Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"sidereal day" Definitions
  1. the interval between two successive transits of a point on the celestial sphere (such as the vernal equinox) over the upper meridian of a place : 23 hours, 56 minutes, 4.1 seconds of mean time

81 Sentences With "sidereal day"

How to use sidereal day in a sentence? Find typical usage patterns (collocations)/phrases/context for "sidereal day" and check conjugation/comparative form for "sidereal day". Mastering all the usages of "sidereal day" from sentence examples published by news publications.

A solar day measures how long it takes for the Sun to return to the same point in the sky, while a sidereal day is the time it takes for a body to fully rotate on its axis.
The sidereal day is based on the Earth's rotation rate relative to fixed stars, rather than the Sun. A sidereal day is approximately 23 hours, 56 minutes, 4.0905 SI seconds.
Earth's rotation period relative to the International Celestial Reference Frame, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is seconds of mean solar time (UT1) , ). Earth's rotation period relative to the precessing mean vernal equinox, named sidereal day, is of mean solar time (UT1) , ). Thus, the sidereal day is shorter than the stellar day by about . Both the stellar day and the sidereal day are shorter than the mean solar day by about .
Thus each extended-sidereal day is shorter than a sidereal day (23 hr 56 min) by about four minutes or 23 hr 52 min. All years mentioned have the same length.B. E. Kolterman, "A harmonic analysis of the large scale cosmic ray anisotropy", 30th International Cosmic Ray Conference (2007).
Similarly, to ensure the ground track repeats every 24 hours the nodal period needed to be half a sidereal day.
Mercury's sidereal day is about two- thirds of its orbital period, so by the prograde formula its solar day lasts for two revolutions around the Sun – three times as long as its sidereal day. Venus rotates retrograde with a sidereal day lasting about 243.0 Earth days, or about 1.08 times its orbital period of 224.7 Earth days; hence by the retrograde formula its solar day is about 116.8 Earth days, and it has about 1.9 solar days per orbital period. By convention, rotation periods of planets are given in sidereal terms unless otherwise specified.
Parallel transport of a vector around a closed loop on the sphere: The angle by which it twists, , is proportional to the area inside the loop. In a near- inertial frame moving in tandem with Earth, but not sharing the rotation of the earth about its own axis, the suspension point of the pendulum traces out a circular path during one sidereal day. At the latitude of Paris, 48 degrees 51 minutes north, a full precession cycle takes just under 32 hours, so after one sidereal day, when the Earth is back in the same orientation as one sidereal day before, the oscillation plane has turned by just over 270 degrees. If the plane of swing was north–south at the outset, it is east–west one sidereal day later.
So after a sidereal day has passed, Earth still needs to rotate slightly more before the Sun reaches local noon according to solar time. A mean solar day is, therefore, nearly 4 minutes longer than a sidereal day. The stars are so far away that Earth's movement along its orbit makes nearly no difference to their apparent direction (see, however, parallax), and so they return to their highest point in a sidereal day. Another way to see this difference is to notice that, relative to the stars, the Sun appears to move around Earth once per year.
The period of one sidereal day ensures that the satellites follows the same ground track over time. This is controlled by the semi-major axis of the orbit.
Unlike solar time, which is relative to the apparent position of the Sun, sidereal time is the measurement of time relative to that of a distant star. In astronomy, sidereal time is used to predict when a star will reach its highest point in the sky. Due to Earth's orbital motion around the Sun, a mean solar day is about 3 minutes 56 seconds longer than a mean sidereal day, or more than a mean sidereal day.
The time for one complete rotation is 23 hours, 56 minutes, and 4.09 seconds – one sidereal day. The first experimental demonstration of this motion was conducted by Léon Foucault. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours, until, after a year has passed, one additional sidereal "day" has elapsed compared to the number of solar days that have gone by.
A subsynchronous orbit is an orbit of a satellite that is nearer the planet than it would be if it were in synchronous orbit, i.e. the orbital period is less than the sidereal day of the planet.
The SI second was made equal to the ephemeris second in 1967. Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is seconds of mean solar time (UT1) Earth's rotation period relative to the precessing or moving mean vernal equinox, its sidereal day, is seconds of mean solar time (UT1) Thus the sidereal day is shorter than the stellar day by about 8.4 ms.Explanatory Supplement to the Astronomical Almanac, ed. P. Kenneth Seidelmann, Mill Valley, Cal.
