoplasmas are further classified by the sequence composition of 16s rRNA.
Reabsorption is also increased by volume contraction, reduced renal plasma flow as in congestive heart failure, and decreased glomerular filtration. Creatinine formation begins with the transamidination from arginine to glycine to form glycocyamine or guanidoacetic acid (GAA). This reaction occurs primarily in the kidneys, but also in the mucosa of the small intestine and the pancreas. The GAA is transported to the liver where it is methylated by S-adenosyl methionine (SAM) to form creatine.
S. intermedius is the species in this group most commonly isolated from brain and liver abscesses. The S. anginosus group can possess Lancefield group antigens A, C, G, and F, although S. intermedius almost never possesses Lancefield group antigens. Isolates of the S. anginosus group have a characteristic "butterscotch" odor. Members of the group are universally positive for three biochemical reactions: acetoin production from glucose (positive Vogues–Proskauer reaction), arginine, and sorbitol.
They cannot synthesize isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. Because they must be ingested, these are the essential amino acids. Mammals do possess the enzymes to synthesize alanine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine, the nonessential amino acids. While they can synthesize arginine and histidine, they cannot produce it in sufficient amounts for young, growing animals, and so these are often considered essential amino acids.
Two arginine residues at position 265 and 511 and one lysine residue at position 508 were found to be key in IP3 docking. Using a modified form of IP3, it was discovered that all three phosphate groups interact with the receptor, but not equally. Phosphates at the 4th and 5th positions interact more extensively than the phosphate at the 1st position and the hydroxyl group at the 6th position of the inositol ring.
Early stage of the genetic code (GC- Code) with "alanine world" and its possible alternatives. The genetic code evolved during the transition from the RNA world to a protein world. The Alanine World Hypothesis postulates that the evolution of the genetic code (the so-called GC phase ) started with only four basic amino acids: Alanine, Glycine, Proline and Ornithine (now Arginine). The evolution of the genetic code ended with 20 proteinogenic amino acids.
L-ornithine is converted to L-arginine, which is then decarboxylated via PLP to form agmatine. Hydrolysis of the imine derives N-carbamoylputrescine followed with hydrolysis of the urea to form putrescine. The separate pathways of converting ornithine to putrescine in plants and animals have converged. A SAM-dependent N-methylation of putrescine gives the N-methylputrescine product, which then undergoes oxidative deamination by the action of diamine oxidase to yield the aminoaldehyde.
The reaction happens with two metal cofactors (Mg or Mn) coordinated to the two aspartate residues on C1. They perform a nucleophilic attack of the 3'-OH group of the ribose on the α-phosphoryl group of ATP. The two lysine and aspartate residues on C2 selects ATP over GTP for the substrate, so that the enzyme is not a guanylyl cyclase. A pair of arginine and asparagine residues on C2 stabilizes the transition state.
The active site contains a catalytic triad of syrine, histine and arginine, which is conserved across all mutants and is proposed to initiate the reaction. The triad residues are located at Ser86, Asp210, and His232. This triad is proposed to catalyze a proton extraction which triggers a transfer of electrons leading to the elimination of pyruvate and formation of SHCHC. Originally, it was proposed that the transition state was stabilized by a nontraditional oxyanion hole.
Due to its high proteolytic specificity, thrombin is a valuable biochemical tool. The thrombin cleavage site (Leu-Val-Pro-Arg-Gly-Ser) is commonly included in linker regions of recombinant fusion protein constructs. Following purification of the fusion protein, thrombin can be used to selectively cleave between the arginine and glycine residues of the cleavage site, effectively removing the purification tag from the protein of interest with a high degree of specificity.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
AVPR1B is found in different parts of the body and thus has several influences and regulatory actions. Arginine vasopressin influences several symptoms related to affective disorders including significant memory processes, pain sensitivity, synchronization of biological rhythms and the timing and quality of REM sleep. Studies have shown that AVPR1B deficiencies produce behavioral changes that can be reversed when the peptide is replaced. These effects are expressed through contact with specific plasma membrane receptors.
Nitric oxide synthases () (NOSs) are a family of synthases that catalyze the production of nitric oxide (NO) from L-arginine. NO is a chemical messenger with diverse functions throughout the body. In the brain and peripheral nervous system, NO displays many properties of a neurotransmitter and may be involved in long term potentiation. It is implicated in neurotoxicity associated with stroke and neurodegenerative diseases, neural regulation of smooth muscle, including peristalsis, and penile erection.
The treatment goal for individuals affected with OTC deficiency is the avoidance of hyperammonemia. This can be accomplished through a strictly controlled low-protein diet, as well as preventive treatment with nitrogen scavenging agents such as sodium benzoate. The goal is to minimize the nitrogen intake while allowing waste nitrogen to be excreted by alternate pathways. Arginine is typically supplemented as well, in an effort to improve the overall function of the urea cycle.
It has been recognised that there is an association between oral and intestinal cancer related deaths and chronic periodontitis. This is based on the high amounts of tumor suppressor gene p53 mutations and k-ras arginine mutations found in patients with pancreatic cancer. Peptidylarginine deiminases from oral bacteria are thought to be responsible for these mutations. This means that there could be a causative link between oral bacteria, particularly the red complex, and pancreatic cancer.
When acidification occurs, an irreversible conformational change occurs making the final product of an icosahedral capsid. This is done by sending any excess CPs from the RNA to the outside of the new capsid. This process is reliant on the basicity of the CP due to its N-terminal arginine-rich motif (ARM) and the capsid exterior negative charge density. The capsid protein is also involved in viral movement, transmission, symptom expression, and targeted hosts.
In the human body, the steps that lead to the release of glucocorticoids such as cortisol begin with the release of corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). These hormones travel through the blood vessels to the anterior pituitary gland of the brain. At this location, adrenocorticotropic hormone (ACTH) is released. ACTH binds to the receptors in the adrenal glands, which are located atop the kidneys, and this causes the release of cortisol.
FUS/TLS is a member of the TET protein family that also includes the EWS protein, the TATA-binding protein (TBP)-associated factor (TAFII68/TAF15) and the Drosophila cabeza/SARF protein. FUS/TLS, EWS and TAFII68/TAF15 have a similar structure characterised by an N-terminal QGSY-rich region, a highly conserved RNA recognition motif (RRM), multiple RGG repeats, which are extensively dimethylated at arginine residues and a C-terminal zinc finger motif.
In heterotrimeric G proteins, catalysis of GTP can be assisted by aluminum tetrafluoride () and RGS4. Heterotrimeric G proteins are larger three-part proteins serve in signal transduction of many pathways. The catalytic mechanism for GTP hydrolysis in heterotrimeric G proteins consists of an active state where catalysis is likely to occur and an inactive state where catalysis is unlikely. In the active state, stabilizes the transition state and points the arginine finger residue towards GTP.
In archea and bacteria, there are several metacaspases with a wide range of domain organizations. Based on the prokaryote metacaspase diversity, paracaspases and orthocaspases can be considered sub-classes among the metacaspases. Common for all three classes are their specificity for basic residues (arginine or lysine) in the P1 position. At this moment, no structural variants have been reported where the substrate specificity would change to an acidic residue (aspartic acid), like in true caspases.
This gene encodes a member of the atrophin family of arginine-glutamic acid (RE) dipeptide repeat-containing proteins. The encoded protein co-localizes with a transcription factor in the nucleus, and its overexpression triggers apoptosis. A similar protein in mouse associates with histone deacetylase and is thought to function as a transcriptional co-repressor during embryonic development. Recent reports also indicate that RERE and its Drosophila homolog associate with histone methyltransferases in regulating gene expression.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
Sequenced NSCC2 family proteins are 283-402 amino acyl residues in length and exhibit two putative transmembrane α-helical segments (TMSs). The S. cerevisiae protein, of 283 amino acyl residues, has cytoplasmic N- and C-termini with two putative TMSs at positions 159-178 and 193-213. The C-terminal 25 residues are rich in arginine and lysine. These proteins have been reported to be present in both endoplasmic reticular and cytoplasmic membranes.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as Chromatin. The basic structural unit of chromatin is the Nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
This gene encodes a cytosolic leucine-tRNA synthetase, a member of the class I aminoacyl-tRNA synthetase family. The encoded enzyme catalyzes the ATP-dependent ligation of L-leucine to tRNA(Leu). It is found in the cytoplasm as part of a multisynthetase complex and interacts with the arginine tRNA synthetase through its C-terminal domain. Alternatively spliced transcript variants of this gene have been found; however, their full-length nature is not known.
Stellate cell The pathophysiology of portal hypertension is indicated by increased vascular resistance via different causes; additionally, hepatic stellate cells and myofibroblasts are activated. Increased endogenous vasodilators in turn promote more blood flow in the portal veins. Nitric oxide is an endogenous vasodilator and it regulates intrahepatic vascular tone (it is produced from L-arginine). Nitric oxide inhibition has been shown in some studies to increase portal hypertension and hepatic response to norepinephrine.
Kallikrein 13 (, KLK13, kallikrein mK13, mGK-13, mK13, mKLK13, prorenin converting enzyme 1, PRECE-1, prorenin-converting enzyme, PRECE, proteinase P) is an enzyme. This enzyme catalyses the following chemical reaction : Hydrolyses mouse Ren2 protein (a species of prorenin present in the submandibular gland) on the carboxy side of the arginine residue at the Lys- Arg- pair in the N-terminus, to yield mature renin This enzyme belongs in peptidase family S1A.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as Histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
Histones can be methylated on lysine (K) and arginine (R) residues only, but methylation is most commonly observed on lysine residues of histone tails H3 and H4. The tail end furthest from the nucleosome core is the N-terminal (residues are numbered starting at this end). Common sites of methylation associated with gene activation include H3K4, H3K48, and H3K79. Common sites for gene inactivation include H3K9 and H3K27.Gilbert, S. F. (2010).
Through its NF1-GRD domain, neurofibromin increases the rate of GTP hydrolysis of Ras, and acts as a tumor suppressor by reducing Ras activity. When the Ras-Nf1 complex assembles, active Ras binds in a groove that is present in the neurofibromin catalytic domain. This binding occurs through Ras switch regions I and II, and an arginine finger present in neurofibromin. The interaction between Ras and neurofibromin causes GAP- stimulated hydrolysis of GTP to GDP.
Trypsin inhibitors require a specific three-dimensional structure in order to follow through with inactivation of trypsin in the body. They bind strongly to trypsin, blocking its active site and instantly forming an irreversible compound and halting digestion of certain proteins. Trypsin, a serine protease, is responsible for cleaving peptide bonds containing carbonyl groups from arginine or lysine. After a meal, trypsin is stimulated by cholecystokinin and undergoes specific proteolysis for activation.
Arginase catalyzes the hydrolysis of arginine to ornithine and urea. At least two isoforms of mammalian arginase exist (types I and II) which differ in their tissue distribution, subcellular localization, immunologic crossreactivity and physiologic function. The type I isoform encoded by this gene, is a cytosolic enzyme and expressed predominantly in the liver as a component of the urea cycle. Inherited deficiency of this enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome: this consists of the core octamer of histones (H2A, H2B, H3 and H4) as well as a linker histone and about 180 base pairs of DNA. These core histones are rich in lysine and arginine residues.
The genomic DNA of eukaryotic cells is wrapped around special protein molecules known as histones. The complexes formed by the looping of the DNA are known as chromatin. The basic structural unit of chromatin is the nucleosome, which consists of the core octamer of histones (H2A, H2B, H3, and H4) as well as a linker histone and about 180 base pairs of DNA wrapped around it. These core histones are rich in lysine and arginine residues.
Conivaptan hydrochloride is an arginine vasopressin (AVP) receptor antagonist with affinity for human V1A and V2 receptors in the nanomolar range in vitro. AVP levels in blood are crucial for water and electrolyte regulation and balance. V2 receptors maintain plasma osmolality and are coupled to aquaporin channels in the collecting ducts of kidneys where they regulate AVP levels. Conivaptan hydrochloride functions by antagonizing V2 receptors in the renal collecting ducts and thus causing aquaresis or water secretion.
Structure α-PMTX consists of 13 amino acid residues with the sequence Arg-Ile-Lys-Ile-Gly-Leu- Phe-Gln-Asp-Leu-Ser-Lys-Leu-NH2. Replacement of the lysine residue at position 12 of α-PMTX with arginine results in β-PMTX. Homology α-PMTX has no structural homology with other toxins. It lacks disulfide bonds which are known to be present in other toxins acting on sodium channels, such as sea anemone toxins or scorpion toxins.
APC/C substrates have recognition amino acid sequences that enable the APC/C to identify them. The most common sequence is known as the destruction box or D-box. APC/C brings together an E2 ubiquitin- conjugating enzyme and the D-box rather than being an intermediate covalent carrier. The D-box should have a version of the following amino acid sequence: RXXLXXXXN, where R is arginine, X is any amino acid, L is Leucine, and N is asparagine.
The protein encoded by this gene contains ARF-GAP, RHO-GAP, ankyrin repeat, RAS- associating, and pleckstrin homology domains. This protein lacks the predicted catalytic arginine in the RHO-GAP domain and is therefore unlikely to have RHO-GAP activity. While the encoded protein does contain a sterile alpha motif (SAM) commonly found in some signaling molecules, the function of the protein has not been determined. Two transcript variants encoding different isoforms have been found for this gene.
They are the most common hereditary causes for thrombophilia (a tendency to form blood clots). The most common one of these, factor V Leiden, is due to the replacement of an arginine residue with glutamine at amino acid position 506 (R506Q). All prothrombotic factor V mutations (factor V Leiden, factor V Cambridge, factor V Hong Kong) make it resistant to cleavage by activated protein C ("APC resistance"). It therefore remains active and increases the rate of thrombin generation.
This gene encodes one of the two alpha chains of type XI collagen, a minor fibrillar collagen. It is located on chromosome 6 very close to but separate from the gene for retinoid X receptor beta. Type XI collagen is a heterotrimer but the third alpha chain is a post-translationally modified alpha 1 type II chain. Proteolytic processing of this type XI chain produces PARP, a proline/arginine-rich protein that is an amino terminal domain.
The arginine-rich domain of the Rev protein, containing a nuclear localization signal (NLS), allows Rev to enter the nucleus. Entry requires binding between a Rev multimer, Ran-GDP, and importin-β (a nuclear transport factor). The Rev NLS is a highly similar sequence to that of the importin-β-binding site present within importin-α, which allows for the interaction between Rev and importin-β. The NLS overlaps with the sequence required for RNA-binding.
Protein methylation is a type of post-translational modification featuring the addition of methyl groups to proteins. It can occur on the nitrogen-containing side-chains of arginine and lysine, but also at the amino- and carboxy-termini of a number of different proteins. In biology, methyltransferases catalyze the methylation process, activated primarily by S-adenosylmethionine. Protein methylation has been most studied in histones, where the transfer of methyl groups from S-adenosyl methionine is catalyzed by histone methyltransferases.
The asymmetric structure consists of an N-terminal beta-trefoil domain and a C-terminal alpha helical domain with a folding pattern similar to an armadillo repeat fold. The split formed by the two terminals contains multiple arginine and lysine residues that coordinate the three phosphoryl groups of InsP3R. The InsP3R complex is formed of four 313 kDa subunits. In amphibians, fish and mammals, there are 3 paralogs and these can form homo- or hetero-oligomers.
The sRNA ncrMT1302 was found to be flanked by the MT1302 and MT1303 open reading frames. MT1302 encodes an adenylyl cyclase that converts ATP to cAMP, the expression of ncrMT1302 is regulated by cAMP and pH. Mcr7 sRNA encoded by the mcr7 gene modulates translation of the mRNA and impacts the activity of the Twin Arginine Translocation (Tat) protein secretion apparatus. npcTB_6715 is a first sRNA identified as a potential biomarker for the detection of MTB in patients.
Most prokaryotes (bacteria) and lower eukaryotes (fungus, green algae, plants, and so on) produce NAG through ornithine acetyltransferase (OAT), which is part of a ‘cyclic’ ornithine production pathway. NAGS is therefore used in a supportive role, replenishing NAG reserves as required. In some plants and bacteria, however, NAGS catalyzes the first step in a ‘linear’ arginine production pathway. The protein sequences of NAGS between prokaryotes, lower eukaryotes and higher eukaryotes have shown a remarkable lack of similarity.
A number of injectable arginine vasopressins are in clinical use in the United States and the European Union. Pitressin among others, is a medication most commonly used in the treatment of frequent urination, increased thirst, and dehydration such as that resulting from diabetes insipidus, which causes increased and diluted urine. It is used to treat abdominal distension following some surgeries, and in stomach roentgenography. Vasopressin is a hormone that affects the kidneys and reduces urine flow.
