Sentences Generator
And
Your saved sentences

No sentences have been saved yet

"saccule" Definitions
  1. a little sac

85 Sentences With "saccule"

How to use saccule in a sentence? Find typical usage patterns (collocations)/phrases/context for "saccule" and check conjugation/comparative form for "saccule". Mastering all the usages of "saccule" from sentence examples published by news publications.

The utricle and saccule detect gravity (vertical orientation) and linear movement.
Otoconia live in two little cavities called the utricle and saccule.
In the 1960s, scientists put 12 guinea pigs in a centrifuge, and spun the machine at 400 Gs. (For reference, that's 44 times the force of acceleration experienced by fighter pilots.) They dissected six of the rodents immediately, and found that almost all of the otoconia had left the saccule and utricle.
Closer to the front of the embryo, the vesicles differentiate into a rudimentary saccule, which will eventually become the saccule and cochlea. Part of the saccule will eventually give rise and connect to the cochlear duct. This duct appears approximately during the sixth week and connects to the saccule through the ductus reuniens. As the cochlear duct's mesenchyme begins to differentiate, three cavities are formed: the scala vestibuli, the scala tympani and the scala media.
The saccule is a bed of sensory cells in the inner ear. It translates head movements into neural impulses for the brain to interpret. The saccule detects linear accelerations and head tilts in the vertical plane. When the head moves vertically, the sensory cells of the saccule are disturbed and the neurons connected to them begin transmitting impulses to the brain.
From the lower part of the saccule a short tube, the canalis reuniens of Hensen, passes downward and opens into the ductus cochlearis near its vestibular extremity. Both the utricle and the saccule provide information about acceleration. The difference between them is that the utricle is more sensitive to horizontal acceleration, whereas the saccule is more sensitive to vertical acceleration.
The saccular nerve is a nerve which supplies the macula of the saccule.
The saccule gathers sensory information to orient the body in space. It primarily gathers information about linear movement in the vertical plane, including the force due to gravity. The saccule, like the utricle, provides information to the brain about head position when it is not moving.How Our Balance System Works American Speech- Language-Hearing Association, 2013 The structures that enable the saccule to gather this vestibular information are the hair cells.
While the semicircular canals respond to rotations, the otolithic organs sense linear accelerations. Humans have two otolithic organs on each side, one called the utricle, the other called the saccule. The utricle contains a patch of hair cells and supporting cells called a macula. Similarly, the saccule contains a patch of hair cells and a macula.
The saccule is the smaller sized vestibular sac (the utricle being the other larger size vestibular sac); it is globular in form, and lies in the recessus sphæricus near the opening of the scala vestibuli of the cochlea. Its anterior part exhibits an oval thickening, the macula of saccule (or saccular macula), to which are distributed the saccular filaments of the acoustic nerve. The vestibule is a region of the inner ear which contains the saccule and the utricle, each of which contain a macula to detect linear acceleration.Its function is to detect vertical linear acceleration.
The otolith organs include the utricle and the saccule. The otolith organs are beds of sensory cells in the inner ear, specifically small patches of hair cells. Overlying the hair cells and their hair bundles is a gelatinous layer and above that layer is the otolithic membrane. The utricle serves to measure horizontal accelerations and the saccule responds to vertical accelerations.
Hair cells of the cristae activate afferent receptors in response to rotational acceleration. The other two sensory organs supplied by the vestibular neurons are the maculae of the saccule and utricle. Hair cells of the maculae in the utricle activate afferent receptors in response to linear acceleration while hair cells of the maculae in the saccule respond to vertically directed linear force.
The central part of the otic vesicle represents the membranous vestibule, and is subdivided by a constriction into a smaller ventral part, the saccule, and a larger dorsal and posterior part, the utricle. The dorsal component of the inner ear also consists of what will become the semicircular canals. The utricle and saccule communicate with each other by means of a Y-shaped canal.
Two otolith organs, the saccule and utricle, are located in each ear and are set at right angles to each other. The utricle detects changes in linear acceleration in the horizontal plane, while the saccule detects gravity changes in the vertical plane. However, the inertial forces resulting from linear accelerations cannot be distinguished from the force of gravity (according to the equivalence principle of general relativity they are the same thing) therefore, gravity can also produce stimulation of the utricle and saccule. A response of this type will occur during a vertical take-off in a helicopter or following the sudden opening of a parachute after a free fall.