Therefore, there is one fewer solar day per year than there are sidereal days. This makes a sidereal day approximately times the length of the 24-hour solar day, giving approximately 23 h 56 min 4.1 s (86,164.1 s).
The orbital period is one-half a sidereal day, i.e., 11 hours and 58 minutes so that the satellites pass over the same locationsWhat the Global Positioning System Tells Us about Relativity . Retrieved January 2, 2007. or almost the same locations.
Venus rotates once every 243 Earth days—by far the slowest rotation period of any known object in the Solar System. A Venusian sidereal day thus lasts more than a Venusian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus, the time from one sunrise to the next would be 116.75 days. Therefore, the slow Venerian rotation rate would result in extremely long days and nights, similar to the day-night cycles in the polar regions of earth — shorter, but global.
The Coriolis force at latitude is horizontal in the small angle approximation and is given by where is the rotational frequency of Earth, is the component of the Coriolis force in the -direction and is the component of the Coriolis force in the -direction. The restoring force, in the small-angle approximation, is given by Graphs of precession period and precession per sidereal day vs latitude. The sign changes as a Foucault pendulum rotates anticlockwise in the Southern Hemisphere and clockwise in the Northern Hemisphere. The example shows that one in Paris precesses 271° each sidereal day, taking 31.8 hours per rotation.
Animation (not to scale) showing geosynchronous satellite orbiting the Earth. A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to exactly the same position in the sky after a period of one sidereal day. Over the course of a day, the object's position in the sky may remain still or trace out a path, typically in a figure-8 form, whose precise characteristics depend on the orbit's inclination and eccentricity.
Sidereal time vs solar time. Above left: a distant star (the small orange star) and the Sun are at culmination, on the local meridian m. Centre: only the distant star is at culmination (a mean sidereal day). Right: a few minutes later the Sun is on the local meridian again.
Groundtrack of QZSS geosynchronous orbit. Seen from the ground, its analemma would have a similar shape. Geosynchronous satellites revolve around the Earth with a period of one sidereal day. Seen from a fixed point on the Earth's surface, they trace paths in the sky which repeat every day, and are therefore simple and meaningful analemmas.
The average length of a Martian sidereal day is (88,642.663 seconds based on SI units), and the length of its solar day is (88,775.244147 seconds). The corresponding values for Earth are currently and , respectively. This yields a conversion factor of 1.02749125170 days/sol. Thus Mars's solar day is only about 2.7% longer than Earth's.
The Sagnac effect is employed in current technology. One use is in inertial guidance systems. Ring laser gyroscopes are extremely sensitive to rotations, which need to be accounted for if an inertial guidance system is to return accurate results. The ring laser also can detect the sidereal day, which can also be termed "mode 1".
The following derivation is exclusively for motion in east–west or west–east direction. Notation: : a_u is the total centripetal acceleration when moving along the surface of the Earth. : a_s is the centripetal acceleration when stationary with respect to the Earth. : \Omega is the angular velocity of the Earth: one revolution per Sidereal day.
To maximise the dwell time the eccentricity, the differences in altitudes of the apogee and perigee, had to be large. However, the perigee needed to be far enough above the atmosphere to avoid drag, and the orbital period needed to be approximately half a sidereal day. These two factors constrained the eccentricity to become approximately 0.737.
In the special case of a geostationary orbit, the ground track of a satellite is a single point on the equator. In the general case of a geosynchronous orbit with a non-zero inclination or eccentricity, the ground track is a more or less distorted figure-eight, returning to the same places once per sidereal day.
Common time on a typical clock measures a slightly longer cycle, accounting not only for Earth's axial rotation but also for Earth's orbit around the Sun. A sidereal day is approximately 23 hours, 56 minutes, 4.0905 seconds (24 hours − 4 minutes + 4.0905 seconds = 86164.0905 s = 23.9344696 h). (Seconds here follow the SI definition and are not to be confused with ephemeris second.) The March equinox itself precesses slowly westward relative to the fixed stars, completing one revolution in about 26,000 years, so the misnamed sidereal day ("sidereal" is derived from the Latin sidus meaning "star") is 0.0084 seconds shorter than the stellar day, Earth's period of rotation relative to the fixed stars. The slightly longer "true" sidereal period is measured as the Earth Rotation Angle (ERA), formerly the stellar angle.
Because of Gliese 581g's proximity to its parent star, it is predicted to be tidally locked to Gliese 581. Just as Earth's Moon always presents the same face to the Earth, the length of Gliese 581g's sidereal day would then precisely match the length of its year, meaning it would be permanently light on one half and permanently dark on the other half of its surface.