C2A mutations which affect its calcium binding or lipid binding can often cause muscular dystrophy. Interestingly, dysferlin C2B does not bind calcium, however, mutations in this domain can still cause muscular dystrophy. Some mutations in C2A can disrupt dysferlin interaction with other important proteins involved in membrane repair process (such as MG53) which can also lead to muscular dystrophy. Many mutations in dysferlin occur in DysF domain which often disrupt Arginine/Tryptophan stacks of this domain.
In a healthy vascular system the endothelium lines all blood-contacting surfaces, including arteries, arterioles, veins, venules, capillaries, and heart chambers. This healthy condition is promoted by the ample production of nitric oxide by the endothelium, which requires a biochemical reaction regulated by a complex balance of polyphenols, various nitric oxide synthase enzymes and L-arginine. In addition there is direct electrical and chemical communication via gap junctions between the endothelial cells and the vascular smooth muscle.
However, these bacteria have the following enzymes: arginine dihydrolase, esterase (C4), esterase lipase, naphthol-AS-BI-phosphohydrolase, and alkaline phosphatase. P. excrementihominis can grow in bile, although P. secunda has not been described in terms of this ability. Moreover, P. excrementihominis and P. secunda are unique in terms of sequences and certain biochemical processes. For example, the major respiratory quinone of P. excrementihominis was methylmenaquinone-6 whereas the dominant respiratory quinone for P. secunda is methylmenaquinone-5.
Protein IWS1 homolog also known as interacts with Spt6 (IWS1) is a protein that in humans is encoded by the IWS1 gene. IWS1 is a transcription elongation factor. It was first identified during a search for RNA polymerase II- associated elongation factors in yeast; it directly interacts with RNA polymerase II (RNAPII) and is phosphorylated at casein kinase II (CKII) sites. The human homolog, which physically interacts with protein arginine methyltransferase 5 (PRMT5), is essential for cell survival.
Arginase's active site is extraordinarily specific. Modifying the substrate structure and/or stereochemistry severely lowers the kinetic activity of the enzyme. This specificity occurs due to the high number of hydrogen bonds between substrate and enzyme; direct or water-facilitated hydrogen bonds exist, saturating both the four acceptor positions on the alpha carboxylate group and all three positions on the alpha amino group. N-hydroxy-L-arginine (NOHA), an intermediate of NO biosynthesis, is a moderate inhibitor of arginase.
Further research has shown that deletions and mutations in the 5' region of the P-protein are the major genetic causes of nonketotic hyperglycinemia. . In more rare cases, a missense mutation in the genetic code of the T-protein, causing the histidine in position 42 to be mutated to arginine, was also found to result in nonketotic hypergycinemia. This specific mutation directly affected the active site of the T-protein, causing lowered efficiency of the glycine cleavage system.
Human polypeptide C5a contains 74 amino acids and has 11kDa. NMR spectroscopy proved that the molecule is composed of four helices and connected by peptide loops with three disulphide bonds between helix IV and II, III. There is a short 1.5 turn helix on N terminus but all agonist activity take place in the C terminus. C5a is rapidly metabolised by a serum enzyme carboxypeptidase B to a 72 amino acid form C5a des-Arg without C terminal arginine.
In addition to the amber codon, rare sense codons have also been considered for use. The AGG codon codes for arginine, but a strain has been successfully modified to make it code for 6-N-allyloxycarbonyl-lysine. Another candidate is the AUA codon, which is unusual in that its respective tRNA has to differentiate against AUG that codes for methionine (primordially, isoleucine, hence its location). In order to do this, the AUA tRNA has a special base, lysidine.
Secretion is not unique to eukaryotes - it is also present in bacteria and archaea as well. ATP binding cassette (ABC) type transporters are common to the three domains of life. Some secreted proteins are translocated across the cytoplasmic membrane by the Sec translocon, one of two translocation systems, which requires the presence of an N-terminal signal peptide on the secreted protein. Others are translocated across the cytoplasmic membrane by the twin-arginine translocation pathway (Tat).
The histone-fold hydrogen bonds with both phosphodiester backbone and the A:T rich bases. In these interactions, the histone fold binds to the oxygen atoms and hydroxyl side chains, respectively. Together these sites have a total of about 40 hydrogen bonds, most of which are from the backbone interactions. Additionially, 10 out of the 14 times that the minor groove faces the histone fold, an arginine side chain from the histone fold is inserted into the minor groove.
Effectively PEGylated SWNTs exhibited relatively long blood circulation times and low uptake by the reticuloendothelial system (RES). Efficient targeting of integrin positive tumor in mice was achieved with SWNTs coated with PEG chains linked to an arginine–glycine–aspartic acid (RGD) peptide. A high tumor accumulation was attributed to the multivalent effect of the SWNTs. The Raman signatures of SWNTs were used to directly probe the presence of nanotubes in mice tissues and confirm the radio-label-based results.
Also one of the first exoenzymes to be discovered, trypsin was named in 1876, forty years after pepsin. This enzyme is responsible for the breakdown of large globular proteins and its activity is specific to cleaving the C-terminal sides of arginine and lysine amino acid residues. It is the derivative of trypsinogen, an inactive precursor that is produced in the pancreas. When secreted into the small intestine, it mixes with enterokinase to form active trypsin.
Cystinuria is caused by mutations in the SLC3A1 and SLC7A9 genes. These defects prevent proper reabsorption of basic, or positively charged, amino acids: cystine, lysine, ornithine, arginine. Under normal circumstances, this protein allows certain amino acids, including cystine, to be reabsorbed into the blood from the filtered fluid that will become urine. Mutations in either of these genes disrupt the ability of this transporter protein to reabsorb these amino acids, allowing them to become concentrated in the urine.
While there is anecdotal evidence that cats do well on vegetarian food,Is a vegetarian diet right for your cat or dog Vegetarian Times studies on homemade vegetarian cat foods have found nutritional inadequacies. As obligate carnivores, cats require nutrients (including arginine, taurine, arachidonic acid, vitamin A, vitamin B12 and niacin) found in meat sources. Plant sources do not contain enough of these. Vegetarian pet food companies try to correct these deficiencies by adding synthetically produced nutrients.
There are three amino acids that comprises the cytoplasmic portion of HEF, Arginine- Threonine-Lysine, whereas in Influenza A and B consists of ten hemagglutinin amino acids. A post-translational modification of HEF is the acylation with fatty acids. The fatty acid, stearic acid, was detected to be the prevailing fatty acid attached to HEF, whereas the fatty acid palmitic acid was found in all other membrane proteins. Due to the frequent reassortment of strains, it's monosubtypic and stable.
Isolates in this group are negative for acetoin production, arginine, esculin, and mannitol and are sorbitol fermentation negative (14). S. pneumoniae is a recently characterized member of the S. mitis group (1). As the organism is closely related to S. pneumoniae and other S. mitis group organisms, accurate identification can be difficult. S. pseudopneumoniae lacks the pneumococcal capsule and is resistant to optochin when incubated in an atmosphere with elevated CO2 but is susceptible when incubated in ambient air.
Bile solubility is a more specific test for S. pseudopneumoniae than optochin susceptibility, as the organism is not bile soluble (1). S. sanguinis group The genetically heterogeneous S. sanguinis group was formerly known as S. sanguinis. Some taxonomists have lumped the S. sanguinis group in with the S. mitis group based on 16S rRNA gene sequence analysis, but S. sanguinis group organisms exhibit divergent phenotypic characteristics. Isolates in the S. sanguinis group are arginine and esculin positive.
The zinc knuckle proteins Air1p/Air2p (Arginine methyltransferase-interacting RING- finger protein) are mainly involved in the binding of RNAs. There are five CCHC (C stands for Cysteine and H stands for Histidine) zinc knuckle motifs which are present in between the C and N terminals. In Air2p proteins, the fourth and fifth zinc knuckle have different roles. The fourth zinc knuckle have a role in RNA binding while the fifth knuckle is important for protein- protein interactions.
Solution structure of the RRM domain of the mouse SR protein Sfrs9 based on . SR proteins are a conserved family of proteins involved in RNA splicing. SR proteins are named because they contain a protein domain with long repeats of serine and arginine amino acid residues, whose standard abbreviations are "S" and "R" respectively. SR proteins are ~200-600 amino acids in length and composed of two domains, the RNA recognition motif (RRM) region and the RS domain.
The hydroxyl group in position 20 forms hydrogen bond to the side chain on aspartic acid number 533 (Asp533) in the enzyme. It is critical that the configuration of the chiral carbon is (S) because (R) is inactive. The lactone is bonded with two hydrogen bonds to the amino groups on arginine 364 (Arg364). The D-ring interacts with the +1 cytosine on non-cleaved strand and stabilizes the topoisomerase I-DNA covalent complex by forming hydrogen bond.
The one editing site of FLNA pre-mRNA is located within amino acid 2341 of the final protein. The Glutamine (Q) codon is altered due to a site specific deamination of an adenosine at the editing site to an Arginine (R) codon. The editing region is predicted to form a double stranded region of 32 base pairs in length with a complementary sequence about 200 nucleotides downstream of the editing site. This ECS is found in an intronic sequence.
Examination of OcDH reaction rates from different organisms in the presence of different substrates has demonstrated a trend of increasing specificity for substrates in animals of increasing complexity. Evolutionary modification in substrate specificity is seen most drastically in the amino acid substrate. OcDH from some sea anemones has been shown to be able to use non-guanidino amino acids whereas OcDH form more complex invertebrates, such as the cuttlefish, can only use L-arginine (a guanidino amino acid).
It is a major contributor to homeostasis and the control of water, glucose, and salts in the blood. Arginine vasopressin has four receptors, each of which are located in different tissues and have specific functions. AVPR1b is a g-protein coupled pituitary receptor that has only recently been characterized because of its rarity. It has been found that the 420-amino-acid sequence of the AVPR1B receptor shared the most overall similarities with the AVP1A, AVP2 and oxytocin receptors.
The motif is found on an α-helix, which enhances the binding of the protein. The name of the domain arises due to the occurrence of leucine as well as, arginine repeats periodically on the α-helix. The leucine zipper domain also contains the myocilin-myocilin interactions between amino acid residues 117-166. Exon 2 encodes the central region of the protein at amino acid residues 203-245 however, no structural or functional domains are found in this region.
Nitric oxide synthase (NOS) catalyses the conversion of a guanidino nitrogen of L-arginine (L-Arg) to nitric oxide (NO). Among other things, nitric oxide is involved in vasodilation, which improves systematic blood flow. The role of BH4 in this enzymatic process is so critical that some research points to a deficiency of BH4 – and thus, of nitric oxide – as being a core cause of the neurovascular dysfunction that is the hallmark of circulation-related diseases such as diabetes.
This leads to a Ca2+ influx, due to calcium ions diffusing into the neuron along their electrochemical gradient. The calcium ions binds to the synaptotagmin 1 sub-unit of the SNARE protein attached to the arginine- vasopressin (AVP) containing vesicle membrane. This causes the fusion of the vesicle with the neuronal post synaptic membrane. Subsequent release of AVP into the posterior pituitary gland occurs, whereby vasopressin is secreted into the blood stream of the nearby capillaries.
The C-terminal region of desmoplakin is composed of three plakin repeat domains, termed A, B and C, which are essential for coalignment and binding of intermediate filaments. Located at the most distal C-terminus of desmoplakin is a region rich in glycine–serine–arginine; it has been demonstrated that serine phosphorylation of this domain may modify desmoplakin-intermediate filament interactions. In the mid-region of desmoplakin, a coiled-coil rod domain is responsible for homodimerization.
Serine/arginine-rich splicing factor 1 (SRSF1) also known as alternative splicing factor 1 (ASF1), pre-mRNA-splicing factor SF2 (SF2) or ASF1/SF2 is a protein that in humans is encoded by the SRSF1 gene. ASF/SF2 is an essential sequence specific splicing factor involved in pre-mRNA splicing. SRSF1 is the gene that codes for ASF/SF2 and is found on chromosome 17. The resulting splicing factor is a protein of approximately 33 kDa.
A nonsense mutation in the leptin gene that results in a stop codon and lack of leptin production was first observed in mice. In the mouse gene, arginine-105 is encoded by CGA and only requires one nucleotide change to create the stop codon TGA. The corresponding amino acid in humans is encoded by the sequence CGG and would require two nucleotides to be changed to produce a stop codon, which is much less likely to happen.
Argininosuccinate synthetase is an enzyme that in humans is encoded by the ASS1 gene. The protein encoded by this gene catalyzes the penultimate step of the arginine biosynthetic pathway. There are approximately 10 to 14 copies of this gene including the pseudogenes scattered across the human genome, among which the one located on chromosome 9 appears to be the only functional gene for argininosuccinate synthetase. Two transcript variants encoding the same protein have been found for this gene.
The protein encoded by this gene is part of a complex termed negative elongation factor (NELF) which represses RNA polymerase II transcript elongation. This protein bears similarity to nuclear RNA-binding proteins; however, it has not been demonstrated that this protein binds RNA. The protein contains a tract of alternating basic and acidic residues, largely arginine (R) and aspartic acid (D). The gene localizes to the major histocompatibility complex (MHC class III) region on chromosome 6.
Catfish have enhanced capabilities of taste perception, hence called the “swimming tongue”, due to the presence of taste buds all over the external body surface and inside the oropharyngeal cavity. Specifically, they have high sensitivity to amino acids, which explains their unique communication methods as follows. The catfish has a facial taste system that is extremely responsive to L-alanine and L-arginine. More specifically, their facial taste system senses heightened levels of L-amino acids in freshwater.
Arginine is the free amino acid found in the highest concentration (96.9 μM per gram of dry weight), followed by glutamine (9.7) and alanine (8.2). The carotenoid content of the fruit bodies differs substantially between the cap, the tubes, and the stem. The upper part of the cap, which contains 3.1 micrograms of carotenoid per gram (µg/g) fresh weight, has predominantly mutatochrome (47% of total carotenoids), 4-keto-α- carotene (40.2%), and δ-carotene (6.4%).
The rate of reaction can be measured by using the amount of time needed for the milk to turn translucent. Trypsin is commonly used in biological research during proteomics experiments to digest proteins into peptides for mass spectrometry analysis, e.g. in-gel digestion. Trypsin is particularly suited for this, since it has a very well defined specificity, as it hydrolyzes only the peptide bonds in which the carbonyl group is contributed either by an arginine or lysine residue.
Neuropeptides, specifically oxytocin (OT) and arginine-vasopressin (AVP), have been shown to be involved in physiological mechanisms of social behavior. Sex hormones, have also been correlated. The involvement of OT and AVP in trust and social attachment can be attributed the fact that both molecules can be released as neurotransmitters or hormones throughout the body. OT and AVP act as neurotransmitters when released directly by the hypothalamus; they act as neurohormones when released peripherally by the pituitary gland.
Stronger formulas of the drink include Lipovitan D, which contains 1000 mg of taurine, 20 mg of nicotinic acid extract (vitamin B3), 5 mg each of vitamin B1, B2 and B6, and 50 mg of caffeine.I Want More Japan Lipovitan D Super contains 2000 mg of taurine and 300 mg of arginine. MAXIO contains 3000 mg of taurine. The warning label on all of its products say not to consume more than 100 ml per day.
This gene encodes a member of the CLK family of dual specificity protein kinases. CLK family members have shown to interact with, and phosphorylate, serine/arginine-rich (SR) proteins of the spliceosomal complex, which is a part of the regulatory mechanism that enables the SR proteins to control RNA splicing. This protein kinase is involved in the regulation of several cellular processes and may serve as a link between cell cycle progression, apoptosis, and telomere length regulation.
Individual genes can be inserted into specific sites on plasmids, and recombinant plasmids can be introduced into living cells. A method using macro-branched TAT has been proposed for plasmid DNA delivery into various cell lines and showed significant transfection capabilities. Multimers of TAT have been found to increase transfection efficiency of plasmid DNA by 6-8 times more than poly-L-arginine or mutant TAT2-M1, and by 390 times compared with the standard vectors.
Moreover, cR10, a cyclic poly-arginine CPP, enabled the endocytose independent transduction of antigen binding proteins through the cellular membrane with immediate bioavailability. Thereby, the authors of the study were able to deliver fluorescent antigen binding proteins into cells facilitating live-cell immunostaining. However, very few in vivo studies have succeeded. In one study, in vivo delivery of TAT- or penetratin-crosslinked Fab fragments yielded varied organ distributions and an overall increase in organ retention, which showed tissue localization.
In the NF1 mRNA, there is a site within the first half of the GRD where mRNA editing occurs. Deamination occurs at this site, resulting in the conversion of cytidine into uridine at nucleotide 3916. This deamination changes an arginine codon (CGA) to an in-frame translation stop codon (UGA). If the edited transcript is translated, it produces a protein that cannot function as a tumor suppressor because the N-terminal of the GRD is truncated.