Somatogravic illusions are caused by linear accelerations. These illusions involving the utricle and the saccule of the vestibular system are most likely under conditions with unreliable or unavailable external visual references.
The vestibular system helps a person maintain: balance, visual fixation, posture, and lower muscular control. There are six receptor organs located in the inner ear: cochlea, utricle, saccule, and the lateral, anterior, and posterior semicircular canals. The cochlea is a sensory organ with the primary purpose to aid in hearing. The otolith organs (utricle and saccule) are sensors for detecting linear acceleration in their respective planes (utrical=horizontal plane (forward/backward; up/down); saccule=sagital plane (up/down)), and the three semicircular canals (anterior/superior, posterior, and horizontal) detect head rotation or angular acceleration in their respective planes of orientation (anterior/superior=pitch (nodding head), posterior=roll (moving head from one shoulder to other), and horizontal=yaw (shaking head left to right).
The ductus reuniens also the canalis reuniens of Hensen is part of the human inner ear. It connects the lower part of the saccule to the cochlear duct near its vestibular extremity.
The inner ear comprises three specialized regions of the membranous labyrinth: the vestibular sacs – the utricle and saccule, and the semicircular canals, which are the vestibular organs, as well as the cochlear duct, which is involved in the special sense of hearing. The semicircular canals are filled with endolymph due to its connection with the cochlear duct via the saccule, which also contains endolymph. It also contains an inner membranous sleeve that lines the semicircular canals. The canals also contain the crista ampullaris.
The saccule, or sacculus, is the smaller of the two vestibular sacs. It is globular in form and lies in the recessus sphæricus near the opening of the vestibular duct of the cochlea. Its cavity does not directly communicate with that of the utricle. The anterior part of the saccule exhibits an oval thickening, the macula acustica sacculi, or macula, to which are distributed the saccular filaments of the vestibular branch of the vestibulocochlear nerve, also known as the statoacoustic nerve or cranial nerve VIII.
By comparison with the cochlear system, the vestibular system varies relatively little between the various groups of jawed vertebrates. The central part of the system consists of two chambers, the saccule and utricle, each of which includes one or two small clusters of sensory hair cells. All jawed vertebrates also possess three semicircular canals arising from the utricle, each with an ampulla containing sensory cells at one end. An endolymphatic duct runs from the saccule up through the head and ending close to the brain.
Covering the surface of the otolithic membrane are otoliths, which are crystals of calcium carbonate. For this reason, the saccule is sometimes called an "otolithic organ." From the posterior wall of the saccule is given off a canal, the ductus endolymphaticus (endolymphatic duct). This duct is joined by the ductus utriculosaccularis, and then passes along the aquæductus vestibuli and ends in a blind pouch saccus endolymphaticus (endolymphatic sac) on the posterior surface of the petrous portion of the temporal bone, where it is in contact with the dura mater.
Paum PB, Pollak AM & Fisch U., "Utricle, saccule and cochlear duct in relation to stapedotomy: A histologic temporal bone study", Ann Oto Rhinol Laryngol, 12, 1991.Fisch U, "Commentary - stapedotomy versus stapedectomy", Otology & Neurotology, 30(8): 1166–1167, 2009.
In amphibians (Xenopus) a similar mass protein is contained in the utricle along with calcite. The saccule contains aragonite with otoconin-22 which is 22 kDa in mass. Otoconin-22 contains 127 amino acids. Otoconin-22 has a single sPLA2 domain.
The averaged inion response evoked by acoustic stimulation: its relation to the saccule. Ann Otol Rhinol Laryngol 80: 121-131. provided evidence for a short latency response in posterior neck muscles in response to loud clicks that appeared to be mediated by activation of the vestibular apparatus.
The vestibular nerve also conducts information from the utricle and the saccule, which contain hair-like sensory receptors that bend under the weight of otoliths (which are small crystals of calcium carbonate) that provide the inertia needed to detect head rotation, linear acceleration, and the direction of gravitational force.
At about 22 days into development, the ectoderm on each side of the rhombencephalon thickens to form otic placodes. These placodes invaginate to form otic pits, and then otic vesicles. The otic vesicles then form ventral and dorsal components. The ventral component forms the saccule and the cochlear duct.