An increase of 360° in the ERA is a full rotation of the Earth. Because Earth orbits the Sun once a year, the sidereal time at any given place and time will gain about four minutes against local civil time, every 24 hours, until, after a year has passed, one additional sidereal "day" has elapsed compared to the number of solar days that have gone by.
A geostationary orbit can be achieved only at an altitude very close to and directly above the equator. This equates to an orbital speed of and an orbital period of 1,436 minutes, one sidereal day. This ensures that the satellite will match the Earth's rotational period and has a stationary footprint on the ground. All geostationary satellites have to be located on this ring.
At the bottom of the clock, two globes are located. The terrestrial globe rotates once per day, and the arc shows the division between day and night. The celestial globe shows the stars as they would appear if projected on a sphere surrounding the Earth. It rotates once in a sidereal day, but it also rotates around a second axis once in 25,800 years because of the precession of the equinoxes.
Michael E. Bakich, The Cambridge planetary handbook, p.50. This is obtained by dividing Earth's equatorial circumference by . However, the use of the solar day is incorrect; it must be the sidereal day, so the corresponding time unit must be a sidereal hour. This is confirmed by multiplying by the number of sidereal days in one mean solar day, , which yields the equatorial speed in mean solar hours given above of .
Geostationary orbit To an observer on Earth, a satellite in a geostationary orbit appears motionless, in a fixed position in the sky. This is because it revolves around the Earth at Earth's own angular velocity (one revolution per sidereal day, in an equatorial orbit). A geostationary orbit is useful for communications because ground antennas can be aimed at the satellite without their having to track the satellite's motion. This is relatively inexpensive.
This is within about 1° of the position of Polaris, so that the star would appear to trace a tiny circle in the sky each sidereal day. Due to the axial precession of Earth, true north rotates in an arc with respect to the stars that takes approximately 25,000 years to complete. Around 2101–2103, Polaris will make its closest approach to the celestial north pole (extrapolated from recent Earth precession).Meeus (1997), p. 305.
23 Vulpeculae is the second brightest star in the constellation. In 1967, the first pulsar, PSR B1919+21, was discovered in Vulpecula by Jocelyn Bell, supervised by Antony Hewish, in Cambridge. While they were searching for scintillation of radio signals of quasars, they observed pulses which repeated with a period of 1.3373 seconds. Terrestrial origin of the signal was ruled out because the time it took the object to reappear was a sidereal day instead of a solar day.
Orbiting at an altitude of approximately ; orbital radius of approximately ,, each SV makes two complete orbits each sidereal day, repeating the same ground track each day. This article from author's web site , with minor correction. This was very helpful during development because even with only four satellites, correct alignment means all four are visible from one spot for a few hours each day. For military operations, the ground track repeat can be used to ensure good coverage in combat zones.
A synodic day is the period it takes for a planet to rotate once in relation to the star it is orbiting (its primary body). The synodic day is distinguished from the sidereal day, which is one complete rotation in relation to distant stars. This is different from the duration of a synodic day because the revolution of the body around its parent star would cause a single "day" to pass relative to a star, even if the body did not rotate itself.
The horizontal, or altitude-azimuth, system is based on the position of the observer on Earth, which revolves around its own axis once per sidereal day (23 hours, 56 minutes and 4.091 seconds) in relation to the star background. The positioning of a celestial object by the horizontal system varies with time, but is a useful coordinate system for locating and tracking objects for observers on Earth. It is based on the position of stars relative to an observer's ideal horizon.
The astronauts controlled the reentry, creating drag and lift by rotating the capsule. Due to a computing error, the crew landed 80 miles (130 kilometers) short of the planned landing point in the Atlantic Ocean. Although the computer had worked perfectly, a programmer had entered the rate of the Earth's rotation as 360° per 24 hours instead of 360.98° See Sidereal day. The Gemini 5 mission was supported by the following U.S. Department of Defense resources: 10,265 personnel, 114 aircraft and 19 ships.
Given enough time, this would create a mutual tidal locking between Earth and the Moon. The length of the Earth's day would increase and the length of a lunar month would also increase. The Earth's sidereal day would eventually have the same length as the Moon's orbital period, about 47 times the length of the Earth's day at present. However, Earth is not expected to become tidally locked to the Moon before the Sun becomes a red giant and engulfs Earth and the Moon.