AGG01 a peptide antibiotic discovered in the breast milk of the Tammar wallaby, reportedly one hundred times more powerful than penicillin in vitro. This compound was found to be effective against MRSA, E. coli, Streptococci, Salmonella, Bacillus subtilis, Pseudomonas spp., Proteus vulgaris, and Staphylococcus aureus. AGG01 is a cationic peptide, which is a polycationic protein that is rich in positive residues of the amino acids arginine and lysine, and which folds into an amphipathic structure (one which has both hydrophobic and hydrophilic areas).
The sixth ligands of iron are said to be located on the distal side of the heme group. These include a short water network comprising five molecules; stabilized by hydrogen bonding with histidine, glutamine, and arginine residues. The distal face is used for substrate binding and catalysis. The crystal structures of MPO have been solved both in native states and with inhibitors bound and are deposited in the Protein Data Bank under the accession numbers 1CXP, 1D5L, 1D2V, and 1D7W.
Sulfate residues are abundant on the glycan chains of the glycoprotein, giving it a negative charge. The negative charge is believed to stabilize the lattice in high-salt conditions. Amino acids are the main source of chemical energy for H. salinarum, particularly arginine and aspartate, though they are able to metabolize other amino acids, as well. H. salinarum have been reported to not be able to grow on sugars, and therefore need to encode enzymes capable of performing gluconeogenesis to create sugars.
The flavin-containing monooxygenase (FMO) protein family specializes in the oxidation of xeno-substrates in order to facilitate the excretion of these compounds from living organisms. These enzymes can oxidize a wide array of heteroatoms, particularly soft nucleophiles, such as amines, sulfides, and phosphites. This reaction requires an oxygen, an NADPH cofactor, and an FAD prosthetic group. FMOs share several structural features, such as a NADPH binding domain, FAD binding domain, and a conserved arginine residue present in the active site.
V. hilgendorfii glowing The luciferin from Vargula hilgendorfii V. hilgendorfii is known for its bioluminescence. It produces a blue-coloured light by a specialized chemical reaction of the substrate luciferin and the enzyme luciferase. The luciferase enzyme consists of a 555-amino acid-long peptide with a molecular mass of 61627 u, while the luciferine vargulin has only a mass of 405.5 u. A suggested biosynthesis for vargulin divides the molecule into a tryptophan, an arginine and an isoleucine subunit.
While 4 of these enzymes were known to be present in Mimivirus and Mamavirus (for tyrosine, arginine, cysteine, and methionine), Megavirus exhibits three more (for tryptophan, asparagine, and isoleucine). The unique aminoacyltRNA synthetase encoded by Cafeteria roenbergensis virus corresponds to the one for isoleucine. Megavirus also encodes a fused version of the mismatch DNA repair enzyme MutS, uniquely similar to the one found in the mitochondrion of octocorals. This puzzling MutS version appears to be a trademark of the family Megaviridae.
In July 2008, Olympic swimmer Jessica Hardy tested positive for the banned breathing enhancer, clenbuterol. Hardy said she had never heard of the substance, attributing the positive result to either a tainted supplement or sabotage. At the time, Hardy had been taking the supplement Arginine Extreme, which she had received for free from AdvoCare in exchange for making product testimonials, and she claimed in a subsequent lawsuit that the company's product was tainted. AdvoCare sued Hardy for making false claims.
Ten percent have no detectable mutation. Although 300 mutations of ATP7B have been described, in most populations the cases of Wilson's disease are due to a small number of mutations specific for that population. For instance, in Western populations the H1069Q mutation (replacement of a histidine by a glutamine at position 1069 in the protein) is present in 37–63% of cases, while in China this mutation is very uncommon and R778L (arginine to leucine at 778) is found more often.
Atrial volume receptors (also known as Veno-atrial stretch receptors) are low pressure baroreceptors that are found in the atria of the heart. They are myelinated vagal fibres in the endocardium found at the junction between atria and the vena cava/pulmonary vein. When these receptors detect a blood volume decrease in the atria, a signal is transmitted from the receptors to the hypothalamus in the brain. The hypothalamus, in turn, increases the production of vasopressin (ADH, AVP, or arginine vasopressin).
In addition to being stable for extended periods of time, polyelectrolytes may be useful for vaccines because they can be biodegradable. For example, the ester bonds of the polyelectrolyte poly(HPMA-DMAE) can undergo hydrolysis in the human body and VERO cells envelope DSS and use poly- L-arginine to break them down. Once the polylelectroyte capsule has been degraded, the emulsion containing drug is released into the body. Researchers have been investigating this drug delivery method to target leukemia cells.
The ribonuclease activity of ECP is not essential for cytotoxicity. When the two known ribonuclease active-site residues are modified to non-functional counterparts (Lysine at position 38 to Arginine and Histidine at position 128 to Aspartate) and compared to the wild-type ECP, the mutated ECP retains its cytotoxicity but no longer has its ribonuclease activity. The experiment confirmed that converting the two amino acids to non-functional counterparts did inhibit ECP’s ribonuclease activity. However, ECP retained its anti-parasitic activity.
Apolipoprotein B, in its ApoB100 form, is the main apolipoprotein, or protein part of the lipoprotein particle. Its gene is located on the second chromosome (2p24-p23) and is between 21.08 and 21.12 Mb long. FH is often associated with the mutation of R3500Q, which causes replacement of arginine by glutamine at position 3500. The mutation is located on a part of the protein that normally binds with the LDL receptor, and binding is reduced as a result of the mutation.
Similarly the charge disruption created through the exchange of the negatively charged glutamic acid for positively charged lysine (at residue 209 of the E helix) disrupts interface interaction of the protein's subunits and therein destabilises its native tetrahedral configuration. The final case is unique in its non-homozygosity. A comparable maternal missense mutation wherein tyrosine is replaced by cysteine alters the carboxy-terminus due to its proximity to a crucial hinge structure. However, the paternal nonsense mutation at arginine 303 truncates the peptide.
ADMA's role has been linked with elevated levels of homocysteine. Whilst approaches at modifying the latter with oral supplements of folic acid were strongly suggested, studies have shown this fails to give any clinical benefit and suggested that B vitamins might instead increase some cardiovascular risks. Direct alteration of ADMA levels with supplements of L-arginine have been suggested. The hope is that such intervention might not only improve endothelial function but also reduce clinical symptoms of overt cardiovascular disease.
The dietary requirements of dogs differ based on a variety of aspects (i.e. age, level of activity, living environment, etc.). Rather than specific ingredients, diets are formulated for their specific nutrients, so every diet prepared must have adequate levels of nutrients, including: protein, fats, carbohydrates, amino acids (methionine, lysine, arginine, etc.), vitamins (Vitamin C, B vitamins, vitamin A, etc.), and minerals (calcium, phosphorus, sodium, etc.). Many commercially available plant-based pet food diets aim to meet the fundamental nutrient requirements of various dogs.
Other members of the class A scavenger receptors tend to have alpha helical coiled coil domains, but MARCO does not. The C-terminal SRCR domain of MARCO plays a key role in the ability of the receptor to bind and take up ligand, enhance downstream inflammatory responses, and adhere to surfaces. The SRCR domain is where the ligand binds to MARCO. There are two highly conserved arginine amino acids, called the RxR motif, that are crucial for the binding of the ligand.
In one, there is a SNP (single nucleotide polymorphism) that leads to either a Histidine or an Arginine residue at position 47 in the mature polypeptide. In the Histidine variant, the enzyme is much more effective at the aforementioned conversion. The enzyme responsible for the conversion of acetaldehyde to acetate, however, remains unaffected, which leads to differential rates of substrate catalysis and causes a buildup of toxic acetaldehyde, causing cell damage. This provides some protection against excessive alcohol consumption and alcohol dependence (alcoholism).
Monogamous voles (such as prairie voles) have significantly greater density and distribution of vasopressin receptors in their brain when compared to polygamous voles. These differences are located in the ventral forebrain and the dopamine-mediated reward pathway. Peptide arginine vasopressin (AVP), dopamine, and oxytocin act in this region to coordinate rewarding activities such as mating, and regulate selective affiliation. These species-specific differences have shown to correlate with social behaviors, and in monogamous prairie voles are important for facilitation of pair bonding.
Vasopressin infusions are in use for septic shock patients not responding to fluid resuscitation or infusions of catecholamines (e.g., dopamine or norepinephrine) to increase the blood pressure while sparing the use of catecholamines. These argipressins have much shorter elimination half-life (around 20 minutes) comparing to synthetic non-arginine vasopresines with much longer elimination half-life of many hours. Further, argipressins act on V1a, V1b, and V2 receptors which consequently lead to higher eGFR and lower vascular resistance in the lungs.
Arginase catalyzes the hydrolysis of arginine to ornithine and urea. At least two isoforms of mammalian arginase exists (types I and II, this enzyme) which differ in their tissue distribution, subcellular localization, immunologic crossreactivity and physiologic function. The type II isoform encoded by this gene, is located in the mitochondria and expressed in extra-hepatic tissues, especially kidney. The physiologic role of this isoform is poorly understood; it is thought to play a role in nitric oxide and polyamine metabolism.
GnIH is a neurohormone classified as an RFamide (RFa) or RFamide-related peptide (RFRP), coded by the NPVF gene in mammals. The complete amino acid sequence varies by species, but all RFa and RFRP peptides contain an arginine-phenylalanine-amine sequence at the C-terminal. This is seen in both Coturnix Japonica GnIH RFa (Ser-Ile-Lys-Pro-Ser-Ala-Tyr-Leu-Pro-Leu-Arg-Phe-NH2), and the human homolog, RFRP-3 (Val-Pro-Asp-Leu-Pro-Glu-Arg-Phe-NH2).
Cathepsin C appears to be a central coordinator for activation of many serine proteases in immune/inflammatory cells. Cathepsin C catalyses excision of dipeptides from the N-terminus of protein and peptide substrates, except if (i) the amino group of the N-terminus is blocked, (ii) the site of cleavage is on either side of a proline residue, (iii) the N-terminal residue is lysine or arginine, or (iv) the structure of the peptide or protein prevents further digestion from the N-terminus.
Glycation often entails the modification of the guanidine group of arginine residues with glyoxal (R = H), methylglyoxal (R = Me), and 3-deoxyglucosone, which arise from the metabolism of high-carbohydrate diets. Thus modified, these proteins contribute to complications from diabetes. AGEs affect nearly every type of cell and molecule in the body and are thought to be one factor in aging and some age- related chronic diseases. They are also believed to play a causative role in the vascular complications of diabetes mellitus.
1181G>A) in the gene, which resulted in the substitution of a histidine for an arginine at residue 394 (p.Arg394His) in the helix H5 of the ligand-binding domain (LBD) of the ERα protein. This is a critical residue that is completely conserved among species and in the androgen receptor (AR) and mineralocorticoid receptor (MR). Mutations involving the corresponding residue in the AR and MR have previously been associated with androgen insensitivity syndrome (AIS) and diminished sensitivity to mineralocorticoids, respectively.
Arginine-derived NO synthesis has been identified in mammals, fish, birds, invertebrates, and bacteria. Best studied are mammals, where three distinct genes encode NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-2) and endothelial (eNOS or NOS-3). iNOS and nNOS are soluble and found predominantly in the cytosol, while eNOS is membrane associated. Evidence has been found for NO signaling in plants, but plant genomes are devoid of homologs to the superfamily which generates NO in other kingdoms.
PRSS1 The mechanism of chronic pancreatitis viewed from a genetic standpoint indicates early onset of severe epigastric pain beginning in childhood. It is an autosomal dominant disease, chronic pancreatitis disease is identified in the cationic trypsinogen gene PRSS1, and mutation, R122H. R122H is the most common mutation for hereditary chronic pancreatitis with replacement of arginine with histidine at amino acid position 122 of the trypsinogen protein. There are, of course, other mechanisms – alcohol, malnutrition, smoking – each exhibiting its own effect on the pancreas.
AGEs on laminin result in reduced binding to type IV collagen in the basement membrane, reduced polymer elongation and reduced binding of heparan sulfate proteoglycan. ;Impaired NO synthesis :Nitric oxide is known as an important stimulator of cell proliferation, maturation and differentiation. Thus, nitric oxide increases fibroblast proliferation and thereby collagen production in wound healing. Also, L-arginine and nitric oxide are required for proper cross linking of collagen fibers, via proline, to minimize scarring and maximize the tensile strength of healed tissue.
L-Ornithine is converted to L-arginine, which is then decarboxylated via PLP to form agmatine. Hydrolysis of the imine derives N-carbamoylputrescine followed with hydrolysis of the urea to form putrescine. The separate pathways of converting ornithine to putrescine in plants and animals have converged. A SAM-dependent N-methylation of putrescine gives the N-methylputrescine, which then undergoes oxidative deamination by the action of diamine oxidase to yield the aminoaldehyde, which spontaneously cyclizes to N-methyl-Δ1-pyrrolinium cation.
The L132C mutation (CatCh) increases the permeability for calcium and generates very large currents. Mutating E90 to the positively charged amino acid arginine turns channelrhodopsin from an unspecific cation channel into a chloride-conducting channel (ChloC). The selectivity for Cl- was further improved by replacing negatively charged residues in the channel pore, making the reversal potential more negative. Selective chloride-conducting channelrhodopsins (iChloC, iC++, GtACR) inhibit neuronal spiking in cell culture and in intact animals when illuminated with blue light.
Three-dimensional model of NO. In humans, nitric oxide is produced from L-arginine by three enzymes called nitric oxide synthases (NOS): inducible (iNOS), endothelial (eNOS), and neuronal (nNOS). The latter two are constantly active in endothelial cells and neurons respectively, whereas iNOS' action can be induced in states like inflammation (for example, by cytokines). In inflammation, several cells use iNOS to produce NO, including eosinophils. As such, eNO (also known as FeNO "fractional exhaled nitric oxide") has been dubbed an inflammometer.
Treatment centers on limiting intake of ammonia and increasing its excretion. Dietary protein, a metabolic source of ammonium, is restricted and caloric intake is provided by glucose and fat. Intravenous arginine (argininosuccinase deficiency), sodium phenylbutyrate and sodium benzoate (ornithine transcarbamoylase deficiency) are pharmacologic agents commonly used as adjunctive therapy to treat hyperammonemia in patients with urea cycle enzyme deficiencies.eMedicine - Hyperammonemia: Article by Kazi Imran Majeed Sodium phenylbutyrate and sodium benzoate can serve as alternatives to urea for the excretion of waste nitrogen.
This association between timeless and telomeres is indicative of the gene's possible association with cancer. A single nucleotide polymorphism substitution that results in the transformation of glutamine to arginine in the amino acid sequence in the human timeless gene shows no association with either morningness or eveningness tendencies in humans. This is consistent with other research, suggesting that htim is not important in the circadian rhythm of humans. Timeless is now frequently found to be overexpressed in many different tumor types.
Additional symptoms of musculoskeletal pathology include hypotonia, delayed motor development, short stature, and facial dysmorphia in varying degrees. Furthermore, it has been shown that a downshift in weight, length, and height relative to the normal population is exhibited in BTHS patients. Treatment for developmental delays have included cornstarch supplementation as an alternative source of glucose. Metabolic deficiencies have been treated by oral arginine and carnitine supplementation, which has been shown to ameliorate cardiac function and muscle weakness in some patients.
Nullomers are codons that in theory code for an amino acid, however in nature there is a selective bias against using this codon in favor of another, for example bacteria prefer to use CGA instead of AGA to code for arginine. This creates some sequences that do not appear in the genome. This characteristic can be taken advantage of and used to create new selective cancer-fighting drugs and to prevent cross-contamination of DNA samples from crime-scene investigations.
Other names in common use include GA methylpherase, guanidinoacetate methyltransferase, guanidinoacetate transmethylase, methionine-guanidinoacetic transmethylase, and guanidoacetate methyltransferase. This enzyme participates in glycine, serine and threonine metabolism and arginine and proline metabolism. The protein encoded by this gene is a methyltransferase that converts guanidoacetate to creatine, using S-adenosylmethionine as the methyl donor. Defects in this gene have been implicated in neurologic syndromes and muscular hypotonia, probably due to creatine deficiency and accumulation of guanidinoacetate in the brain of affected individuals.
This process effectively changes the RNA sequence from that encoded by the genome and extends the diversity of the gene products. The majority of RNA editing occurs on non-coding regions of RNA; however, some protein-encoding RNA transcripts have been shown to be subject to editing resulting in a difference in their protein's amino acid sequence. An example of this is the glutamate receptor mRNA where glutamine is converted to arginine leading to a change in the functionality of the protein.