Illustration of the flow of fluid in the ear, which in turn causes displacement of the top portion of the hair cells that are embedded in the jelly-like cupula. Also shows the utricle and saccule organs that are responsible for detecting linear acceleration, or movement in a straight line.
The macula of saccule lies in a nearly vertical position. It is a 2mm by 3mm patch of hair cells. Each hair cell of the macula contains 40 to 70 stereocilia and one true cilia, called a kinocilium. A gelatinous cover called the otolithic membrane envelops the tips of the stereocilia and kinocilium.
The oVEMP measures integrity of the utricule and superior vestibular nerve and the cVemp measures the saccule and the inferior vestibular nerve. Manzari, L., Burgess, A. M., & Curthoys, I. S. (2010). Dissociation between cVEMP and oVEMP responses: Different vestibular origins of each VEMP? European Archives of Oto-Rhino-Laryngology, 267(9), 1487-1489.
Saccular acoustic sensitivity is a measurement of the ear's affectability to sound. The saccule's normal function is to keep the body balanced, but it is believed to have some hearing function for special frequencies and tones. Saccular acoustic sensitivity is considered to be simply an extension of the sense of hearing through the use of the saccule.
These impulses travel along the vestibular portion of the eighth cranial nerve to the vestibular nuclei in the brainstem. The vestibular system is important in maintaining balance, or equilibrium. The vestibular system includes the saccule, utricle, and the three semicircular canals. The vestibule is the name of the fluid-filled, membranous duct than contains these organs of balance.
In the temporal bone, in the portion beneath the falciform crest are three sets of foramina; one group, just below the posterior part of the crest, situated in the area cribrosa media, consists of several small openings for the nerves to the saccule; below and behind this area is the foramen singulare, or opening for the nerve to the posterior semicircular canal.
The utricle (left) is approximately horizontally oriented; the saccule (center) lies approximately vertical. The arrows indicate the local on-directions of the hair cells; and the thick black lines indicate the location of the striola. On the right you see a cross-section through the otolith membrane. The otolithic membrane is part of the otolith organs in the vestibular system.
The utricle and saccule are the two otolith organs in the vertebrate inner ear. They are part of the balancing system (membranous labyrinth) in the vestibule of the bony labyrinth (small oval chamber).Moores, Keith L. "Essential Clinical Anatomy" Lippincott Williams & Wilkins; Second Edition (2002). They use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation.
The inner ear is primarily responsible for balance, equilibrium and orientation in three-dimensional space. The inner ear can detect both static and dynamic equilibrium. Three semicircular ducts and two chambers, which contain the saccule and utricle, enable the body to detect any deviation from equilibrium. The macula sacculi detects vertical acceleration while the macula utriculi is responsible for horizontal acceleration.
Otoancorin is a protein found in the vertebrate inner ear, on the sensory epithelia where it connects to the gel matrix. Otoancorin is found in the cochlea, utricule, saccule, and under the cupulae on the surface of apical dells in the sensory epithelia. In humans the gene that encodes otoancorin is called OTOA. It is on chromosome 16p12.2 and contains 28 exons.
The vestibular evoked myogenic potential (VEMP or VsEP) is a neurophysiological assessment technique used to determine the function of the otolithic organs (utricle and saccule) of the inner ear. It complements the information provided by caloric testing and other forms of inner ear (vestibular apparatus) testing. There are two different types of VEMPs. One is the oVEMP and another is the cVEMP.
In the sixth week of development the cochlear duct emerges and penetrates the surrounding mesenchyme, travelling in a spiral shape until it forms 2.5 turns by the end of the eighth week. The saccule is the remaining part of the ventral component. It remains connected to the cochlear duct via the narrow ductus reuniens. The dorsal component forms the utricle and semicircular canals.
However, they often lack a basilar papilla, having instead an entirely separate set of sensory cells at the upper edge of the saccule, referred to as the papilla amphibiorum, which appear to have the same function. Although many fish are capable of hearing, the lagena is, at best, a short diverticulum of the saccule, and appears to have no role in sensation of sound. Various clusters of hair cells within the inner ear may instead be responsible; for example, bony fish contain a sensory cluster called the macula neglecta in the utricle that may have this function. Although fish have neither an outer nor a middle ear, sound may still be transmitted to the inner ear through the bones of the skull, or by the swim bladder, parts of which often lie close by in the body.