These two crossings rotate once in 18.5 years (known as the Saros cycle) and are indicated by the hand with the Ω (omega) sign. Eclipses occur when the three hands overlap, which typically happens two or three times a year; they overlap in nearly exactly the same position every 18.5 years. In the centre of the dial, a spherical slice of the Earth is located. It rotates counter-clockwise once in a sidereal day, and is used to indicate where the eclipse is visible.
The eccentricity of the orbit is based on the differences in altitudes of its apogee and perigee. To maximise the amount of time that the satellite spends over the apogee, the eccentricity should be set as high as possible. However, the perigee needs to be high enough to keep the satellite substantially above the atmosphere to minimize drag (~600km), and the orbital period needs to be kept to approximately half a sidereal day (as above). These two factors constrain the eccentricity, which becomes approximately 0.737.
Thus the sidereal day is shorter than the stellar day by about 8.4 ms. Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in Earth's sky is to the west at a rate of 15°/h = 15'/min. For bodies near the celestial equator, this is equivalent to an apparent diameter of the Sun or the Moon every two minutes; from Earth's surface, the apparent sizes of the Sun and the Moon are approximately the same.
In the end, it seemed best to display both the natural cycles and some of the current cultural cycles. The center of the clock will show a star field, indicating both the sidereal day and the precession of the zodiac. Around this will be a display showing the positions of the Sun and the Moon in the sky, as well as the phase and angle of the Moon. Outside this will be the ephemeral dial, showing the year according to our current Gregorian calendar system.
Richard Anthony Proctor (23 March 1837 – 12 September 1888) was an English astronomer. He is best remembered for having produced one of the earliest maps of Mars in 1867 from 27 drawings by the English observer William Rutter Dawes. His map was later superseded by those of Giovanni Schiaparelli and Eugène Antoniadi and his nomenclature was dropped (for instance, his "Kaiser Sea" became Syrtis Major Planum). He used old drawings of Mars dating back to 1666 to try to determine the sidereal day of Mars.
Satellites in geostationary orbit. A geosynchronous satellite is a satellite in geosynchronous orbit, with an orbital period the same as the Earth's rotation period. Such a satellite returns to the same position in the sky after each sidereal day, and over the course of a day traces out a path in the sky that is typically some form of analemma. A special case of geosynchronous satellite is the geostationary satellite, which has a geostationary orbit – a circular geosynchronous orbit directly above the Earth's equator.
Areosynchronous orbits (ASO) are a class of synchronous orbits for artificial satellites around the planet Mars. As with all synchronous orbits, an areosynchronous orbit has an orbital period equal in length to the primary's sidereal day. A satellite in areosynchronous orbit does not necessarily maintain a fixed position in the sky as seen by an observer on the surface of Mars; however, such a satellite will return to the same apparent position every Martian day. The orbital altitude required to maintain an areosynchonous orbit is approximately .
The original reason astronomers thought it was synchronously locked was that, whenever Mercury was best placed for observation, it was always nearly at the same point in its 3:2 resonance, hence showing the same face. This is because, coincidentally, Mercury's rotation period is almost exactly half of its synodic period with respect to Earth. Due to Mercury's 3:2 spin-orbit resonance, a solar day (the length between two meridian transits of the Sun) lasts about 176 Earth days. A sidereal day (the period of rotation) lasts about 58.7 Earth days.
The rear planisphere, similar in size to the one in the front but strictly circular, displays the brightest stars of the main circumpolar constellations (Ursa Major, Ursa Minor, and Cassiopeia). It is centred on the north celestial pole and, with its encircling silvered ring of 24-hour intervals, rotates once a sidereal day relative to a fixed meridian- index. Damage to the clock's mechanism was sustained during the fire of 9 July 1984; after 10 years' reparation work, vergers ceased winding it owing to inaccuracies of time-keeping.
Atmospheric super-rotation is the state where a planet's atmosphere rotates faster than the planet itself. The atmosphere of Venus is one example of extreme super-rotation; the Venusian atmosphere circles the planet in just four Earth days, much faster than Venus' sidereal day of 243 Earth days. Atmospheric super-rotation has also been observed on Titan, the largest moon of Saturn. It is believed that the Earth's thermosphere has a small net super- rotation in excess of the surface rotational velocity, although estimates of the size of the phenomenon vary widely.
Every Thursday inside the Church, demonstrations are held of the longest Foucault pendulum in Poland (46,5 m), suspended for the popular display of the Earth's rotation. Named after the French physicist Léon Foucault, the experimental apparatus consists of a tall pendulum free to swing in any vertical plane. The actual path of the swing appears to rotate; while in fact the plane is fixed in space, but the Earth rotates under the pendulum once a sidereal day. It is a simple and easy-to-see proof of the Earth's movement. Foucault’s Pendulum at ITOTD.