Octopine dehydrogenase has at least two structural characteristics that contribute to substrate specificity. Upon binding to NADH, amino acid residues lining either side of the active site within the space between the domains of OcDH act as a “molecular ruler”, physically limiting the size of the substrates that can fit into the active site. There is also a negatively charged pocket in the cleft between the two domains that acts an “electrostatic sink” that captures the positively charged side-chain of L-arginine.
MT-ND4 is one of five SNPs associated with age-related macular degeneration (AMD) in Mexican Americans. Leber's hereditary optic neuropathy (LHON) correlates with a mutation in the MT-ND4 gene in multiple families. The mutation at codon 340 results in the elimination of an Sfa NI site by the conversion of a highly conserved arginine to a histidine. This provides a simple diagnostic test by which to identify LHON, a maternally inherited disease that results in optic nerve degeneration and cardiac dysrythmia.
C3a molecules induce responses through the GPCR C3a receptor. Like other anaphylatoxins, C3a is regulated by cleavage of its carboxy-terminal arginine, which results in a molecule with lowered inflammatory function (C3a desarginine). C3a is an effector of the complement system with a range of functions including T cell activation and survival, angiogenesis stimulation, chemotaxis, mast cell degranulation, and macrophage activation. It has been shown to have both proinflammatory and anti-inflammatory responses, its activity able to counteract the proinflammatory effects of C5a.
Vasopressin receptor 2 (V2R), or arginine vasopressin receptor 2 (officially called AVPR2), is a protein that acts as receptor for vasopressin. AVPR2 belongs to the subfamily of G-protein-coupled receptors. Its activity is mediated by the Gs type of G proteins, which stimulate adenylate cyclase. AVPR2 is expressed in the kidney tubule, predominantly in the membrane of cells of the distal convoluted tubule and collecting ducts, in fetal lung tissue and lung cancer, the last two being associated with alternative splicing.
FAM221B is linked to mutations in the RNA component of RNase MRP, which causes pleiotropic human disease cartilage–hair hypoplasia. Also, as patients with acute lymphoblastic leukemia often carry genetic alterations in the short arm of human chromosome 9, FAM221B has two consistent non-synonymous amino acid variations associated with the disease. In acute lymphoblastic leukemia patients, Histidine is substituted for an Arginine at position 345, and a Leucine is substituted for a Phenylalanine at position 277 of the protein.
The overall enzyme exists as a dimer-of-dimers: two identical subunits closely interact to form a dimer through salt bridges between arginine (R438 - exact positions may vary depending on the origin of the gene) and glutamic acid (E433) residues. This dimer assembles (more loosely) with another of its kind to form the four subunit complex. The monomer subunits are mainly composed of alpha helices (65%), and have a mass of 106kDa each. The sequence length is about 966 amino acids.
FS Cells are thought to have a role in relaying signals to the hormone secreting endocrine cells of the pituitary gland. Nitric Oxide (NO), is reported to be a key modulator of endocrine cell function and has been shown that FS cells (and some endocrine cells) contain neuronal NO synthase, a key NO production enzyme which is responsible for the production of NO from L-arginine. It is thought that FS cells modulate NO production in adjacent endocrine cells via paracrine mechanisms.
The edited sites are found within the insulin growth factor binding domain of IGFBP7 and also Heparin binding domain. This region is also a site for proteolytic cleavage. Structural analysis of the edited sites determined that the two amino acids that corresponded to the edited sites are not directly involved in binding to IGF-1 but are found in regions flanking them. At position 78 in unedited version of the transcript there is an Arginine close to residue valine-49.
Glycine amidinotransferase, mitochondrial is an enzyme that in humans is encoded by the GATM gene. This gene encodes a mitochondrial enzyme that belongs to the Amidinotransferase family. This enzyme is involved in creatine biosynthesis, whereby it catalyzes the transfer of a guanido group from L-arginine to glycine, resulting in guanidinoacetic acid, the immediate precursor of creatine. Mutations in this gene cause arginine:glycine amidinotransferase deficiency, an inborn error of creatine synthesis characterized by mental retardation, language impairment, and behavioral disorders.
The enzyme is deacylated by a water molecule and releases the carboxy terminal portion of the peptide. In immunology, papain is known to cleave the Fc (crystallisable) portion of immunoglobulins (antibodies) from the Fab (antigen-binding) portion. Papain is a relatively heat-resistant enzyme, with an optimal temperature range of 60 to 70 °C. Papain prefers to cleave after an arginine or lysine preceded by a hydrophobic unit (Ala, Val, Leu, Ile, Phe, Trp, Tyr) and not followed by a valine.
A second QTL, ahl6, localized to chromosome 18 and has a smaller effect size. Besides their hearing impairment, Black Swiss mice also are hypersensitive to acoustic stimulation, reacting with seizures (audiogenic seizures) to loud white noise. A genetic locus conferring susceptibility was identified (juvenile audiogenic monogenic seizures1, jams1) on chromosome 10. A positional cloning approach aimed to decipher the genetic basis of both the hearing loss and audiogenic seizure susceptibility subsequently identified the glycine to arginine substitution in Gipc3 as the underlying cause.
Flamingos, like many other marine birds, have a high saline intake, yet even the glomular filtration rate (GFR) remains unchanged. This is because of the salt glands; high concentrations of sodium are present in the renal filtrate, but can be reabsorbed almost completely where it is excreted in high concentrations in the salt glands. Renal reabsorption can be increased through the output of the antidiuretic hormone called arginine vasotacin (AVT). AVT opens protein channels in the collection ducts of the kidney called aquaporins.
The analysis of Sulcia muelleri, strand GWSS's reduced genome suggests that a proportionate amount of the genes preserved over its evolution are dedicated to amino acid biosynthesis. 21.3% of its protein-coding genes are dedicated to creating amino acids, while another 33% is dedicated to translation-related processes. Sulcia muelleri is usually capable of synthesizing 8 of its essential amino acids: leucine, valine, threonine, isoleucine, lysine, arginine, phenylalanine, and tryptophan. Some strains of Sulcia muelleri are incapable of making the amino acid, tryptophan.
The beta bend ribbon, which incorporates the catalytic arginine, allows its side-chain guanidino group to approach the active site and enhance enzyme activity.Rittinger K, Walker PA, Eccleston JF, Smerdon SJ, Gamblin SJ. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 1997;389:758–762. Polypeptides consisting of repeats of the dipeptide (α-amino-γ-lactam plus a conventional amino acid) have been shown to adopt a beta bend ribbon conformation.
ADULT syndrome is due to autosomal dominant mutations of the TP63 gene, which encodes the p63 protein. TP63 mutations cause deformities because the p63 protein is critical in embryonic development of limbs and other ectodermal tissues. 7 mutations have been found, the commonest forms being R298Q and R243W, in which encoding for arginine is changed to glutamine at position 298 and tryptophan at position 243 respectively. Other p63 genes mutation syndromes include ectrodactyly–ectodermal dysplasia–cleft syndrome (EEC) and Hay-Wells syndromes.
This excess weight can lead to abnormal joint development, potentially giving rise to joint issues in the future. Additionally, excess of some amino acids may also have detrimental impacts; for example, excess lysine will negatively antagonise arginine. The minimal requirement laid out by the NRC is 180g/kg (18%) DM of crude protein, with a recommended allowance of 225g/kg (22.5%) DM. With this in mind, it is also important to consider the quality and digestibility of the protein used.
It also contains phenolic compounds, which are natural antioxidants that may help protect against diseases such as cancer and various inflammatory-related diseases. The amino acid profile of pea protein is also beneficial. It is high in lysine, which helps to convert fatty acids into energy, and is important for the health of connective tissue. It is a great source of arginine, which promotes healthy blood flow and heart health, as well as leucine, isoleucine, and valine, which promote muscle growth.
As with other individuals, people with CADASIL should be encouraged to quit smoking. In one small study, around 1/3 of patients with CADASIL were found to have cerebral microhemorrhages (tiny areas of old blood) on MRI. L-arginine, a naturally occurring amino acid, has been proposed as a potential therapy for CADASIL, but as of 2017 there are no clinical studies supporting its use. Donepezil, normally used for Alzheimer's Disease, was not shown not to improve executive functioning in CADASIL patients.
Human p14ARF, however, does not contain any lysines, and mouse p19Arf only contains one lysine. If the mouse lysine is replaced with arginine, there is no effect on its degradation, suggesting it is also ubiquinated at the N-terminus. This adds to the uniqueness of the ARF proteins, because most eukaryotic proteins are acetylated at the N-terminus, preventing ubiquination at this location. Penultimate residues affect the efficiency of acetylation, in that acetylation is promoted by acidic residues and inhibited by basic ones.
514x514pxIt is a low molecular weight neurotoxin which has highly functional polar groups: free phenolic OH and amine and guanidine residues. It also possesses arginine (free NH2) connected to a -NH (CH)3 NH (C ~) 3NH (CH) 5-NH- one through a peptide bond polyamine. The polyamine is connected to the asparagine's α-carboxyl group. The amino group of this aminoacid is linked to 2,4-dihydroxyphenyl acetic acid. Its structure was established using spectroscopy 1H, 13C-RMN, mass spectrometry and elemental aminoacid analysis.
Front view of the human enzyme Histone Lysine N-Methyltransferase, H3 lysine-4 specific. The genome is tightly condensed into chromatin, which needs to be loosened for transcription to occur. In order to halt the transcription of a gene the DNA must be wound tighter. This can be done by modifying histones at certain sites by methylation. Histone methyltransferases are enzymes which transfer methyl groups from S-Adenosyl methionine (SAM) onto the lysine or arginine residues of the H3 and H4 histones.
Two serotypes of S. iniae are established. The ATCC 29178 type strain first characterized in 1976 by Pier and Madin is representative of serotype I isolates. Serotype II was first identified as the type strain (ATCC 29177) isolated from another dolphin case of "golf ball disease". A biochemical assay measuring arginine dihydrolase activity has been used to distinguish between serotypes (serotype I is positive), though proposed hyperencapsulation of serotype II may represent the most significant functional difference between the two types.
Bithionol has two aromatic rings with a sulfur atom bonded between them and multiple chlorine ions and hydroxyl groups Attached to the phenyl groups. These functional groups are capable of hydrophobic, ionic, and polar interactions. These intermolecular interactions are responsible for the binding of bithionol to the bicarbonate binding site of soluble adenylyl cyclase efficiently enough to cause competitive inhibition with the usual bicarbonate substrate. The side chain of arginine 176 within the bicarbonate binding site interacts significantly with the aromatic ring of the bithionol molecule.
Mutations to NDUFA12 are not frequently found to cause complex I deficiency on their own. NDUFA12 is an accessory subunit and the complex can still be found assembled and enzymatically active in its absence, though in reduced amounts and activity. However, a cytosine to tyrosine mutation at position 178 that leads to a premature stop codon has been found in place of arginine at amino acid 60, leading to delayed early development, loss of motor abilities, and basal ganglia lesions typical of Leigh's syndrome.
In 2009, Fu's group published a paper that explained the mechanisms of a short sleep phenotype in humans. In one family, carriers of the autosomal dominant phenotype sleep 6.25 hours compared to non-carrying family members, who sleep more than 8 hours per night. Fu traced the phenotype back to a point mutation in a gene called DEC2 that is associated with short sleep phenotype in humans. The mutant DEC2 has a proline-to-arginine switch at amino acid position 384, which causes the short sleep phenotype.
Citrullinated peptides and proteins can be detected using antibodies targeting the citrullinated residues, or detected using mass spectrometry-based proteomics technologies. Citrullination of arginine results in a monoisotopic mass increase of +0.984016 Da, which can be measured with mass spectrometry. The mass shift is close to the mass difference between the different peptide isotopes of +1.008665 which can be mistaken for a citrullinated peptide, especially on low-resolution instruments. However, this is less of an issue with modern high resolution/high accuracy mass spectrometers.
This gene product is a component of a nucleolar small nuclear ribonucleoprotein (snRNP) particle thought to participate in the first step in processing pre-ribosomal (r)RNA. It is associated with the U3, U8, and U13 small nucleolar RNAs and is located in the dense fibrillar component (DFC) of the nucleolus. The encoded protein contains an N-terminal repetitive domain that is rich in glycine and arginine residues, like fibrillarins in other species. Its central region resembles an RNA- binding domain and contains an RNP consensus sequence.
Neurotoxin B-IV appears to prolong the repolarization phase of the action potential in crustacean nerve sodium channels but does not affect the initial opening of these channels . It is likely that this neurotoxin causes a small depolarization of the resting potential in lobster and crayfish walking leg nerve . Cationic residues are important determinants for polypeptide neurotoxins' function. Specifically, the arginine residues, located within the N-terminal helix, seem to be essential for the activity of neurotoxin B-IV and are most likely directly involved in binding .
Arg-161 interacts with the C1 carbonyl of MVAPP, and Asn-17 is important for hydrogen bonding with this same arginine residue. Asp-305 is positioned about 4 Å from the C3 hydroxyl on MVAPP and acts as a general base catalyst in the active site. Ser-127 aids in orientation of the phosphoryl chain for the phosphate transfer to MVAPP. Mevalonate diphosphate decarboxylase also has a phosphate-binding loop (‘P-loop’) where amino acid residues provide key interactions that stabilize the nucleotide triphosphoryl moiety.
The AspAT-like small domain, the PLP-binding domain, and the carboxy-terminal domain form an open bowl-like structure. The wing domain extends from the other three domains like a handle of the bowl, and the linker domain connects these two parts together. Altogether, the five domains associate with one another through hydrogen bonds and electrostatic interactions. Arginine Decarboxylase Monomer showing: (A) Wing domain (purple); (B) linker domain (red); (C) PLP-binding-domain (orange); (D) AspAT-like small domain (blue); (E) carboxy-terminal domain (green).
The use of adsorbent chemicals, such as zeolites, and other hemostatic agents are also used for sealing severe injuries quickly (such as in traumatic bleeding secondary to gunshot wounds). Thrombin and fibrin glue are used surgically to treat bleeding and to thrombose aneurysms. Desmopressin is used to improve platelet function by activating arginine vasopressin receptor 1A. Coagulation factor concentrates are used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption.
Most secondary-active transporters transport their substrates using an electrochemical ion gradient, but the carnitine transporter (CaiT) is an ion-independent, L-carnitine/gamma- butyrobetaine antiporter. Crystal structures of CaiT from E. coli and Proteus mirabilis revealed the inverted five-transmembrane-helix repeat similar to that in the amino acid/Na+ symporter, LeuT. Kalayil et al. (2013) showed that mutations of arginine 262 (R262) made CaiT Na+-dependent with increased transport activity in the presence of a membrane potential, in agreement with substrate/Na+ cotransport.
Antitermination in lambda is induced by two quite distinct mechanisms. The first is the result of interaction between lambda N protein and its targets in the early phage transcripts, and the second is the result of an interaction between the lambda Q protein and its target in the late phage promoter. We describe the N mechanism first. Lambda N, a small basic protein of the arginine-rich motif (ARM) family of RNA binding proteins, binds to a 15-nucleotide (nt) stem-loop called BOXB.
It is considered to be the rarest of the heritable defects in ureagenesis. Arginase deficiency, unlike other urea cycle disorders, does not entirely prevent ureagenesis. A proposed reason for the continuation of arginase function is suggested by increased activity of arginase II in the kidneys of subjects with arginase I deficiency. Researchers believe that buildup of arginine triggers increased expression of arginase II. The enzymes in the kidney will then catalyze ureagenesis, compensating somewhat for a decrease in arginase I activity in the liver.
N-Acetylglutamate synthase is an enzyme that serves as a replenisher of N-acetylglutamic acid to supplement any N-acetylglutamic acid lost by the cell through mitosis or degradation. NAGS synthesizes N-acetylglutamic acid by catalyzing the addition of an acetyl group from acetyl-coenzyme A to glutamate. In prokaryotes with non-cyclic ornithine production, NAGS is the sole method of N-acetylglutamic acid synthesis and is inhibited by arginine. Acetylation of glutamate is thought to prevent glutamate from being used by proline biosynthesis.
Chemical structure of argatroban showing where it binds to the S1 and S2 pockets Argatroban is a small univalent DTI formed from P1 residue from arginine. It binds to the active site on thrombin. The X-ray crystal structure shows that the piperidine ring binds in the S2 pocket and the guanidine group binds with hydrogen bonds with Asp189 into the S1 pocket. It’s given as an intravenous bolus because the highly basic guanidine with pKa 13 prevents it to be absorbed from the gastrointestinal tract.
The cancer-associated "R462Q" mutation results in a glutamine instead of an arginine at position 462 of the RNase L enzyme, reducing its catalytic activity. A man with two copies of this mutation has twice the risk of prostate cancer; one copy raises the risk by 50%. Klein and Silverman hypothesized that "the putative linkage of RNase L alterations to HPC might reflect enhanced susceptibility to a viral agent" and conducted a viral screen of prostate cancer samples, leading to the discovery of XMRV.