Head position is sensed by the utricle and saccule, whereas head movement is sensed by the semicircular canals. The neural signals generated in the vestibular ganglion are transmitted through the vestibulocochlear nerve to the brain stem and cerebellum. The semicircular canals are three ring-like extensions of the vestibule. One is oriented in the horizontal plane, whereas the other two are oriented in the vertical plane.
The reason for this difference is the orientation of the macula in the two organs. The utricular macula lie horizontal in the utricle, while the saccular macula lies vertical in the saccule. Every hair cell in these sensory beds consist of 40-70 stereocilia and a kinocilium. The sterocilia and kinocilium are embedded in the otolithic membrane and are essential in the function of the otolith organs.
Saladin, Kenneth S. Anatomy & Physiology The Unity of Form and Function. 6th Ed. New York: McGraw Hill, 2012. 605-609. Print. Not much is known of how this organ is used in other species. Research has shown, like songbirds, females in some species of fish show seasonal variation in auditory processing and the sensitivity of the saccule of females peaks during the breeding season.
The vestibular ganglion (also called Scarpa's ganglion) is the ganglion of the vestibular nerve. It is located inside the internal auditory meatus. The ganglion contains the cell bodies of bipolar neurons whose peripheral processes form synaptic contact with hair cells of the vestibular sensory end organs. These include hair cells of the cristae ampullares of the semicircular duct and macula in the utricle and saccule.
In mice the protein contains 469 amino acids, and is coded by 1906 base-pair DNA. In mice the protein is first formed at day 9.5 in the otic vesicle dorsal wall epithelium, and also in the endolymphatic duct. This is before any minerals are deposited. Four days later it also appears in the non-sensory epithelium of the utricle and saccule and semicircular canals.
Located within the membranous labyrinthine walls of the vestibular system are approximately 67,000 hair cells in total. This includes ~7,000 hair cells from each of the semicircular canals located within the crista ampullaris, ~30,000 hair cells from the utricle, and ~16,000 hair cells from the saccule. Each hair cell has about 70 stereocilia (short rod-like hair cells) and one kinocilium (long hair cell).
These authors made the additional important observations that the response was generated from EMG (muscle) activity and that it scaled with the level of tonic activation. Subsequent work led to the suggestion that the saccule was the end organ excited. In 1992 Colebatch and Halmagyi Colebatch JG, Halmagyi GM(1992). Vestibular evoked potentials in human neck muscles before and after unilateral deafferation. Neurology 42: 1635-1636.
This depolarization will open voltage gated calcium channels. The influx of calcium then triggers the cell to release vesicles containing excitatory neurotransmitters into a synapse. The post-synaptic neurite then sends an action potential to the Spiral Ganglia of Gard. Unlike the hair cells of the crista ampullaris or the maculae of the saccule and utricle, hair cells of the cochlear duct do not possess kinocilia.
The saccule and utricle detect different motions, which information the brain receives and integrates to determine where the head is and how and where it is moving. The semi-circular canals are three bony structures filled with fluid. As with the vestibule, the primary purpose of the canals is to detect movement. Each canal is oriented at right angles to the others, enabling detection of movement in any plane.
Coxal gland and its components The coxal gland is a gland found in some arthropods, for collecting and excreting urine. They are found in all arachnids (with the exception of some Acari), and in other chelicerates, such as horseshoe crabs. The coxal gland is thought to be homologous with the antennal gland of crustaceans. The gland consists of an end sac (saccule), a long duct (labyrinth) and a terminal bladder (reservoir).
From the posterior wall of the saccule a canal, the endolymphatic duct, is given off; this duct is joined by the ductus utriculosaccularis, and then passes along the aquaeductus vestibuli and ends in a blind pouch (endolymphatic sac) on the posterior surface of the petrous portion of the temporal bone, where it is in contact with the dura mater. Disorders of the endolymphatic duct include Meniere's Disease and Enlarged Vestibular Aqueduct.
Brain adaptation after 12 weeks of exposure to galvanic vestibular stimulation. Galvanic vestibular stimulation is the process of sending specific electric messages to a nerve in the ear that maintains balance. There are two main groups of receptors in the vestibular system: the three semi- circular canals, and the two otolith organs (the utricle and the saccule). This technology has been investigated for both military and commercial purposes.