The Coriolis frequency ƒ, also called the Coriolis parameter or Coriolis coefficient, is equal to twice the rotation rate Ω of the Earth multiplied by the sine of the latitude φ. :f = 2 \Omega \sin \varphi.\, The rotation rate of the Earth (Ω = 7.2921 × 10−5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s). In the midlatitudes, the typical value for f is about 10−4 rad/s.
The guilty party had hidden the film in what he thought was a safe place because he subconsciously expected the night to last forever. Since the story was written, it has been discovered that Mercury is not tidally locked (a fact Asimov noted when the story appeared in subsequent anthologies printed after this advance in scientific knowledge). A Mercurian sidereal day is 58.6 Earth days long, while its solar day is as much as 176 days, due to a 3:2 spin resonance compared to its year at 88 days.
Most launch vehicles place geosynchronous satellites directly into a geosynchronous transfer orbit (GTO), an elliptical orbit with an apogee at GSO height and a low perigee. On-board satellite propulsion is then used to raise the perigee, circularise and reach GSO. Once in a viable geostationary orbit, spacecraft can change their longitudinal position by adjusting their semi-major axis such that the new period is shorter or longer than a sidereal day, in order to effect an apparent "drift" Eastward or Westward, respectively. Once at the desired longitude, the spacecraft's period is restored to geosynchronous.
Animation of Tundra orbit. inclination = 63.4° A Tundra orbit (Russian: Орбита «Тундра») is a highly elliptical geosynchronous orbit with a high inclination (approximately 63.4°), an orbital period of one sidereal day, and a typical eccentricity between 0.2 and 0.3. A satellite placed in this orbit spends most of its time over a chosen area of the Earth, a phenomenon known as apogee dwell, which makes them particularly well suited for communications satellites serving high latitude regions. The ground track of a satellite in a Tundra orbit is a closed figure 8 with a smaller loop over either the northern or southern hemisphere.
Anti-sidereal time and extended-sidereal time are artificial time standards used to analyze the daily variation in the number of cosmic rays received on Earth. Anti-sidereal time has about 364.25 days per year, one day less than the number of days in a year of solar time, 365.25. Thus each anti-sidereal day is longer than a solar day (24 hr) by about four minutes or 24 hr 4 min. Extended-sidereal time has about 367.25 days per year, one day more than the number of days in a year of sidereal time, 366.25.
The cost of such an orbit would be that an Earth-sized body would become tidally locked. When this happens, the object presents the same face to its parent at all times as it orbits, just as the Moon does with the Earth (more technically, one sidereal day is exactly equal to one year for the orbiting body). Traditional scientific theories proposed that such a tidally locked planet might be incapable of holding on to an atmosphere. Having such a slow rotation would weaken the magnetic effect that protects the atmosphere from being blown away by solar wind (see Rare Earth hypothesis).
A Molniya orbit (, "Lightning") is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an inclination of 63.4 degrees, an argument of perigee of 270 degrees, and an orbital period of approximately half a sidereal day. The name comes from the Molniya satellites, a series of Soviet/Russian civilian and military communications satellites which have used this type of orbit since the mid-1960s. The Molniya orbit has a long dwell time over the hemisphere of interest, while moving very quickly over the other.
A solar day is complete. Solar time is measured by the apparent diurnal motion of the Sun, and local noon in apparent solar time is the moment when the Sun is exactly due south or north (depending on the observer's latitude and the season). A mean solar day (what we normally measure as a "day") is the average time between local solar noons ("average" since this varies slightly over the year). Earth makes one rotation around its axis in a sidereal day; during that time it moves a short distance (about 1°) along its orbit around the Sun.
In the horizontal coordinate system, the observer's meridian is divided into halves terminated by the horizon's north and south points. The observer's upper meridian passes through the zenith while the lower meridian passes through the nadir. Another way, the meridian is divided into the local meridian, the semicircle that contains the observer's zenith and both celestial poles, and the opposite semicircle, which contains the nadir and both poles. On any given (sidereal) day/night, a celestial object will appear to drift across, or transit, the observer's upper meridian as Earth rotates, since the meridian is fixed to the local horizon.