Its crystal structure has been solved at 2.8 Å resolution; it is a homohexameric complex (approximately 360 kDa) with a double-doughnut structure and a central pore which is open at the N-terminal ends and partially sealed at the C-terminal ends due to the presence of six arginine residues.Ishiura, M. 1998. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. The hexamer has twelve ATP molecules between the N- (CI) and C-terminal (CII) domains, which demonstrate ATPase activity.
Glucogenic amino acids can also be converted into glucose, through gluconeogenesis. Of the 20 standard amino acids, nine (His, Ile, Leu, Lys, Met, Phe, Thr, Trp and Val) are called essential amino acids because the human body cannot synthesize them from other compounds at the level needed for normal growth, so they must be obtained from food. In addition, cysteine, tyrosine, and arginine are considered semiessential amino acids, and taurine a semiessential aminosulfonic acid in children. The metabolic pathways that synthesize these monomers are not fully developed.
The BANA test (referring to the enzymatic breakdown of [N-benzoyl-dL- arginine-2-napthylamide]) is used to determine the proteolytic activity of certain oral anaerobes that contribute to oral malodor. Some bacteria, e.g. Prophyromona gingivalis, Treponema denticola, and Bacteroides forsythus (Red complex) produce waste products that are quite odiferous, and as a result contribute to bad breath. When a sample of a patient's saliva that contains these bacteria is placed within the BANA testing compound, it causes the breakdown of the N-benzoyl enzyme.
The enzyme contains a 68-residue sequence at the N-terminus of its monomeric protein, which targets it to the inter-membrane space of the mitochondria where it can the complex with cytochrome c and where it carries out its sensor, signaling and catalytic roles. Studies indicate the distal arginine (Arg48), a highly conserved amino acid among peroxidase, plays an important role in the catalytic activity of CCP by controlling its active site through stabilization of the reactive oxyferryl intermediate from control of its access.
LSm secondary structure showing the N-terminal alpha helix and the five-strand antiparallel beta sheet.The LSm protein Human SmD1 showing the eight-strand beta sandwich peptide backbone description. (The beta sheet fold hinge runs along the bottom of the image.) Uridine phosphate binds in archaeal Sm1 between the β2b/β3a loop and β4b/β5 loop. The uracil is stacked between the histidine and arginine residues, stabilized by hydrogen bonding to an asparagine residue, and hydrogen bonding between the aspartate residue and the ribose.
Shows the post-translational modification of protein by methylation, acetylation and phosphorylation Following translation, small chemical groups can be added onto amino acids within the mature protein structure. Examples of processes which add chemical groups to the target protein include methylation, acetylation and phosphorylation. Methylation is the reversible addition of a methyl group onto an amino acid catalyzed by methyltransferase enzymes. Methylation occurs on at least 9 of the 20 common amino acids, however, it mainly occurs on the amino acids lysine and arginine.
Non-pathogenic species of the gram-positive Corynebacterium are used for the commercial production of various amino acids. The C. glutamicum species is widely used for producing glutamate and lysine, components of human food, animal feed and pharmaceutical products. Expression of functionally active human epidermal growth factor has been done in C. glutamicum, thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general, secretory pathway (Sec) or the twin-arginine translocation pathway (Tat).
Antipain is an oligopeptide that is isolated from actinomycetes and used in biochemical research as a protease inhibitor of trypsin and papain. It was discovered in 1972 and was the first natural peptide found that contained an ureylene group. It has been crystallised in complexes with carboxypeptidase, which is obtained from wheat,PDB ENTRY and Leishmania major oligopeptidase B.PDB ENTRY In both cases, the backbone carbonyl of the terminal arginine of antipain forms a covalent bond to the active site serine in the protease.
Diacetyl has been shown to alter the amino acid arginine which could interfere with protein structure and function. Additionally diacetyl can bind to DNA and form guanosine adducts which can cause DNA uncoiling and cell death. In vitro studies on human cells also suggest that diacetyl alters the structure and function of the extracellular matrix and modifies epithelial cell responses to growth factors. Human cells exposed to diacetyl also increase secretion of substance P which causes mucus hypersecretion, airway smooth muscle contraction, and edema.
Three protein residues have been shown to have significant interactions with the phosphates, shown in Figure 6. In the absence of MgATP, a salt bridge exists between residue 15, lysine, and residue 125, aspartic acid. Upon binding, this salt bridge is interrupted. Site- specific mutagenesis has demonstrated that when the lysine is substituted for a glutamine, the protein's affinity for MgATP is greatly reduced and when the lysine is substituted for an arginine, MgATP cannot bind due to the salt bridge being too strong.
Glycation often entails the modification of the guanidine group of arginine residues with glyoxal (R = H), methylglyoxal (R = Me), and 3-deoxyglucosone, which arise from the metabolism of high-carbohydrate diets. Thus modified, these proteins contribute to complications from diabetes. Advanced glycation end-products (AGEs) are proteins or lipids that become glycated as the result of a high-sugar diet. They are a bio-marker implicated in aging and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney disease, and Alzheimer's disease.
This results in irregular heartbeats that can cause sudden death. Mutations in the PRKACA gene that promote abnormal enzyme activity have been linked to disease of the adrenal gland. Several mutations in PRKACA have been found in patients with Cushing’s syndrome that result in an increase in the ability of PKA to broadly phosphorylate other proteins. One mutation in the PRKACA gene that causes an amino acid substitution of leucine to arginine in position 206, was found in over 60% of patients with adrenocortical tumors.
The reagent Coomassie Brilliant Blue turns blue when it binds to arginine and aromatic amino acids present in proteins, thus increasing the absorbance of the sample. The absorbance is measured using a spectrophotometer, at the maximum absorbance frequency (Amax) of the blue dye (which is 595 nm). In this case, the greater the absorbance, the higher the protein concentration. Data for known concentrations of protein are used to make the standard curve, plotting concentration on the X axis, and the assay measurement on the Y axis.
The pre- mRNA of GLUR6 is edited at amino acid positions 567, 571, and 621. The Q/R position, which gets its name as editing results in an codon change from a glutamine (Q) codon (CAG) to an arginine (R) codon (CGG), is located in the "pore loop" of the second membrane domain (M2). The Q/R site of GluR6 pre-mRNA occurs in an asymmetrical loop of three exonic and four intronic nucleotides. The Q/R editing site is also observed in GluR2 and GluR5.
In argininosuccinic aciduria, the enzyme argininosuccinate lyase, involved in the conversion of arginino succinate to arginine within the urea cycle, is damaged or missing. The urea cycle cannot proceed normally, and nitrogen accumulates in the bloodstream in the form of ammonia. Ammonia is especially damaging to the nervous system, so argininosuccinic aciduria causes neurological problems as well as eventual damage to the liver. This condition is inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered.
These disulfide bonds force the molecule into a rigid conformation that enables the protein to interact with a target protease via an extended beta-sheet. All domains (excepting 1, 2 and 15) contain an arginine at P1, indicating trypsin-like proteases are the likely targets. In the epidermis, LEKTI is implicated in the regulation of desquamation via its ability to selectively inhibit KLK5, KLK7 and KLK14. Recombinant full length LEKTI inhibits the exogenous serine proteases trypsin, plasmin, subtilisin A, cathepsin G and human neutrophil elastase.
When TBP binds to a TATA box within the DNA, it distorts the DNA by inserting amino acid side-chains between base pairs, partially unwinding the helix, and doubly kinking it. The distortion is accomplished through a great amount of surface contact between the protein and DNA. TBP binds with the negatively charged phosphates in the DNA backbone through positively charged lysine and arginine amino acid residues. The sharp bend in the DNA is produced through projection of four bulky phenylalanine residues into the minor groove.
Several proteins contain citrulline as a result of a posttranslational modification. These citrulline residues are generated by a family of enzymes called peptidylarginine deiminases (PADs), which convert arginine into citrulline in a process called citrullination or deimination with the help of calcium ion. Proteins that normally contain citrulline residues include myelin basic protein (MBP), filaggrin, and several histone proteins, whereas other proteins, such as fibrin and vimentin are susceptible to citrullination during cell death and tissue inflammation. Circulating citrulline concentration is a biomarker of intestinal functionality.
Later in the secretory pathway, the precursor undergoes additional proteolysis and posttranslational modification (indicated by ^). 11 amino acids are removed from the N-terminus by the enzyme proprotein convertase 2 (PC2) while 16 are removed from the C-terminus of the proIAPP molecule by proprotein convertase 1/3 (PC1/3). At the C-terminus Carboxypeptidase E then removes the terminal lysine and arginine residues. The terminal glycine amino acid that results from this cleavage allows the enzyme peptidylglycine alpha-amidating monooxygenase (PAM) to add an amine group.
This appears to be the origin of one of the Mi-VII specific antigens (Anek) which is known to lie between residues 40-61 of glycophorin A and comprises sialic acid residue(s) attached to O-glycosidically linked oligosaccharide(s). This also explains the loss of a high frequency antigen ((EnaKT)) found in normal glycophorin A which is located within the residues 46-56. Mi-VIII is due to a mutation at amino acid residue 49 (arginine->threonine). M-VIII shares the Anek determinant with MiVII.
Being practically neutral and highly soluble in water, urea is a safe vehicle for the body to transport and excrete excess nitrogen. Urea is synthesized in the body of many organisms as part of the urea cycle, either from the oxidation of amino acids or from ammonia. In this cycle, amino groups donated by ammonia and L-aspartate are converted to urea, while L-ornithine, citrulline, L-argininosuccinate, and L-arginine act as intermediates. Urea production occurs in the liver and is regulated by N-acetylglutamate.
The bacterium is positive for alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, naphthol AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase and α-mannosidase. Negative for α-chymotrypsin, acid phosphatase, β-glucuronidase, N-acetyl-β-glucosaminidase, α-fucosidase, arginine dihydrolase and urease. Within the chemoorgano-heterotrophic metabolism, A. bussei can use a large number of organic compounds as a source of carbon. These include carbohydrates (pentoses, hexoses and oligosaccharides), sugar alcohols and amino acids.
Serine/threonine-protein kinase PRP4 homolog is an enzyme that in humans is encoded by the PRPF4B gene. Pre-mRNA splicing occurs in two sequential transesterification steps, and the protein encoded by this gene is thought to be involved in pre-mRNA splicing and in signal transduction. This protein belongs to a kinase family that includes serine/arginine-rich protein-specific kinases and cyclin-dependent kinases (CDKs). This protein is regarded as a CDK-like kinase (Clk) with homology to mitogen-activated protein kinases (MAPKs).
With his distinguished English pupil Henry Drysdale Dakin, Kossel investigated arginase, the ferment which hydrolyses arginine into urea and ornithine. Later, he discovered agmatine in herring roe and devised a method for preparing it. Another of Kossel's students was American biochemist Edwin B. Hart, who would later return to the United States to participate in the "Single-grain experiment" (1907–1911) and be part of research teams that would determine the nutritive causes of anemia and goiter. Another was Otto Folin, an American chemist who discovered Phosphocreatine.
This protease was recently applied to proteome digestion for production of peptides for mass spectrometry-based proteomics, where it was found to cleave preferentially after several small amino acids, including alanine, serine, threonine, valine, and to a lesser extent, methionine. This specificity is very different than the most commonly-used protease for proteomics, trypsin, which cleaves only after arginine and lysine. Alpha-lytic protease was also recently reported to find utility as part of a method to map endogenous SUMO modification sites in the proteome.
At the end of this stage, that is, after the first condensation of glutamate, the amino acid Adda is formed. The second part of the synthesis involves the condensation of the amino acids of which the microcystin is composed. Thus, in the case of microcystin-LR the consecutive condensation of the amino acids glutamic acid, methyldehydroalanine, alanine, leucine, methylaspartic acid and arginine leads to the coupled product. A nucleophilic attack of the nitrogen in the Adda residue results in the release of the cyclic microcystin-LR.
The alpha subunit is a tetramer which forms the pore, the voltage sensor, and the calcium sensing region. This subunit of the channel is made up of seven trans-membrane units, and a large intracellular region. The voltage sensor is made by the S4 transmembrane region, which has several Arginine residues which act to ‘sense’ the changes in charge and move in a very similar way to other voltage gated potassium channels. As they move in response to the voltage changes they open and close the gate.
Protein arginine methyltransferase NDUFAF7, mitochondrial, also known as NADH:ubiquinone oxidoreductase complex assembly factor 7 (NDUFAF7), MidA, C2orf56, or PRO1853, is a protein that in humans is encoded by the NDUFAF7 gene. NDUFAF7 is a methyltransferase mitochondrial assembly enzyme involved in the assembly and stabilization of NADH dehydrogenase (ubiquinone) also known as complex I, which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain. Mutations in NDUFAF7 have been associated with pathologic myopia and complex I deficiency.
C1of106 protein (isoform 1) Isoform 1, diagramed below, contains a DUF3338 domain, two low complexity regions and a proline rich region. The protein is arginine and proline rich, and has a lower than average amount of asparagine and hydrophobic amino acids, specifically phenylalanine and isoleucine. The isoelectric point is 9.58, and the molecular weight of the unmodified protein is 72.9 kdal. The protein is not predicted to have an N-terminal signal peptide, but there are predicted nuclear localization signals (NLS) and a leucine rich nuclear export signal.
There are many required amino acids for kittens. Histidine is required at no greater than 30% in kitten diets, since consuming histidine- free diets causes weight loss.Tryptophan is required at 0.15%, seeing as it maximized performance at this level. Kittens also need the following amino acids supplemented in their diet: arginine to avoid an excess of ammonia in the blood, otherwise known as hyperammonemia, isoleucine, leucine, valine, lysine, methionine as a sulfur-containing amino acid, asparagine for maximal growth in the early post-weaning kitten, threonine and taurine to prevent central retinal degeneration.
Raw alfalfa seeds and sprouts are a source of the amino acid canavanine. Much of the canavanine is converted into other amino acids during germination so sprouts contain much less canavanine than unsprouted seeds. Canavanine competes with arginine, resulting in the synthesis of dysfunctional proteins. Raw unsprouted alfalfa has toxic effects in primates, including humans, which can result in lupus-like symptoms and other immunological diseases in susceptible individuals, and sprouts also produced these symptoms in at least some primates when fed a diet made of 40% alfalfa.
The Rearrangement hotspot system (Rhs) exists in both Gram-negative and Gram-positive bacteria. Similar to CdiA, these systems consists of big proteins with a conserved N-terminal domain and a variable C-terminal toxin domain requiring a cognate immunity protein. Many Rhs systems contain PAAR-domains (Proline-Alanine- Alanine-Arginine) which can interact with the VgrG of the T6SS apparatus making it required for Rhs secretion. The name Rearrangement hotspots comes from the discovery when the system was first identified as elements on the E. coli chromosome that were continuously rearranging.
Meanwhile, some cases have been only identified through elevated levels of various acidic metabolites in the urine, notably 3-hydroxyisobutyric acid. This can result from an identified a homozygous 1336G-A transition in the gene, resulting in a change in the 446th residue from glycine to arginine. Another case study, a child from consanguineous patients, presented as significant hypotonia in infancy, poor feeding, and dysmorphic facial features, including narrowed, downslanting palpebral fissures, short convex nose with depressed nasal bridge, microphthalmia, cataracts, and adducted thumbs. Brain imaging showed delayed myelination and thinning of the corpus callosum.
The three arginine residues that bind the C1 acid-group with salt bridges in vNEU are also present in hNEU. Active site topology and interactions with the substrate are very similar with the exception of the glycerol side chain which offers some strategic options in designing inhibitors targeting either vNEU or hNEU. In hNEU the glycerol hydroxyl-groups are bound via several tyrosine residues but in vNEU the main interaction is with a glutamic acid residue. These overall similarities have called for concerns over potential side effects from drugs targeting vNEU.
G. lamblia primarily generates its energy by breaking down glucose via glycolysis as well as the arginine dihydrolase pathway. It is unable to synthesize nucleotides on its own, instead salvaging them from its host. Synthesis of iron-sulfur clusters is done in a double-membrane-bound compartment called the mitosome, which is likely a remnant of mitochondria. Each cell contains 25 to 100 mitosomes divided into two categories: peripheral mitosomes which are scattered throughout the cell, and central mitosomes which gather at the center of the cell for unknown reasons.
In a study purifying cancerous liver cells infected with HBV, the level of expression of protein arginine methyltransferase 1 (PRMT1) was found to be associated with changes in transcription due to the methyltransferase function of PRMT1. Overexpression causes a reduction in the number of HBV genes transcribed, while conversely, underexpression causes an increase. PRMT1 was also found to be recruited by HBV DNA during the replication process to regulate the transcription process. Increased HBx expression in turn leads to an inhibition of PRMT1-mediated protein methylation, benefiting viral replication.