The anterior part of the ventricle leads up by a narrow opening into a pouch-like diverticulum, a mucous membranous sac of variable size called the appendix of the laryngeal ventricle. The appendix (also called the laryngeal saccule, pouch or Hilton's pouch) extends vertically from the laryngeal ventricle. It runs between the vestibular fold, thyroarytenoid muscle, and thyroid cartilage, and is conical, bending slightly backward. It is covered in roughly seventy mucous glands.
The inner ear structurally begins at the oval window, which receives vibrations from the incus of the middle ear. Vibrations are transmitted into the inner ear into a fluid called endolymph, which fills the membranous labyrinth. The endolymph is situated in two vestibules, the utricle and saccule, and eventually transmits to the cochlea, a spiral-shaped structure. The cochlea consists of three fluid-filled spaces: the vestibular duct, the cochlear duct, and the tympanic duct.
Providing balance, when moving or stationary, is also a central function of the ear. The ear facilitates two types of balance: static balance, which allows a person to feel the effects of gravity, and dynamic balance, which allows a person to sense acceleration. Static balance is provided by two ventricles, the utricle and the saccule. Cells lining the walls of these ventricles contain fine filaments, and the cells are covered with a fine gelatinous layer.
The walls of the membranous labyrinth are lined with distributions of the cochlear nerve, one of the two branches of the vestibulocochlear nerve. The other branch is the vestibular nerve. Within the vestibule, the membranous labyrinth does not quite preserve the form of the bony labyrinth, but consists of two membranous sacs, the utricle, and the saccule. The membranous labyrinth is also the location for the receptor cells found in the inner ear.
The Glomeromycota have generally coenocytic (occasionally sparsely septate) mycelia and reproduce asexually through blastic development of the hyphal tip to produce spores (Glomerospores) with diameters of 80–500 μm. In some, complex spores form within a terminal saccule. Recently it was shown that Glomus species contain 51 genes encoding all the tools necessary for meiosis. Based on these and related findings, it was suggested that Glomus species may have a cryptic sexual cycle.
Kinocilia are present in the crista ampullaris of the semicircular ducts and the sensory maculae of the utricle and saccule. One kinocilium is the longest cilium located on the hair cell next to 40-70 stereocilia. During movement of the body, the hair cell is depolarized when the sterocilia move toward the kinocilium. The depolarization of the hair cell causes neurotransmitter to be released and an increase in firing frequency of cranial nerve VIII.
There are five sensory organs innervated by the vestibular nerve; three semicircular canals (Horizontal SCC, Superior SCC, Posterior SCC) and two otolith organs (Saccule and Utricle). Each semicircular canal (SSC) is a thin tube that doubles in thickness briefly at a point called osseous ampullae. At their center-base each contains an ampullary cupula. The cupula is a gelatin bulb connected to the stereocilia of hair cells, affected by the relative movement of the endolymph it is bathed in.
He utters long strings of grunts and growls while fighting, but his courtship call is more of a prolonged hum. He may produce this sound for over an hour at a time, reaching frequencies near 100 Hz. When a male makes the sound, gravid females respond by moving toward him. The fish produces the sound using the muscles of its modified swim bladder. It receives the sound in its saccule, a sensory organ in the inner ear.
226x226px Waardenburg syndrome type 2A (with a mutation in MITF) has been found in dogs, Fleckvieh cattle, minks, mice and a golden hamster. Degeneration of the cochlea and saccule, as seen in Waardenburg syndrome, has also been found in deaf white cats, Dalmatians and other dog breeds, white minks and mice. Domesticated cats with blue eyes and white coats are often completely deaf. Deafness is far more common in white cats than in those with other coat colors.
The lagena is separated from the perilymphatic duct by a basilar membrane, and contains the sensory hair cells that finally translate the vibrations in the fluid into nerve signals. It is attached at one end to the saccule. In most reptiles the perilymphatic duct and lagena are relatively short, and the sensory cells are confined to a small basilar papilla lying between them. However, in birds, mammals, and crocodilians, these structures become much larger and somewhat more complicated.
The outer ear receives sound, transmitted through the ossicles of the middle ear to the inner ear, where it is converted to a nervous signal in the cochlear and transmitted along the vestibulocochlear nerve. The inner ear sits within the temporal bone in a complex cavity called the bony labyrinth. A central area known as the vestibule contains two small fluid-filled recesses, the utricle and saccule. These connect to the semicircular canals and the cochlea.