All three satellites broadcast directly to the consumer's receiver, but due to the highly elliptical orbit only two of them broadcast at any given time. Satellites Radiosat 1 through Radiosat 3, now decommissioned, fly in geosynchronous (not geostationary) Tundra orbits. Like the geostationary orbit, the tundra orbit has a period of 23 hours, 56 minutes (one sidereal day). Unlike the geostationary orbit, the tundra orbit is elliptical, not circular, and is inclined with respect to the equator rather than orbiting directly over it. The eccentric orbit ensures that each satellite spends about 16 hours of each day high over the continental United States.
The north and south celestial poles appear permanently directly overhead to observers at the Earth's North Pole and South Pole, respectively. As the Earth spins on its axis, the two celestial poles remain fixed in the sky, and all other points appear to rotate around them, completing one circuit per day (strictly, per sidereal day). The celestial poles are also the poles of the celestial equatorial coordinate system, meaning they have declinations of +90 degrees and −90 degrees (for the north and south celestial poles, respectively). Despite their apparently fixed positions, the celestial poles in the long term do not actually remain permanently fixed against the background of the stars.
Gemini 4 would be the first multi-day space flight by the United States, designed to show that it was possible for humans to remain in space for extended lengths of time. The four-day, 66-orbit flight NASA reported that Gemini 4 made 62 revolutions, defined as passes over Cape Kennedy's longitude (), the duration of which is longer than an orbit because of the Earth's eastward rotation. This is analogous to the difference between a solar day and a sidereal day due to the Earth's revolution around the Sun. would approach but not break the five-day record set by the Soviet Vostok 5 in June 1963.
A geosynchronous orbit is an inclined orbit with an altitude of that completes one revolution every sidereal day tracing out a small figure-eight shape in the sky.Basics of the Geostationary Orbit By Dr. T.S. Kelso A geostationary orbit is a special case of geosynchronous orbit with no inclination, and therefore no apparent movement across the sky from a fixed observation point on the Earth's surface. Due to their inherent instability, geostationary orbits will eventually become inclined if they are not corrected using thrusters. At the end of the satellite's lifetime, when fuel approaches depletion, satellite operators may decide to omit these expensive manoeuvres to correct inclination and only control eccentricity.
According to Vasishtha Siddhantha (the treatise of Vasishtha), Purushottam Maas or the extra lunar month occurs after every 32 months, 16 days and 8 ghati. (A ghati is th of a sidereal day, approximately 24 minutes, so 8 ghati is about 3 hours.) In this reference the concept of Adhik Maas is unique to the traditional Hindu lunar calendars.12 important facts about Adhik Mass you must know! It is one of the most accurate methods to adjust the gap between Solar and Lunar Year. When the Sun does not at all transit into a new rāshi (30° sidereal zodiac) but simply keeps moving within a rāshi in a lunar month (i.e.
Since the edge of the plate represents the effective horizon, its centre identifies the pilot's nadir. Mounted behind the plate is a star-planisphere, based on a north pole stereographic zenithal projection (a projection from the north pole onto a plane passing through the south pole and perpendicular to the solar axis). This rotates once in a sidereal day on an axis passing through its south celestial pole and located some 13 cm above the centre of the horizon plate. For decoration it carries a few basic star patterns (considerably distorted owing to the projection used) and an eccentric zodiac/ecliptic/calendar ring faced with silver, and restricted in width to the distance between the solstitial points.
Directly above the 24-hour dial is the dial of the Primum Mobile, so called because it reproduces the diurnal motion of the stars and the annual motion of the sun against the background of stars. It is basically an astrolabe drawn using a south polar projection, with a fixed tablet and a rete of special design that rotated once in a sidereal day. The rete was provided with 365 teeth, but was driven by a wheel with 61 teeth which made 6 turns in 24 hours. Thus the rete rotated once in 365/366 of a mean solar day, which equated 366 successive meridian transits of the vernal equinox with 365 similar transits of the sun.
Jansky finally determined that the "faint hiss" repeated on a cycle of 23 hours and 56 minutes. This period is the length of an astronomical sidereal day, the time it takes any "fixed" object located on the celestial sphere to come back to the same location in the sky. Thus Jansky suspected that the hiss originated outside of the Solar System, and by comparing his observations with optical astronomical maps, Jansky concluded that the radiation was coming from the Milky Way Galaxy and was strongest in the direction of the center of the galaxy, in the constellation of Sagittarius. An amateur radio operator, Grote Reber, was one of the pioneers of what became known as radio astronomy.