The dopamine pathway starts at the ventral tegmental area (VTA) and is routed to the nucleus accumbens and the prefrontal cortex for ultimate dopamine release that yields reward and reinforcement. This helps in feeling pleasure or enjoyment of a certain stimuli and reinforcing that positive feeling when that initial stimuli occurs again. Two important neuropeptides that mediated pair bond formation were oxytocin and arginine vasopressin (AVP). Even though both males and females have both molecules, oxytocin was shown to be predominantly in females and vasopressin predominantly promoted pair bonding in males.
Generated from 2VYC. In E. coli arginine decarboxylase, each homodimer has two active sites that are buried about 30 Å from the dimer surface. The active site, found in the PLP-binding domain, consists of the PLP cofactor bound to a lysine residue in the form of a Schiff base. The phosphate group of PLP is held in place through hydrogen bonding with the alcoholic side chains of several serine and threonine residues, as well as through hydrogen bonding with the imidazole side chain of a histidine residue.
Homeodomains can bind both specifically and nonspecifically to B-DNA with the C-terminal recognition helix aligning in the DNA's major groove and the unstructured peptide "tail" at the N-terminus aligning in the minor groove. The recognition helix and the inter-helix loops are rich in arginine and lysine residues, which form hydrogen bonds to the DNA backbone. Conserved hydrophobic residues in the center of the recognition helix aid in stabilizing the helix packing. Homeodomain proteins show a preference for the DNA sequence 5'-TAAT-3'; sequence-independent binding occurs with significantly lower affinity.
There are many different small molecules that can function to enhance protein stability and folding, many of them can be broadly grouped into large classes based both on their structure and their proposed mechanism of action. The parameters that define these groups are not strictly defined, and many small molecules that exert a chemical chaperoning effect do not readily fall into one of these categories. For example, the free amino acid arginine is not classically defined as a chemical chaperone, but it has a well-documented anti-aggregation effect.
AVPR2 are expressed in the kidney tubule, predominantly in the distal convoluted tubule and collecting ducts, in fetal lung tissue and lung cancer, the last two being associated with alternative splicing. AVPR2 is also expressed in the liver where stimulation releases a variety of clotting factors into the bloodstream. In the kidney, AVPR2's primary function is to respond to arginine vasopressin by stimulating mechanisms that concentrate the urine and maintain water homeostasis in the organism. When the function of AVPR2 is lost, the disease Nephrogenic Diabetes Insipidus (NDI) results.
The most used selection markers in C. albicans are the CaNAT1 resistance marker (confers resistance against nourseothricin) and MPAr or IMH3r (confers resistance to mycophenolic acid). Next to the above-mentioned selection makers a few auxotrophic strains were generated to work with auxotrophic makers. The URA3 marker (URA3 blaster method) is an often-used strategy in uridine auxotrophic strains; however, studies have shown that differences in URA3 position in the genome can be involved in the pathogeny of C. albicans. Besides the URA3 selection one can also use the histidine, leucine and arginine autotrophy.
To date, several paracaspase substrates have been described (see below). Bcl10 is cut after arginine 228. This removes the last five amino acids at the C-terminus and is crucial for T cell adhesion to fibronectin, but not for NF-κB activation and IL-2 production. However, using a peptide-based inhibitor (z-VRPR-fmk) of the paracaspase proteolytic activity, it has been shown that this activity is required for a sustain NF-κB activation and IL-2 production, suggesting that paracaspase may have others substrates involved in T cell-mediated NF-κB activation.
Cells of M. hominis prepared from batch cultures show uniform exponential growth and appear to divide through the process of binary fission with pleomorphic forms appearing upon further incubation. Similar behavior was demonstrated by another laboratory-adapted strain and by three other clinical isolates, making this seem characteristic of the species. M. hominis grows in a variety of defined laboratory media, such as arginine broth and can also be cultivated in water. Growth is this species as well as all species of mycoplasmas is driven by anaerobic respiration.
It has been known for a long time that human blood proteins like hemoglobin and serum albumin may undergo a slow non-enzymatic glycation, mainly by formation of a Schiff base between ε-amino groups of lysine (and sometimes arginine) residues and glucose molecules in blood (Maillard reaction). This reaction can be inhibited in the presence of antioxidant agents. Although this reaction may happen normally, elevated glycoalbumin is observed in diabetes mellitus. Glycation has the potential to alter the biological structure and function of the serum albumin protein.
Variants of UQCRC2 have been associated with mitochondrial complex III deficiency, nuclear, type 5. Mitochondrial complex III deficiency nuclear type 5 is a disorder of the mitochondrial respiratory chain resulting in a highly variable phenotype depending on which tissues are affected. Clinical features include mitochondrial encephalopathy, psychomotor retardation, ataxia, severe failure to thrive, liver dysfunction, renal tubulopathy, muscle weakness, exercise intolerance, lactic acidosis and hypoglycemia. Homozygous mutations resulting in a change from Arginine to Tryptophan at position 183 have been associated with mitochondrial complex III deficiency due to UQCRC2 dysfunction.
The most recent reaction sequence of Sxt in cyanobacteria is as follows. Refer to the diagram for a detailed biosynthesis and intermediate structures. alt= The proposed biosynthetic pathway of saxitoxin in cyanobacteria # It begins with the loading of the acyl carrier protein (ACP) with acetate from acetyl-CoA, yielding intermediate 1. # This is followed by SxtA-catalyzed methylation of acetyl-ACP, which is then converted to propionyl-ACP, yielding intermediate 2. # Later, another SxtA performs a Claisen condensation reaction between propionyl-ACP and arginine producing intermediate 4 and intermediate 3.
Sequence analysis of GBP2 showed the presence of an RNA binding domain which comprises a three RNA recognition motifs (RRM) and SR domain. The amino terminus of GBp2 shares a four Arg-Gly- Gly (RGG) repeat motifs and nine serine residues in the context of arginine/serine motifs. The SR domain of GBP2 is a phosphorylation site for SR specific protein kinase SRPK (sky1) which lead a nuclear localization of GBP2. The porcine GBP2 present a high similarity regarding the N-terminal which present a globular domain and contain the GTPase function.
Leucoagglutinin, a toxic phytohemagglutinin found in raw Vicia faba The vetches grown as forage are generally toxic to non-ruminants (such as humans), at least if eaten in quantity. Cattle and horses have been poisoned by V. villosa and V. benghalensis, two species that contain canavanine in their seeds. Canavanine, a toxic analogue of the amino acid arginine, has been identified in Hairy Vetch as an appetite suppressant for monogastric animals, while Narbon bean contains the quicker-acting but weaker γ-glutamyl-S-ethenylcysteine. In common vetch, γ-glutamyl-β-cyanoalanine has been found.
In hypokalemic periodic paralysis, arginine residues making up the voltage sensor of Nav1.4 are mutated. The voltage sensor comprises the S4 alpha helix of each of the four transmembrane domains (I-IV) of the protein, and contains basic residues that only allow entry of the positive sodium ions at appropriate membrane voltages by blocking or opening the channel pore. In patients with these mutations, the channel has a reduced excitability and signals from the central nervous system are unable to depolarise muscle. As a result, the muscle cannot contract efficiently, causing paralysis.
The nature of the causative mutation was first identified in 1988 by Wallace et al. who discovered the guanine (G) to adenosine (A) mutation at nucleotide position 11778 in nine families. This mutation converts a highly conserved arginine to histidine at codon 340 in the NADH dehydrogenase subunit 4 of complex I of the mitochondrial respiratory chain. The other two mutations known to cause this condition were identified in 1991 (G to A point mutation at nucleotide position 3460) and 1992 (thymidine (T) to cytosine (C) mutation at nucleotide 14484).
Palpitation can be intermittent and of variable frequency and duration, or continuous. Associated symptoms include dizziness, shortness of breath, sweating, headaches and chest pain. Palpitation may be associated with coronary heart disease, hyperthyroidism, diseases affecting cardiac muscle such as hypertrophic cardiomyopathy, diseases causing low blood oxygen such as asthma and emphysema; previous chest surgery; kidney disease; blood loss and pain; drugs such as antidepressants, statins, alcohol, nicotine, caffeine, cocaine and amphetamines; electrolyte imbalances of magnesium, potassium and calcium; and deficiencies of nutrients such as taurine, arginine and iron.
Mannucci PM, Ruggeri ZM, Pareti FI, Capitanio A. 1-Deamino-8-d-arginine vasopressin: a new pharmacological approach to the management of haemophilia and von Willebrands' diseases. Lancet 1977;1:869-72. This substance, when administered intravenously or intranasally, elevates factor VIII levels transiently, and was found to be useful in treating minor bleeding episodes or in preventing postoperative hemorrhage when given prior to minor surgical operations in patients with mild to moderate hemophilia or some types of von Willebrand disease. Lusher introduced the hemostatic use of desmopressin to the United States.
The biosynthesis mainly involves 3 enzymes: clavaminate synthase, β-lactam synthetase and N2-(2-carboxyethyl)-L-arginine synthase(CEA). Clavaminate synthase is a non- heme iron α-keto-glutarate dependent oxygenase that is encoded by orf5 of the clavulanic acid gene cluster. The specific mechanism of how this enzyme works is not fully understood, but this enzyme regulates 3 steps in the overall synthesis of clavulanic acid. All 3 steps occur in the same region of the catalytic iron center, yet do not occur in-sequence and affect different areas of the clavulanic acid structure.
Kex2 was first purified and characterized by Charles Brenner and Robert Fuller in 1992. The Kex2 crystal structure was solved by a group led by Dagmar Ringe, Robert Fuller and Gregory Petsko. That of Furin was determined by a group led by Manual Than and Wolfram Bode. The key features of Kex2 and Furin are a subtilisin-related catalytic domain, a specificity pocket that requires the amino acid amino terminal to the scissile bond to be arginine for rapid acylation, and a P-domain carboxy-terminal to the subtilisin domain, which is required for biosynthesis.
N-Acetylglutamic acid (also referred to as N-acetylglutamate, abbreviated NAG, chemical formula C7H11NO5) is biosynthesized from glutamate and acetylornithine by ornithine acetyltransferase, and from glutamic acid and acetyl-CoA by the enzyme N-acetylglutamate synthase. The reverse reaction, hydrolysis of the acetyl group, is catalyzed by a specific hydrolase. It is the first intermediate involved in the biosynthesis of arginine in prokaryotes and simple eukaryotes and a regulator in the process known as the urea cycle that converts toxic ammonia to urea for excretion from the body in vertebrates.
Core histones are four proteins called H2A, H2B, H3 and H4 and they are all found in equal parts in the cell. All four of the core histone amino acid sequences contain between 20 and 24% of lysine and arginine and the size or the protein ranges between 11400 and 15400 Daltons, making them relatively small, yet highly positively charged proteins. High content of positively charged amino acids allow them to closely associate with negatively charged DNA. Heterodimers, or histone-only intermediates are formed from histone-fold domains.
The active site structure is highly conserved across eukaryotic and prokaryotic forms. The PLP is anchored by means of a lysine, which forms an aldimine Schiff base linkage with the PLP aldehyde. It has been hypothesized that a nearby tyrosine functions as the proton donor and acceptor during the transadimination step as well as the formyl transfer step and that an arginine residue engages the tyrosine side chain in a cation–π interaction, which helps to lower the pK of the tyrosine, lowering the barrier for proton transfer.
This is because arginine gets broken down into urea which can be reabsorbed and utilized by yeast or metabolized into ammonia. However, urea also reacts with ethanol if it is not completely metabolized which coupled with long term exposure (as well as high temperatures) can lead to the production of the ester ethyl carbamate. Brettanomyces is one spoilage organism that can take advantage of excess nitrogen supplementation left in the wine. However, the greatest risk of over supplementing a must is that excess nitrogen and other nutrients will be left behind after fermentation is complete.
Conventional racemization analysis tends to report a D-alloisoleucine / L-isoleucine (A/I or D/L ratio). This amino acid ratio has the advantages of being relatively easy to measure and being chronologically useful through the Quaternary. Reversed phase HPLC techniques can measure up to 9 amino acids useful in geochronology over different time scales on a single chromatogram (aspartic acid, glutamic acid, serine, alanine, arginine, tyrosine, valine, phenylalanine, leucine).Kaufman, D.S., 2000 in Perspectives in Amino Acid and Protein Geochemistry: Oxford University Press, New York, 145-160.
Thus for aspartate or glutamate with negative side chains, pI = (pKa1 \+ pKa(R)), where pKa(R) is the side chain pKa. Cysteine also has potentially negative side chain with pKa(R) = 8.14, so pI should be calculated as for aspartate and glutamate, even though the side chain is not significantly charged at physiological pH. For histidine, lysine, and arginine with positive side chains, pI = (pKa(R) \+ pKa2). Amino acids have zero mobility in electrophoresis at their isoelectric point, although this behaviour is more usually exploited for peptides and proteins than single amino acids.
The acetyl group of acetylornithine is removed by the enzyme acetylornithinase (AO) or ornithine acetyltransferase (OAT), and this yields ornithine. Then, the enzymes citrulline and argininosuccinate convert ornithine to arginine. The diaminopimelic acid pathway There are two distinct lysine biosynthetic pathways: the diaminopimelic acid pathway and the α-aminoadipate pathway. The most common of the two synthetic pathways is the diaminopimelic acid pathway; it consists of several enzymatic reactions that add carbon groups to aspartate to yield lysine: # Aspartate kinase initiates the diaminopimelic acid pathway by phosphorylating aspartate and producing aspartyl phosphate.
Simplification on the mutation 46 XX 4p16.3 (female), 46XY 4p16.3 (male). Gain of function mutations in this gene can develop dysfunctional proteins "impede cartilage growth and development and affect chondrocyte proliferation and calcification" which can lead to craniosynostosis and multiple types of skeletal dysplasia (osteochondrodysplasia). In achondroplasia, the FGFR3 gene has a missense mutation at nucleotide 1138 resulting from either a G>A or G>C. This point mutation in the FGFR3 gene causes hydrogen bonds to form between two arginine side chains leading to ligand-independent stabilization of FGFR3 dimers.
This is a visual depiction of what conditions would allow for an auxotroph (top row of media: Colonies Auxotrophic to Arginine) compared to colonies that exhibit prototrophy (bottom row of media). Auxotrophy ( "to increase"; τροφή "nourishment") is the inability of an organism to synthesize a particular organic compound required for its growth (as defined by IUPAC). An auxotroph is an organism that displays this characteristic; auxotrophic is the corresponding adjective. Auxotrophy is the opposite of prototrophy, which is characterized by the ability to synthesize all the compounds needed for growth.
Enteropeptidase is a type II transmembrane serine protease (TTSP) localized to the brush border of the duodenal and jejunal mucosa and synthesized as a zymogen, proenteropeptidase, which requires activation by duodenase or trypsin. TTSPs are synthesized as single chain zymogens with N-terminal propeptide sequences of different lengths. These enzymes are activated by cleavage at the carboxyl side of lysine or arginine residues present in a highly conserved activation motif. Once activated, TTSPs are predicted to remain membrane-bound through a conserved disulfide bond linking the pro- and catalytic domains.
Gain-of-function mutations in the gene ACVR1/ALK2 is responsible for the genetic disease fibrodysplasia ossificans progressiva. The typical FOP patient has the amino acid arginine substituted for the amino acid histidine at position 206 in this protein. This causes a change in the critical glycine-serine activation domain of the protein which will cause the protein to bind its inhibitory ligand (FKBP12) less tightly, and thus over-activate the BMP/SMAD pathway. The result of this over- activation is that endothelial cells transform to mesenchymal stem cells and then to bone.
This exacerbates the dysfunction caused by the metabolic effects of hyperglycemia. Metabolic factors include the formation of advanced glycation end products (AGEs), which have a central role in the pathophysiology of many of the complications of diabetes mellitus, including cardiovascular complications. AGEs are chemical groups that form when a reducing sugar (glucose in this case) reacts non-enzymatically with an amine group, predominantly lysine and arginine, which are attached on proteins, lipids and nucleic acids. These glycosylation products accumulate on the proteins of vessel wall collagen, forming an irreversible complex of cross-linked AGEs.
Tirofiban is a synthetic, non-peptide inhibitor of the interaction of fibrinogen with the integrin glycoprotein (GP) IIb/IIIa on human platelets. The Merck chemistry team of George Hartman, Melissa Egbertson and Wasyl Halczenko developed tirofiban from a lead compound discovered in focused screening of small molecule replacements of the key arginine-glycine-aspartic acid (Arg-Gly-Asp) subunit of fibrinogen. Computation of the distance between the charged Arg and Asp sites in fibrinogen provided guidance leading to directed screening success. Tirofiban constitutes an antithrombotic, specifically an inhibitor of platelet aggregation.