The bending of these stereocilia alters an electric signal that is transmitted to the brain. Within approximately 10 seconds of achieving constant motion, the endolymph catches up with the movement of the duct and the cupula is no longer affected, stopping the sensation of acceleration. The specific gravity of the cupula is comparable to that of the surrounding endolymph. Consequently, the cupula is not displaced by gravity, unlike the otolithic membranes of the utricle and saccule.
The apical membranes of the dark cells also have a K+ channel which is formed of two subunits, the KCNE1 regulatory protein and the KCNQ1 channel proteins.[8] This channel provides the pathway through which K+ is secreted into the endolymph. As a result, mutations in the KCNE1 gene disrupt endolymph production in the vestibular system, leading to the collapse of the epithelia of the roof of the utricle, saccule and ampullae, as well as dysfunction of the vestibular sensory organs.
The vestibule and semi-circular canal are inner-ear components that comprise the vestibular system. Together they detect all directions of head movement. Two types of otolith organs are housed in the vestibule: the saccule, which points vertically and detects vertical acceleration, and the utricle, which points horizontally and detects horizontal acceleration. The otolith organs together sense the head's position with respect to gravity when the body is static; then the head's movement when it tilts; and pitch changes during any linear motion of the head.
The vestibular system of the inner ear is responsible for the sensations of balance and motion. It uses the same kinds of fluids and detection cells (hair cells) as the cochlea uses, and sends information to the brain about the attitude, rotation, and linear motion of the head. The type of motion or attitude detected by a hair cell depends on its associated mechanical structures, such as the curved tube of a semicircular canal or the calcium carbonate crystals (otolith) of the saccule and utricle.
The utricle and saccule are specialized organs present in the inner ears of all vertebrate animals. They contain otoliths (or otoconia), calcium carbonate stones, which are deposited on a gelatinous membrane that lies over the sensory hair cells. The pull that gravity exerts on the otoliths is sensed by the hair cells, and information about the gravitational stimulus is transmitted to the brain via connecting nerve fibers. The experiment was designed to determine whether otolith production and development of otolith- associated receptor cells and nerve fibers may be altered in the microgravity environment of space.
Moreover, all sensory information from receptors may play an important role in spatial orientation. However, the optic receptors and vestibular semicircular canals, utricle, and saccule play a most significant part, since their exclusion renders normal orientation in space impossible. In infant ontogenesis spatial images arise first via visual perception, then through vestibular, and finally through auditory perception. Special spatial orientation studies in the blind showed that the latter judged obstacles in the distance by sensations in the face area, based on cutaneous receptor stimulation resulting from conditional reflex constriction of facial muscles.
The human inner ear develops during week 4 of embryonic development from the auditory placode, a thickening of the ectoderm which gives rise to the bipolar neurons of the cochlear and vestibular ganglions. As the auditory placode invaginates towards the embryonic mesoderm, it forms the auditory vesicle or otocyst. The auditory vesicle will give rise to the utricular and saccular components of the membranous labyrinth. They contain the sensory hair cells and otoliths of the macula of utricle and of the saccule, respectively, which respond to linear acceleration and the force of gravity.
The utricular division of the auditory vesicle also responds to angular acceleration, as well as the endolymphatic sac and duct that connect the saccule and utricle. Beginning in the fifth week of development, the auditory vesicle also gives rise to the cochlear duct, which contains the spiral organ of Corti and the endolymph that accumulates in the membranous labyrinth. The vestibular wall will separate the cochlear duct from the perilymphatic scala vestibuli, a cavity inside the cochlea. The basilar membrane separates the cochlear duct from the scala tympani, a cavity within the cochlear labyrinth.
Otolithic membrane structure has been frequently studied in amphibians and reptiles in order to elucidate the differences and to understand how the membrane has evolved in various otolith organs. Otolithic membranes of utricles in reptiles and amphibians represent thin plates of non- uniform structure, while the otolithic membrane in the saccule resembles a large cobble-stone-like conglomerate of otoconia. In fish, amphibians and reptiles there is also a third otolith organ that is not present in humans, and is called the lagena. The otolithic membrane in the lagena of amphibians is poorly differentiated, but well differentiated in reptiles.