The upper layer of troposphere exhibits a phenomenon of super-rotation, in which the atmosphere circles the planet in just four Earth days, much faster than the planet's sidereal day of 243 days. The winds supporting super-rotation blow at a speed of 100 m/s (≈360 km/h or 220 mph) or more. Winds move at up to 60 times the speed of the planet's rotation, while Earth's fastest winds are only 10% to 20% rotation speed. On the other hand, the wind speed becomes increasingly slower as the elevation from the surface decreases, with the breeze barely reaching the speed of 10 km/h (2.8 m/s) on the surface.
A star that is precisely at one of the ecliptic poles (at 90° from the ecliptic plane) will appear to move in a circle of radius \kappa about its true position, and stars at intermediate ecliptic latitudes will appear to move along a small ellipse. For illustration, consider a star at the northern ecliptic pole viewed by an observer at a point on the Arctic Circle. Such an observer will see the star transit at the zenith, once every day (strictly speaking sidereal day). At the time of the March equinox, Earth's orbit carries the observer in a southwards direction, and the star's apparent declination is therefore displaced to the south by an angle of \kappa.
The planet Venus rotates once every 224.7 days – by far the slowest rotation period of any of the major planets. In contrast, the gas giant Jupiter's sidereal day is only 9 hours and 56 minutes. However, it is not just the sidereal rotation period which determines the length of a planet's day-night cycle but the length of its orbital period as well - Venus has a rotation period of 224.7 days, but a day-night cycle just 116.75 days long due to its retrograde rotation and orbital motion around the Sun. Mercury has the longest day-night cycle as a result of its 3:2 resonance between its orbital period and rotation period - this resonance gives it a day-night cycle that is 176 days long.
The hypothesis of aether drift implies that because one of the arms would inevitably turn into the direction of the wind at the same time that another arm was turning perpendicularly to the wind, an effect should be noticeable even over a period of minutes. The expectation was that the effect would be graphable as a sine wave with two peaks and two troughs per rotation of the device. This result could have been expected because during each full rotation, each arm would be parallel to the wind twice (facing into and away from the wind giving identical readings) and perpendicular to the wind twice. Additionally, due to the Earth's rotation, the wind would be expected to show periodic changes in direction and magnitude during the course of a sidereal day.
For this reason, to simplify the description of Earth's orientation in astronomy and geodesy, it was conventional to chart the positions of the stars in the sky according to right ascension and declination, which are based on a frame that follows Earth's precession, and to keep track of Earth's rotation, through sidereal time, relative to this frame as well. In this reference frame, Earth's rotation is close to constant, but the stars appear to rotate slowly with a period of about 25,800 years. It is also in this reference frame that the tropical year, the year related to Earth's seasons, represents one orbit of Earth around the Sun. The precise definition of a sidereal day is the time taken for one rotation of Earth in this precessing reference frame.
However, as one of the brighter stars close to the celestial pole, Polaris was used for navigation at least from late antiquity, and described as ἀεί φανής (aei phanēs) "always visible" by Stobaeus (5th century), and it could reasonably be described as stella polaris from about the High Middle Ages. In Shakespeare's play Julius Caesar, written around 1599, Caesar describes himself as being "as constant as the northern star", though in Caesar's time there was no constant northern star. Polaris was referenced in Nathaniel Bowditch's 1802 book, American Practical Navigator, where it is listed as one of the navigational stars. Twice in each sidereal day Polaris' azimuth is true north; the rest of the time it is displaced eastward or westward, and the bearing must be corrected using tables or a rule of thumb.
11 Because Earth takes one year to orbit the Sun, the apparent position of the Sun takes one year to make a complete circuit of the ecliptic. With slightly more than 365 days in one year, the Sun moves a little less than 1° eastward every day. This small difference in the Sun's position against the stars causes any particular spot on Earth's surface to catch up with (and stand directly north or south of) the Sun about four minutes later each day than it would if Earth did not orbit; a day on Earth is therefore 24 hours long rather than the approximately 23-hour 56-minute sidereal day. Again, this is a simplification, based on a hypothetical Earth that orbits at uniform speed around the Sun.
The year is usually represented by the 12 signs of the zodiac, arranged either as a concentric circle inside the 24-hour dial, or drawn onto a displaced smaller circle, which is a projection of the ecliptic, the path of the sun and planets through the sky, and the plane of the Earth's orbit. The ecliptic plane is projected onto the face of the clock, and, because of the Earth's tilted angle of rotation relative to its orbital plane, it is displaced from the center and appears to be distorted. The projection point for the stereographic projection is the North pole; on astrolabes the South pole is more common. The ecliptic dial makes one complete revolution in 23 hours 56 minutes (a sidereal day), and will therefore gradually get out of phase with the hour hand, drifting slowly further apart during the year.