In enzymology, an arginyltransferase () is an enzyme that catalyzes the chemical reaction :L-arginyl-tRNA + protein \rightleftharpoons tRNA + L-arginyl-protein Thus, the two substrates of this enzyme are L-arginyl-tRNA and protein, whereas its two products are tRNA and L-arginyl-protein. This enzyme belongs to the family of transferases, specifically the aminoacyltransferases. The systematic name of this enzyme class is L-arginyl- tRNA:protein arginyltransferase. Other names in common use include arginine transferase, arginyl-transfer ribonucleate-protein aminoacyltransferase, arginyl-transfer ribonucleate-protein transferase, and arginyl-tRNA protein transferase.
The molecular mechanism that underpins Ping-Pong likely involves several piRNA pathway associated factors. Qin was reported to coordinate the loading of Ago3 with piRNA, in addition to interacting with both Aub and Ago3. However, the Tudor protein krimper () was also shown to interact with both Aub and Ago3 through its Tudor domains while also binding itself through its N-terminal Krimper domain. Specifically, Krimper interacts with Ago3 in its piRNA-unloaded state, while its interaction with Aub is dependent on the symmetrical dimethylation of arginine residues in the N-terminal region of Aub.
In enzymology, a D-proline reductase (dithiol) () is an enzyme that catalyzes the chemical reaction :5-aminopentanoate + lipoate \rightleftharpoons D-proline + dihydrolipoate Thus, the two substrates of this enzyme are 5-aminopentanoate and lipoate, whereas its two products are D-proline and dihydrolipoate. This enzyme belongs to the family of oxidoreductases, specifically those acting on X-H and Y-H to form an X-Y bond with a disulfide as acceptor. The systematic name of this enzyme class is 5-aminopentanoate:lipoate oxidoreductase (cyclizing). This enzyme participates in arginine and proline metabolism.
The p70S6 kinase is a downstream target of mTOR (mammalian target of rapamycin) signaling, specifically mTORC1, an mTOR-containing complex characterized by the inclusion of Raptor rather than Rictor (mTORC2). mTOR can be activated via an AND-gate-like mechanism at the lysosome, integrating signals about growth factors and bioavailability of important molecules. For instance, amino acids such as arginine and leucine can trigger lysosomal recruitment of mTORC1. Once at the lysosome, mTOR can be activated by Rheb, a small, lysosomal-resident GTPase, in its GTP-bound state.
B. pseudomallei measures 2–5 μm in length and 0.4–0.8 μm in diameter and is capable of self-propulsion using flagella. The bacteria can grow in a number of artificial nutrient environments, especially betaine- and arginine- containing ones. In vitro, optimal proliferation temperature is reported around 40 °C in neutral or slightly acidic environments (pH 6.8–7.0). The majority of strains are capable of oxidation, not fermentation, of sugars without gas formation (most importantly, glucose and galactose; older cultures are reported to also metabolize maltose and starch).
Most amino acids are synthesized from α-ketoacids, and later transaminated from another amino acid, usually glutamate. The enzyme involved in this reaction is an aminotransferase. : α-ketoacid + glutamate ⇄ amino acid + α-ketoglutarate Glutamate itself is formed by amination of α-ketoglutarate: : α-ketoglutarate + ⇄ glutamate The α-ketoglutarate family of amino acid synthesis (synthesis of glutamate, glutamine, proline and arginine) begins with α-ketoglutarate, an intermediate in the Citric Acid Cycle. The concentration of α-ketoglutarate is dependent on the activity and metabolism within the cell along with the regulation of enzymatic activity.
AT-hooks also include a variable number of positively charged lysine and arginine residues on either side of the core sequence. The AT-hook binds to the minor groove of adenine-thymine (AT) rich DNA, hence the AT in the name. The rest of the name derives from a predicted asparagine/aspartate "hook" in the earliest AT-hooks reported in 1990. In 1997 structural studies using NMR determined that a DNA- bound AT-hook adopted a crescent or hook shape around the minor groove of a target DNA strand (pictured at right).
CHRNE is associated with changing the kinetic properties of the AChR. One type of mutation of the epsilon subunit of the AChR introduces an arginine (Arg) into the binding site at the α/ε subunit interface of the receptor. The addition of a cationic Arg into the anionic environment of the AChR binding site greatly reduces the kinetic properties of the receptor. The result of the newly introduced ARG is a 30-fold reduction of agonist affinity, 75-fold reduction of gating efficiency, and an extremely weakened channel opening probability.
The mature forms of DUT-N (22 kDa) and DUT-M (23 kDa) are nearly identical except for a short N-terminal region present in DUT-M. The DUT-M precursor (31 kDa) contains an arginine- rich, 69-residue mitochondrial targeting sequence which undergoes post- translational cleavage to effect mitochondrial import. Meanwhile, the monopartite NLS sequence is critical for the function and nuclear localization of DUT-N, which would otherwise accumulate in the cytoplasm. Though both isoforms contain the NLS, the sequence in DUT-M is sequestered away from cognate karyopherins.
Stable isotope labeling with amino acids in cell culture (SILAC) is a method that involves metabolic incorporation of “heavy” C- or N-labeled amino acids into proteins followed by MS analysis. SILAC requires growing cells in specialized media supplemented with light or heavy forms of essential amino acids, lysine or arginine. One cell population is grown in media containing light amino acids while the experimental condition is grown in the presence of heavy amino acids. The heavy and light amino acids are incorporated into proteins through cellular protein synthesis.
Histone methylation occurs on arginine, lysine and histidine amino acids residues. Mono-, di- or tri-methylation has been discovered on histone H2A, H3 and H4. Histone methylation has been associated with various cellular functions such as transcription, DNA replication, and DNA damage response including repair, heterochromatin formation, and somatic cell reprogramming. Among these biological functions, transcriptional repression and activation are the most studied. Studies have shown that H4R3 methylation by PRMT1 (a histone methyltransferase) appears to be essential in vivo for the establishment or maintenance of a wide range of “active” chromatin modifications.
Others implicate the arginine residues of nuclear histones as the substrate of nuclear staining by haemalum. Structures that stain with aluminium-hematein (haemalum) are often said to be basophilic, but the staining mechanism is not as simple as for basic (cationic) dyes with smaller molecules. Truly basophilic structures are ones containing nucleic acids or other polyanions such as glycosaminoglycans of extracellular matrix or acidic glycoproteins in many types of mucus. As usually used, aluminium- hematein stains only nuclear chromatin and a few other materials such as keratohyalin granules and calcified deposits.
A glutamate on a nearby loop interacts with nitrogens on the target arginine residue. This interaction redistributes the positive charge and leads to the deprotonation of one nitrogen group, which can then make a nucleophilic attack on the methyl group of SAM. Differences between the two types of PRMTs determine the next methylation step: either catalyzing the dimethylation of one nitrogen or allowing the symmetric methylation of both groups. However, in both cases the proton stripped from the nitrogen is dispersed through a histidine–aspartate proton relay system and released into the surrounding matrix.
DNA analysis identified genes of the N-acetylneuraminate scavenging and catabolism pathway. Biochemical tests including metabolism of glucose, mannose, lactose, sucrose, arginine, aesculin, urea and phosphatase activity performed on M. alligatoris isolates showed that the organism ferments glucose, mannose, lactose, and sucrose and displays phosphatase activity. DNA sequencing analysis revealed genes encoding a complement of glycosidases, which include hyaluronidases, two sialidases, three β-galactosidases, α-amylase (glycogenase), and two glycosyltransferases. M. alligatoris differs from other species of the Mycoplasma genus by the aforementioned complement of sialidases, which are enzymes of the hydrolase class.
An allele (rs1815739; R577X) has been identified in the ACTN3 gene which results in a deficiency of alpha-actinin 3 in a significant proportion of the population.David Epstein. The Sports Gene: Inside the Science of Extraordinary Athletic Performance. The X homozygous genotype is caused by a C to T transition in exon 16 of the ACTN3 gene, which causes a transformation of an arginine base (R) to a premature stop codon (X) resulting in the rs1815739 mutation causing no production of the alpha-actinin 3 protein in muscle fibers.
ApoER2 is a protein made up of 870 amino acids. It is separated into a ligand binding domain of eight ligand binding regions, an EGF-like domain containing three cysteine-rich repeats, an O-linked glycosylation domain of 89 amino acids, a transmembrane domain of 24 amino acids, and a cytoplasmic domain of 115 amino acids, including an NPXY motif. alt=A diagram of the structure of APOER2 Each letter in the NPXY motif represents a certain amino acid where N is arginine, P is proline, X is any amino acid, and Y is tyrosine.
308x308px 139x139pxα-keratin is a polypeptide chain, typically high in alanine, leucine, arginine, and cysteine, that forms a right-handed α-helix. Two of these polypeptide chains twist together to form a left-handed helical structure known as a coiled coil. These coiled coil dimers, approximately 45 nm long, are bonded together with disulfide bonds, utilizing the many cysteine amino acids found in α-keratins. The dimers then align, their termini bonding with the termini of other dimers, and two of these new chains bond length- wise, all through disulfide bonds, to form a protofilament.
Crystal structure of a homologous human malic enzyme highlights key residues involved in substrate binding and catalysis. Site II contains the GLGDLG motif, site V contains the other GXGXXG motif, the highlighted arginine residue interacts with both NADP+ and malate, and the highlighted lysine may possibly be involved in base catalysis. PDB file identity for image is 2aw5. Based on crystallography data of homologous NADP-dependent malic enzymes of mammalian origin, a 3D model for C4 pathway NADP-ME in plants has been developed, identifying the key residues involved in substrate-binding or catalysis.
This gene product is a member of the serine-arginine (SR) family of proteins, which is involved in constitutive and regulated RNA splicing. Members of this family are characterized by N-terminal RNP1 and RNP2 motifs, which are required for binding to RNA, and multiple C-terminal SR/RS repeats, which are important in mediating association with other cellular proteins. This protein can influence splice site selection of adenovirus E1A pre-mRNA. It interacts with the oncoprotein TLS, and abrogates the influence of TLS on E1A pre-mRNA splicing.
Other delivery mechanisms that have been developed include CellSqueeze and electroporation. CPPs typically have an amino acid composition that either contains a high relative abundance of positively charged amino acids such as lysine or arginine or has sequences that contain an alternating pattern of polar, charged amino acids and non- polar, hydrophobic amino acids. These two types of structures are referred to as polycationic or amphipathic, respectively. A third class of CPPs are the hydrophobic peptides, containing only apolar residues with low net charge or hydrophobic amino acid groups that are crucial for cellular uptake.
In 1895, Kossel was professor of physiology as well as director of the Physiological Institute at the University of Marburg. Around this time, he began investigations into the chemical composition of proteins, the alterations in proteins during transformation into peptone, the peptide components of cells, and other investigations. In 1896, Kossel discovered histidine, then worked out the classical method for the quantitative separation of the "hexone bases" (the alpha-amino acids arginine, histidine, and lysine). He was also the first to isolate theophylline, a therapeutic drug found naturally in tea and cocoa beans.
The salt bridge most often arises from the anionic carboxylate (RCOO−) of either aspartic acid or glutamic acid and the cationic ammonium (RNH3+) from lysine or the guanidinium (RNHC(NH2)2+) of arginine (Figure 2). Although these are the most common, other residues with ionizable side chains such as histidine, tyrosine, and serine can also participate, depending on outside factors perturbing their pKa's. The distance between the residues participating in the salt bridge is also cited as being important. The distance required is less than 4 Å (400 pm).
In addition, Rubenstein pioneered research on the consequences of the misincorporation of nonprotein amino acids, especially the lower homologue of proline, azetidine-2-carboxylic acid (Aze). This compound eludes the gate-keeping function of the prolyl tRNAs, and enters a wide range of proteins. For instance, the central region in a consensus epitope of myelin basic protein consists of the sequence: proline, arginine, threonine, proline, proline, proline. Dairy milk from cattle fed sugar beet byproducts is high in Aze, therefore infants fed such milk are exposed to Aze in their diets.
NADH:ubiquinone oxidoreductase complex assembly factor 5, also known as Arginine-hydroxylase NDUFAF5, or Putative methyltransferase NDUFAF5, is a protein that in humans is encoded by the NDUFAF5 gene. The NADH-ubiquinone oxidoreductase complex (complex I) of the mitochondrial respiratory chain catalyzes the transfer of electrons from NADH to ubiquinone, and consists of at least 43 subunits. The complex is located in the inner mitochondrial membrane. This gene encodes a mitochondrial protein that is associated with the matrix face of the mitochondrial inner membrane and is required for complex I assembly.
Glucosepane is a lysine-arginine protein cross-linking product and advanced glycation end product (AGE) derived from D-glucose. It is an irreversible, covalent cross-link product that has been found to make intermolecular and intramolecular cross-links in the collagen of the extracellular matrix (ECM) and crystallin of the eyes. Covalent protein cross-links irreversibly link proteins together in the ECM of tissues. Glucosepane is present in human tissues at levels 10 to 1000 times higher than any other cross-linking AGE, and is currently considered to be the most important cross-linking AGE.
A suspected reason for the prevalence of the glucosepane cross-link product as opposed to others is that the α−dicarbonyl from which it forms, N 6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysinate, is a persisting glycating agent because it is irreversibly bound through lysine to a protein. Therefore, it is not easily degraded and thus is more commonly available to form a cross-link with arginine, unlike other cross-link a-dicarbonyl intermediates, which are found bound and free and thus more susceptible to being degraded by enzymes in the ECM.
Three isoforms are known for the NOS enzyme: endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) - each with separate functions. The neuronal enzyme (NOS-1) and the endothelial isoform (NOS-3) are calcium-dependent and produce low levels of this gas as a cell signaling molecule. The inducible isoform (NOS-2) is calcium-independent and produces large amounts of gas that can be cytotoxic. NOS oxidizes the guanidine group of L-arginine in a process that consumes five electrons and results in the formation of NO with stoichiometric formation of L-citrulline.
A Janin Plot generated by CING from chain A, Arginine residue number 18 in the protein Dynein Light Chain, (PDB ID 1y4o). The blue region show likely angle combinations for helical residues, while the yellow areas display regions that are common to strand-like stretches. Some green background can be seen for residues that are in other types of regions. The image was taken from the residue page here at the NRG-CING archive of validation reports In biomolecular structure, CING stands for the Common Interface for NMR structure Generation and is known for structure and NMR data validation.
A point mutation substituting C to G in DEC2/BHLHE41 DNA sequence results in the substitution of proline at position 385 with arginine. The proline at position 385 (384 according to the talk page) of BHLHE41 is located close to the C-terminal histone deacetylase-interacting region of BHLHE41, which is a highly conserved region within the proline-rich domain. This mutation mitigates BHLHe41's transcriptional inhibitory function. Furthermore, mice with this mutation show aberrations in sleep homeostasis as they undergo a shorter duration of REM and non-REM sleep and recover more readily from sleep deprivation.
The Sm proteins are synthesized in the cytoplasm by ribosomes translating Sm messenger RNA, just like any other protein. These are stored in the cytoplasm in the form of three partially assembled rings complexes all associated with the pICln protein. They are a 6S pentamer complex of SmD1,SmD2, SmF, SmE and SmG with pICln, a 2-4S complex of SmB, possibly with SmD3 and pICln and the 20S methylosome, which is a large complex of SmD3, SmB, SmD1, pICln and the arginine methyltransferase-5 (PRMT5) protein. SmD3, SmB and SmD1 undergo post- translational modification in the methylosome.
The blood coagulation and left Factor IX is produced as a zymogen, an inactive precursor. It is processed to remove the signal peptide, glycosylated and then cleaved by factor XIa (of the contact pathway) or factor VIIa (of the tissue factor pathway) to produce a two-chain form, where the chains are linked by a disulfide bridge. When activated into factor IXa, in the presence of Ca2+, membrane phospholipids, and a Factor VIII cofactor, it hydrolyses one arginine-isoleucine bond in factor X to form factor Xa. Factor IX is inhibited by antithrombin. Factor IX expression increases with age in humans and mice.
It also appears to interact with a ferredoxin compound which may activate the subunit during the CO transferring process from CODH to ACS. The final domain binds CoA and consists of six arginine residues with a tryptophan molecule. Experiments between the C-cluster of CODH and the A-cluster of ACS reveal a long, hydrophobic channel connecting the two domains to allow for the transfer of carbon monoxide from CODH to ACS. This channel is most likely to protect the carbon monoxide molecules from the outside environment of the enzyme and to increase efficiency of acetyl-CoA production.