Of all waveform characteristics, P1-N1 amplitude is the most reliable and clinically relevant. cVEMP amplitude is linearly dependent upon stimulus intensity and is most reliably elicited with a loud (generally at or above 95 dB nHL) click or tone burst. The cVEMP can also be said to be low- frequency tuned, with largest amplitudes in response to 500–750 Hz tonebursts. This myogenic potential is felt to assess saccular function, because the response is present in completely deafened ears and because it is routed through the inferior vestibular nerve, which is known to dominantly innervate the saccule. .
Research suggests that in vertebrate evolution, sensory cells became specialized as gravistatic sensors after they became assembled to form the ear. After this aggregation, growth, including duplication and segregation of existing neurosensory epithelia, gave rise to new epithelia and can be appreciated by comparing sensory epithelia from the inner ears of different vertebrates and their innervation by different neuronal populations. Novel directions of differentiation were apparently further expanded by incorporating unique molecular modules in newly developed sensory epithelia. For example, the saccule gave rise to the auditory epithelium and corresponding neuronal population of tetrapods, starting possibly in an aquatic environment.
The middle ear includes the tympanic cavity and the three ossicles. The inner ear sits in the bony labyrinth, and contains structures which are key to several senses: the semicircular canals, which enable balance and eye tracking when moving; the utricle and saccule, which enable balance when stationary; and the cochlea, which enables hearing. The ears of vertebrates are placed somewhat symmetrically on either side of the head, an arrangement that aids sound localisation. The ear develops from the first pharyngeal pouch and six small swellings that develop in the early embryo called otic placodes, which are derived from ectoderm.
The human ear consists of three parts—the outer ear, middle ear and inner ear. The ear canal of the outer ear is separated from the air-filled tympanic cavity of the middle ear by the eardrum. The middle ear contains the three small bones—the ossicles—involved in the transmission of sound, and is connected to the throat at the nasopharynx, via the pharyngeal opening of the Eustachian tube. The inner ear contains the otolith organs—the utricle and saccule—and the semicircular canals belonging to the vestibular system, as well as the cochlea of the auditory system.
These form bipolar neurons which supply sensation to parts of the inner ear (namely the sensory parts of the semicircular canals, macular of the utricle and saccule, and organ of Corti). The nerve begins to form around the 28th day. ;Molecular regulation Most of the genes responsible for the regulation of inner ear formation and its morphogenesis are members of the homeobox gene family such as Pax, Msx and Otx homeobox genes. The development of inner ear structures such as the cochlea is regulated by Dlx5/Dlx6, Otx1/Otx2 and Pax2, which in turn are controlled by the master gene Shh.
The vestibular system, which is responsible for the sense of balance in humans, consists of the otolith organs and the semicircular canals. Illusions in aviation are caused when the brain cannot reconcile inputs from the vestibular system and visual system. The three semicircular canals, which recognize accelerations in pitch, yaw, and roll, are stimulated by angular accelerations; while the otolith organs, the saccule and utricle, are stimulated by linear accelerations. Stimulation of the semicircular canals occurs when the movement of the endolymph inside the canals causes movement of the crista ampullaris and the hair cells within them.
New York, NY: McGraw Hill Pilots doing long banked turns begin to feel upright (no longer turning) as endolymph matches canal rotation; once the pilot exits the turn the cupula is once again stimulated, causing the feeling of turning the other way, rather than flying straight and level. The HSCC handles head rotations about a vertical axis (the neck), SSCC handles head movement about a lateral axis, PSCC handles head rotation about a rostral-caudal axis. E.g. HSCC: looking side to side; SSCC: head to shoulder; PSCC: nodding. SCC sends adaptive signals, unlike the two otolith organs, the saccule and utricle, whose signals do not adapt over time.
A shift in the otolithic membrane that stimulates the cilia is considered the state of the body until the cilia are once again stimulated. E.g. lying down stimulates cilia and standing up stimulates cilia, however, for the time spent lying the signal that you are lying remains active, even though the membrane resets. Otolithic organs have a thick, heavy gelatin membrane that, due to inertia (like endolymph), lags behind and continues ahead past the macula it overlays, bending and activating the contained cilia. Utricle responds to linear accelerations and head-tilts in the horizontal plane (head to shoulder), whereas saccule responds to linear accelerations and head-tilts in the vertical plane (up and down).