Geography by Ptolemy, Latin manuscript of the early 15th century Ptolemy's second main work is his Geography (also called the Geographia), a compilation of geographical coordinates of the part of the world known to the Roman Empire during his time. He relied somewhat on the work of an earlier geographer, Marinos of Tyre, and on gazetteers of the Roman and ancient Persian Empire. He also acknowledged ancient astronomer Hipparchus for having provided the elevation of the north celestial poleThe north celestial pole is the point in the sky lying at the common centre of the circles which the stars appear to people in the northern hemisphere to trace out during the course of a sidereal day. for a few cities.Shcheglov D.A. (2002–2007): "Hipparchus’ Table of Climata and Ptolemy’s Geography", Orbis Terrarum 9 (2003–2007), 177–180.
Clock drives work by rotating a telescope mount's polar axis, the axis parallel to the Earth's polar axis (also called the right ascension axis) in the opposite direction to the Earth's rotation one revolution every 23 hours and 56 minutes (called sidereal day), thereby canceling that motion.Turn left at Orion: a hundred night sky objects to see in a small telescope ... By Guy Consolmagno, Dan M. Davis, Karen Kotash Sepp, Anne Drogin, Mary Lynn Skirvin, page 204 This allows the telescope to stay fixed on a certain point in the sky without having to be constantly re-aimed due to the Earth's rotation. The mechanism itself used to be clockwork but nowadays is usually electrically driven. Clock drives can be light and portable for smaller telescopes or can be exceedingly heavy and complex for larger ones such as the 60-inch telescope at the Mount Wilson Observatory.
Of the eight solar planets, all but Venus and Uranus have prograde rotation—that is, they rotate more than once per year in the same direction as they orbit the Sun, so the Sun rises in the east. Venus and Uranus, however, have retrograde rotation. For prograde rotation, the formula relating the lengths of the sidereal and solar days is: or, equivalently: On the other hand, the formula in the case of retrograde rotation is: or, equivalently: All the solar planets more distant from the Sun than Earth are similar to Earth in that, since they experience many rotations per revolution around the Sun, there is only a small difference between the length of the sidereal day and that of the solar day – the ratio of the former to the latter never being less than Earth's ratio of 0.997. But the situation is quite different for Mercury and Venus.
Similar increases in the size of the habitable zone were computed for other stellar systems. An earlier study by Ray Pierrehumbert and Eric Gaidos had eliminated the CO2-H2O concept entirely, arguing that young planets could accrete many tens to hundreds of bars of hydrogen from the protoplanetary disc, providing enough of a greenhouse effect to extend the solar system outer edge to 10 AU. In this case, though, the hydrogen is not continuously replenished by volcanism and is lost within millions to tens-of-millions of years. In the case of planets orbiting in the CHZs of red dwarf stars, the extremely close distances to the stars cause tidal locking, an important factor in habitability. For a tidally locked planet, the sidereal day is as long as the orbital period, causing one side to permanently face the host star and the other side to face away.
An object in such an orbit has an orbital period equal to the Earth's rotational period, one sidereal day, and so to ground observers it appears motionless, in a fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit was launched in 1963. Communications satellites are often placed in a geostationary orbit so that Earth-based satellite antennas (located on Earth) do not have to rotate to track them but can be pointed permanently at the position in the sky where the satellites are located. Weather satellites are also placed in this orbit for real-time monitoring and data collection, and navigation satellites to provide a known calibration point and enhance GPS accuracy.
It can be established that SI seconds apply to this value by following the citation in "USEFUL CONSTANTS" to E. Groten "Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics" which states units are SI units, except for an instance not relevant to this value. Multiplying by (180°/π radians) × (86,400 seconds/day) yields , indicating that Earth rotates more than 360° relative to the fixed stars in one solar day. Earth's movement along its nearly circular orbit while it is rotating once around its axis requires that Earth rotate slightly more than once relative to the fixed stars before the mean Sun can pass overhead again, even though it rotates only once (360°) relative to the mean Sun.In astronomy, unlike geometry, 360° means returning to the same point in some cyclical time scale, either one mean solar day or one sidereal day for rotation on Earth's axis, or one sidereal year or one mean tropical year or even one mean Julian year containing exactly for revolution around the Sun.

No results under this filter, show 81 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.