Ammonia (NH3) is a toxic substance for many aerobic organisms and must be excreted. Some aquatic organisms release the toxin right directly into their environment, while other ureotelic species must convert their toxic nitrogen waste into non-toxic components, like uric acid or urea, through a series of catalyzed steps better known as the urea cycle. ASL catalyzes the fourth step in the cycle, following the action of argininosuccinate synthetase (ASS) in the liver cytosol. While ASS catalyzes the formation of argininosuccinate from citrulline and aspartate, ASL breaks the newly formed argininosuccinate into L-arginine and fumarate.
If they are low despite the stimulatory effect of the low blood sugars, growth hormone deficiency is confirmed. The test is not without risks, especially in those prone to seizures or are known to have heart disease, and causes the unpleasant symptoms of hypoglycemia. Alternative tests (such as the growth hormone releasing hormone stimulation test) are less useful, although a stimulation test with arginine may be used for diagnosis, especially in situations where an insulin tolerance test is thought to be too dangerous. If GH deficiency is suspected, and all other pituitary hormones are normal, two different stimulation tests are needed for confirmation.
Unwanted side reactions such as threonine and asparagine production can occur if a buildup of intermediates occurs, so scientists have developed mutant strains of C. glutamicum through PCR engineering and chemical knockouts to ensure production of side-reaction enzymes are limited. Many genetic manipulations conducted in industry are by traditional cross-over methods or inhibition of transcriptional activators. Expression of functionally active human epidermal growth factor has been brought about in C. glutamicum, thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general secretory pathway or the twin-arginine translocation pathway.
Calisi's group also focuses on exploring sexually dimorphic gene expression throughout the tissues of the Hypothalamic-Pituitary-Gonadal (HPG) axis. Their thorough analysis showed that sex-differences are evident along this axis, such as differences in androgen receptor, prolactin, and arginine vasopressin receptor 1A that highlight the critical need to for sex parity in further research on reproductive function and health. This work provided a critical baseline for Calisi's next question regarding the effectcs of stress on the HPG axis. Calisi and her group looked at the transcriptomic differences across male and female rock doves in response to restraint stress.
Norepinephrine causes predominately vasoconstriction with a mild increase in heart rate, whereas epinephrine predominately causes an increase in heart rate with a small effect on the vascular tone; the combined effect results in an increase in blood pressure. The renin–angiotensin axis is activated, and arginine vasopressin (anti-diuretic hormone) is released to conserve fluid by reducing its excretion via the renal system. These hormones cause the vasoconstriction of the kidneys, gastrointestinal tract, and other organs to divert blood to the heart, lungs and brain. The lack of blood to the renal system causes the characteristic low urine production.
Arginine's side chain is amphipathic, because at physiological pH it contains a positively charged guanidinium group, which is highly polar, at the end of a hydrophobic aliphatic hydrocarbon chain. Because globular proteins have hydrophobic interiors and hydrophilic surfaces, arginine is typically found on the outside of the protein, where the hydrophilic head group can interact with the polar environment, for example taking part in hydrogen bonding and salt bridges. For this reason, it is frequently found at the interface between two proteins. The aliphatic part of the side chain sometimes remains below the surface of the protein.
This system is also used by most bacteria for chromosome segregation. Type I partition systems are composed of an ATPase which contains Walker motifs and a CBP which is structurally distinct in type Ia and Ib. ATPases and CBP from type Ia are longer than the ones from type Ib, but both CBPs contain an arginine finger in their N-terminal part. ParA proteins from different plasmids and bacterial species show 25 to 30% of sequence identity to the protein ParA of the plasmid P1. The partition of type I system uses a "diffusion-ratchet" mechanism.
The third K/R editing site within the coding sequence is found at amino acid position 15 of the final protein where a Lysine is converted to an Arginine. The ECS is predicted to be found in the intron with the double stranded structure formed containing all 17 of the editing sites. It is likely since all the editing sites fall within the duplex region that editing occurs in exonic and intronic sequences at the same time. There is a high level of conservation of the last 150 nucleotides of the intronic region and the start of exon 2.
Most of the activator proteins that bind to ISEs and ESEs are members of the SR protein family. Such proteins contain RNA recognition motifs and arginine and serine-rich (RS) domains. Splicing activation In general, the determinants of splicing work in an inter-dependent manner that depends on context, so that the rules governing how splicing is regulated from a splicing code. The presence of a particular cis-acting RNA sequence element may increase the probability that a nearby site will be spliced in some cases, but decrease the probability in other cases, depending on context.
The active site of OmpT resembles that of other omptins, and is characterized by conserved residues at Asp84, Asp86, Asp206, and His208. The most common bond cleavage by OmpT is between two arginine residues because their positive charge can favorably interact with the negatively charged species at the active site during substrate binding. Because of the specificity of the active site, OmpT does not act on peptides with a negatively charged residue adjacent to the scissile bond. Also, OmpT is specifically identified an endopeptidase because it does not cleave peptides at the N- or C-terminus, but only between nonterminal amino acids.
Mutations in the COL11A2 gene have been shown to cause hearing loss without other signs or symptoms (nonsyndromic deafness autosomal dominant) in two large families. One family carries a mutation that substitutes the amino acid cysteine (a building block of proteins) for the amino acid arginine at position 549 (written as Arg549Cys) in the alpha 2 chain of type XI collagen. A second family has a mutation that substitutes the amino acid glutamic acid for the amino acid glycine at position 323 (written as Gly323Glu) in this protein. These mutations prevent the normal assembly of type XI collagen.
Due to these commonalities, both enzymes are often studied comparatively, and especially in reference to inhibitors. Though there is limited information, some important residues have been identified and are highlighted in the active site structure and mechanism. Due to the difficulty of obtaining crystal structures of bound substrates, a sulfate ion and water molecules were used to better understand the residues role in substrate binding. When investigating the human form of mevalonate diphosphate decarboxylase, the following specific residues were identified: arginine-161 (Arg-161), serine-127 (Ser-127), aspartate-305 (Asp-305), and asparagine-17 (Asn-17).
Walker B motif is a motif in most P-loop proteins situated well downstream of the A-motif. The consensus sequence of this motif was reported to be [RK]-x(3)-G-x(3)-LhhhD, where R, K, G, L and D denote arginine, lysine, glycine, leucine and aspartic acid residues respectively, x represents any of the 20 standard amino acids and h denotes a hydrophobic amino acid. This motif was changed to be hhhhDE, where E denotes a glutamate residue. The aspartate and glutamate also form a part of the DEAD/DEAH motifs found in helicases.
ADP-ribosylation is a common enzymatic method used by different bacterial toxins from various species. Toxins such as C. perfringens iota toxin and C. botulinum C2 toxin, attach a ribosyl-ADP moiety to surface arginine residue 177 of G-actin. This prevents G-actin assembling to form F-actin, and, thus, the cytoskeleton breaks down, resulting in cell death. Insecticidal members of the ADP-ribosyltransferase family of toxins include the Mtx1 toxin of Lysinibacillus sphaericus and the Vip1/Vip2 toxin of Bacillus thuringiensis and some members of the toxin complex (Tc) toxins from gram negative bacteria such as Photorhabdus and Xenorhabdus species.
PC1/3 is an enzyme that performs the proteolytic cleavage of prohormones to their intermediate (or sometimes completely cleaved) forms. It is present only in neuroendocrine cells such as brain, pituitary and adrenal, and most often cleaves after a pair of basic residues within prohormones but can occasionally cleave after a single arginine. It binds to a protein known as proSAAS, which also represents its endogenous inhibitor. PC1 is synthesized as a 99 kDa proform quickly converted to an 87 kDa major active form, which itself is nearly completely cleaved to a 66 kDa active form within neuroendocrine cells.
There appears to be a further increase in programmed enterocyte cell death by Giardia intestinalis, which further damages the intestinal barrier and increases permeability. There is significant upregulation of the programmed cell death cascade by the parasite, and, furthermore, substantial downregulation of the anti-apoptotic protein Bcl-2 and upregulation of the proapoptotic protein Bax. These connections suggest a role of caspase- dependent apoptosis in the pathogenesis of giardiasis. Giardia protects its own growth by reducing the formation of the gas nitric oxide by consuming all local arginine, which is the amino acid necessary to make nitric oxide.
The protein is all alpha-helical, and the protein structure from Synechocystis was solved in 2013, showing both a dimer as well as a tetramer form in the same crystal used for X-ray diffraction. It is believed that the dimer is the active form. In the tetramer structure, one of the alpha helices is extended, disrupting the structure of a conserved patch of amino acids that is suggested to be an active site. Among these conserved residues, a histidine at position 53 and an arginine residue at position 60 have been shown to be essential for activity.
The final quaternary structure is formed when two dimers interact via a different set of alpha helices and anti-parallel beta-sheets; interactions between the beta-sheets are thought to be a combination of both hydrophobic and electrostatic attraction. There is approximately one catalytic site per monomer subunit giving a total of four possible catalytic sites on the enzymatic tetramer. The active site consists of a Ser132-Tyr145-Arg149 catalytic triad. The serine and tyrosine residues function to stabilize the substrate and its intermediate, while the arginine alters the pKa of Tyr145 to make it catalytically active.
The Coomassie Blue G250 dye used to bind to the proteins in the original Bradford method readily binds to arginine and lysine groups of proteins. This is a disadvantage because the preference of the dye to bind to these amino acids can result in a varied response of the assay between different proteins. Changes to the original method, such as increasing the pH by adding NaOH or adding more dye have been made to correct this variation. Although these modifications result in a less sensitive assay, a modified method becomes sensitive to detergents that can interfere with sample.
Delta-1-pyrroline-5-carboxylate synthetase (P5CS) is an enzyme that in humans is encoded by the ALDH18A1 gene. This gene is a member of the aldehyde dehydrogenase family and encodes a bifunctional ATP- and NADPH-dependent mitochondrial enzyme with both gamma-glutamyl kinase and gamma-glutamyl phosphate reductase activities. The encoded protein catalyzes the reduction of glutamate to delta1-pyrroline-5-carboxylate, a critical step in the de novo biosynthesis of proline, ornithine and arginine. Mutations in this gene lead to hyperammonemia, hypoornithinemia, hypocitrullinemia, hypoargininemia and hypoprolinemia and may be associated with neurodegeneration, cataracts and connective tissue diseases.
Ornithine and/or arginine are key intermediates for the synthesis of urea, creatine, nitric oxide, polyamines, and protein; while proline is a major component of the connective tissue proteins, collagen and elastin. Because all three of these amino acids are a part of very significant processes, the presence of P5CS becomes an important regulator which makes sure that none of these three become deficient. Therefore, a lack of P5CS, due to mutations in the ALDH18A1 gene, often leads to neurodegeneration, joint laxity, skin hyperelasticity, bilateral sub capsular cataracts, and a plethora of other complications associated with impaired proline and ornithine synthesis.
QTAIM has also been applied to study the electron topology of solvated post-translational modifications to protein. For example, covalently bonded force constants in a set of lysine-arginine derived advanced glycation end-products were derived using the electronic structure calculations and then bond paths were used to illustrate differences in each of the applied computational chemistry functionals. Furthermore, QTAIM had been used to identify a bond path network of hydrogen bonds between glucosepane and nearby water molecules. In QTAIM the energy increase on decreasing the dihedral angle from 38° to 0° is a summation of several factors.
In addition, many neurohormonal and inflammatory agents are implicated in the progression of CRS. These include increased formation of reactive oxygen species, endothelin, arginine vasopressin, and excessive sympathetic activity which can result in myocardial hypertrophy and necrosis. Other cardiorenal connectors include renin- angiotensin-system activation, nitric oxide/reactive oxygen species imbalance, inflammatory factors and abnormal activation of the sympathetic nervous system, which can cause structural and functional abnormalities in both heart and/or the kidney. There is a close interaction within these cardiorenal connectors as well as between these factors and the hemodynamic factors which makes the study of CRS pathophysiology complicated.
The C9ORF3 aminopeptidase cleaves the N-terminal amino acid from polypeptides and shows a strong preference for peptides in which the N-terminus is arginine and to a lesser extent asparagine. Furthermore, the activity of the enzyme is inhibited by o-phenanthroline, a metalloprotease inhibitor and by arphamenine A, a potent inhibitor of aminopeptidases such as LTA4H. Also able to cleave angiotensin III to generate angiotensin IV, a bioactive peptide of the renin–angiotensin pathway. Due to its aminopeptidase activity this enzyme may play a role in the proteolytic processing of bioactive peptides in those tissues where it is expressed.
Transport and golgi organization 2 homolog (TANGO2) also known as chromosome 22 open reading frame 25 (C22orf25) is a protein that in humans is encoded by the TANGO2 gene. The function of C22orf25 is not currently known. It is characterized by the NRDE superfamily domain (DUF883), which is strictly known for the conserved amino acid sequence of (N)-Asparagine (R)-Arginine (D)-Aspartic Acid (E)-Glutamic Acid. This domain is found among distantly related species from the six kingdoms: Eubacteria, Archaebacteria, Protista, Fungi, Plantae, and Animalia and is known to be involved in Golgi organization and protein secretion.
Sortase refers to a group of prokaryotic enzymes that modify surface proteins by recognizing and cleaving a carboxyl-terminal sorting signal. For most substrates of sortase enzymes, the recognition signal consists of the motif LPXTG (Leu-Pro-any-Thr-Gly), then a highly hydrophobic transmembrane sequence, followed by a cluster of basic residues such as arginine. Cleavage occurs between the Thr and Gly, with transient attachment through the Thr residue to the active site Cys residue, followed by transpeptidation that attaches the protein covalently to cell wall components. Sortases occur in almost all Gram- positive bacteria and the occasional Gram-negative bacterium (e.g.
At low concentrations (5-10%), as found in many over-the-counter products, glycolic acid (GA) reduces cell adhesion in the epidermis and promotes exfoliation. Low concentration makes possible daily application as a monotherapy or as part of a broader skin care management for such conditions as acne, photo-damage, wrinkling as well as melasma. Care should be taken to avoid irritation to avoid the worsening of melasma or other pigmentary problems. Newer formulations combine glycolic acid with an amino acid such as arginine and time-release formulations that reduces the risk of irritation without affecting glycolic acid efficacy.
Often prenatal vitamins also have a reduced dosage of vitamins that may be detrimental to the fetus when taken in high doses (such as vitamin A). Many prenatal manufacturers have chosen to include the omega-3 fatty acid, docosahexaenoic acid (DHA) in their product, either as an ingredient in the formula or as a complementary softgel. Although explicitly in many formulas to support neural development, the omega-3 fatty acids are used by both mother and fetus to create the phospholipid bilayer that makes up cell membranes. L-arginine has tentative evidence of benefit in reducing intrauterine growth restriction.
In contrast, inflammatory stimuli also activate NF-κB- induced expression of the deubiquitinase A20 (TNFAIP3), which has been shown to intrinsically repair the endothelial barrier. One of the main mechanisms of endothelial dysfunction is the diminishing of nitric oxide, often due to high levels of asymmetric dimethylarginine, which interfere with the normal L-arginine-stimulated nitric oxide synthesis and so leads to hypertension. The most prevailing mechanism of endothelial dysfunction is an increase in reactive oxygen species, which can impair nitric oxide production and activity via several mechanisms. The signalling protein ERK5 is essential for maintaining normal endothelial cell function.
An association with the levels monocyte chemoattractant protein-1 has been reported. In the Sardinian population, an association of several variants in the DARC gene (coding and non-coding) correlates with increased serum levels of monocyte chemoattractant protein (MCP -1). A new variant in this population, consisting of the amino acid substitution of arginine for a cysteine at position 89 of the protein diminishes the ability to bind chemokines. DARC has also been linked to rheumatoid arthritis (RA), possibly displaying chemokines such as CXCL5 on the surface of endothelial cells within the synovium, increasing the recruitment of neutrophils in the disease state.
In Escherichia coli, positively-charged and some aliphatic and aromatic residues on the N-terminus, such as arginine, lysine, leucine, phenylalanine, tyrosine, and tryptophan, have short half- lives of around 2-minutes and are rapidly degraded. Other amino acids on the other hand may have half-lives of more than 10 hours when added to the N-terminal of the same protein. However, a complicating issue is that the first residue of bacterial proteins is normally expressed with an N-terminal formylmethionine (f-Met). The formyl group of this methionine is quickly removed, and the methionine itself is then removed by methionyl aminopeptidase.
An IgA protease is a highly specific 106kDa enzyme that cleaves amino acid sequences of certain proteins. The natural substrate of IgA proteases is immunoglobulin A, hence its name. The enzyme is in fact capable of cleavage of proteins with the amino acid sequence Cleaves N-X-Z-Pro-Pro/-Y-Pro-C, where the X in the squence preferably is a Proline or Serine; the Y = Threonine, Serine or Alanine; and Z preferably is Arginine or Threonine. Because of the sequence that the enzyme is able to cleave, it is also called IgAse Pro-Pro-Y- Pro.

No results under this filter, show 1000 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.