The 2 by 3 mm patch of hair cells and supporting cells are called a macula. Each hair cell of a macula has 40 to 70 stereocilia and one true cilium called a kinocilium. The stereocilia are oriented by the striola, a curved ridge that runs through the middle of the macula; in the saccule they are oriented away from the striolaFitzakerly, Janet University of Minnesota Medical School Deluth, February 10, 2013 The tips of the stereocilia and kinocilium are embedded in a gelatinous otolithic membrane. This membrane is weighted with protein-calcium carbonate granules called otoliths, which add to the weight and inertia of the membrane and enhance the sense of gravity and motion.
In similar fashion, transient increases or decreases in firing rate from spontaneous levels signal the direction of linear accelerations of the head. The range of orientations of hair cells within the utricle and saccule combine to effectively gauge the linear forces acting on the head at any moment, in all three dimensions. Tilts of the head off the horizontal plane and translational movements of the head in any direction stimulate a distinct subset of hair cells in the saccular and utricular maculae, while simultaneously suppressing responses of other hair cells in these organs. Ultimately, variations in hair cell polarity within the otolith organs produce patterns of vestibular nerve fiber activity that, at a population level, unambiguously encode head position and the forces that influence it.
Inner ear, showing utricle near centre The utricle is larger than the saccule and is of an oblong form, compressed transversely, and occupies the upper and back part of the vestibule, lying in contact with the recessus ellipticus and the part below it. The macula of utricle is a thickening in the wall of the utricle where the epithelium contains vestibular hair cells that allows a person to perceive changes in latitudinal acceleration as well as effects of gravity. The gelatinous layer and the statoconia together are referred to as the otolithic membrane, where the tips of the stereocilia and kinocilium are embedded. When the head is tilted such that gravity pulls on the statoconia the gelatinous layer is pulled in the same direction also causing the sensory hairs to bend.
Although few studies have been done to link this to genes known to be involved in human Waardenburg syndrome, a syndrome of hearing loss and depigmentation caused by a genetic disruption to neural crest cell development, such a disruption would lead to this presentation in cats as well. Waardenburg syndrome type 2A (caused by a mutation in MITF) has been found in many other small mammals including dogs, minks and mice, and they all display at least patchy white depigmentation and some degeneration of the cochlea and saccule, as in deaf white cats. A major gene that causes a cat to have a white coat is a dominant masking gene, an allele of KIT which suppresses pigmentation and hearing. The cat would have an underlying coat colour and pattern, but when the dominant white gene is present, that pattern will not be expressed, and the cat will be deaf.
From the posterior wall of the saccule a canal, the endolymphatic duct, is given off; this duct is joined by the utriculosaccular duct, and then passes along the vestibular aqueduct and ends in a blind pouch, the endolymphatic sac, on the posterior surface of the petrous portion of the temporal bone, where it is in contact with the dura mater. Studies suggest that the endolymphatic duct and endolymphatic sac perform both absorptive and secretory,Schuknecht HF. Pathology of the Ear. Philadelphia, Pa: Lea & Febiger; 1993:45–47, 50–51, 62, 64, 101Wackym PA, Friberg U, Bagger-Sjo¨ba¨ck D, Linthicum FH Jr, Friedmann I, Rask-Andersen H. Human endolymphatic sac: possible mechanisms of pressure regulation. J Laryngol Otol 1987; 101:768–779Yeo SW, Gottschlich S, Harris JP, Keithley EM. Antigen diffusion from the perilymphatic space of the cochlea. Laryngoscope 1995; 105:623–628Rask-Andersen H, Danckwardt-Lilliestrom N, Linthicum FH, House WF. Ultrastructural evidence of a merocrine secretion in the human endolymphatic sac.
The vestibule is somewhat oval in shape, but flattened transversely; it measures about 5 mm from front to back, the same from top to bottom, and about 3 mm across. In its lateral or tympanic wall is the oval window (fenestra vestibuli), closed, in the fresh state, by the base of the stapes and annular ligament. On its medial wall, at the forepart, is a small circular depression, the recessus sphæricus, which is perforated, at its anterior and inferior part, by several minute holes (macula cribrosa media) for the passage of filaments of the acoustic nerve to the saccule; and behind this depression is an oblique ridge, the crista vestibuli, the anterior end of which is named the pyramid of the vestibule. This ridge bifurcates below to enclose a small depression, the fossa cochlearis, which is perforated by a number of holes for the passage of filaments of the acoustic nerve which supply the vestibular end of the ductus cochlearis.

No results under this filter, show 85 sentences.

Copyright © 2024 RandomSentenceGen.com All rights reserved.